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Effect of waveform of the driving field on electroconvection near the dielectric inversion frequency
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This paper concerns the instability behavior of a nematic liquid crystal in the region of dielectric inversion
frequency for different waveforms of the exciting electric field. The critical frequency separating the regimes
of dielectric and electroconvective primary bifurcation states shows a notable dependence on the waveform. In
particular, it is found to undergo a large downshift for square-wave and sawtooth-wave fields as compared to
sine-wave and triangle-wave fields. This seems to underscore the significance of harmonics in nonsinusoidal
fields for the evolution of patterned electroconvective states. The study also deals with the flow pattern associated
with the periodic state and the sequence of secondary instabilities occurring at higher fields to emphasize the
role of the Carr-Helfrich mechanism for the instabilities in this region. The relevance of dielectric heating to the
formation of transient structures is also pointed out.
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I. INTRODUCTION

Nematic electroconvection (EC) driven by the Carr-
Helfrich mechanism [1,2] crucially relies, for its occurrence,
on the anisotropies of electrical conductivity σa = σ‖ − σ⊥
and dielectric permittivity εa = ε‖ − ε⊥, the subscripts || and
� denoting the direction relative to the nematic director n.
For nematic liquid crystals composed of rodlike molecules, σa

is usually positive [1]. While the sign combination (–,+) of
(εa,σa) is known to be ideal for the generation of electric-field-
induced periodic space charges leading to sustained cellular
flows, EC occurs even in dielectrically positive nematics,
provided εa is sufficiently small [2–4]. Such (+,+) compounds
are particularly interesting since they turn (–,+) beyond the
frequency fi at which the relaxation of ε‖ leads to dielectric
isotropy. Patterned states found in the vicinity of fi are
of a different class compared to those formed well below
fi . In the latter case, below the cutoff frequency fc of the
conduction regime, the threshold instability is characterized
by a periodic quasistationary splay-bend distortion of n and
oscillation of associated space charges at the frequency of
applied field f . In the dielectric regime beyond fc, the opposite
situation is obtained. Whereas these two regimes are free
from the effects due to dielectric dispersion, the imaginary
component of complex permittivity ε′′ becomes relevant to the
charge source term in the vicinity of fi . The corresponding
conductivity anisotropy term 2πf ε′′ has been incorporated in
the early one-dimensional description of EC observed in the
dispersion region [5–7]. In later two-dimensional analyses,
the periodic instabilities observed near fi are considered as
predominantly of dielectric origin and interpreted more as
modulated Fréedericksz states involving quasistatic domains
than as manifestly convective instabilities [8–10].

In most of the previous studies on nematic EC [1], the
driving field employed is sinusoidal. However, the thresh-
old characteristics of the instability could show significant
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variation with the waveform of the driving field. This was
first demonstrated by de Jeu [11] for the classical conduction
and dielectric regimes, using square-wave (SQW) and sine-
wave (SW) fields; for the roll-state formed below fc, the
threshold voltage at a given frequency was found to be
generally higher for SQW fields than for SW fields, with
the difference in threshold being an increasing function of
frequency; for the chevron state found above fc, the thresh-
old behavior was the opposite. Subsequent one-dimensional
analysis predicted the threshold-frequency variation for the
SQW field to be sigmoidal, involving bistability in the
limiting frequency region of the conduction regime [12],
and this was later verified experimentally [13]. According
to a two-dimensional linear stability formulation [14], even
sinusoidal excitation should involve bistability, though very
marginal. More recently, Stannarius and co-workers [15–23]
carried out extensive theoretical and experimental studies
of electrohydrodynamic excitation of nematics by different
waveforms in the frequency region well below dielectric
dispersion. One of the results this has led to is the discovery of
subharmonic patterned states existing between the conduction
and dielectric regimes. The present work concerns electric field
experiments conducted in the dielectric relaxation region using
different waveforms. In this region, two primary bifurcation
states occur, namely, the homogeneous Fréedericksz state and
the periodic electroconvective state. The latter, for sine-wave
fields, was previously shown [8] to be confined to a narrow
frequency band, defined broadly by 0.8 < f/fi < 1.4. We find
the limiting values of the ratio f/fi shifting down significantly
for both SQW and sawtooth-wave (STW) fields, but remaining
practically unchanged for triangle-wave (TW) fields. It is the
main purpose here to report these results and highlight the
possible effect of higher harmonics of nonsinusoidal fields
on the phase diagram in the dielectric dispersion region. We
also consider an alternative interpretation based on previous
findings relating to the influence of driving waveforms on
the instability states in the classical conduction and dielectric
regimes [15–23]. This is followed by a discussion of the
flow field and then the sequence of secondary instabilities,
which together establish the importance of the Carr-Helfrich
mechanism for the instabilities close to fi .
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II. EXPERIMENT

We have examined the instabilities in butyl p-(p-
ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) exhibiting
an enantiotropic nematic phase between approximately 55 °C
and 84 °C. In cooling, the nematic phase persists in the
supercooled state down to 35 °C. The sample cells were
sandwich type, constructed of indium tin oxide coated glass
plates. The electrodes were overlaid with polyimide and buffed
unidirectionally to secure planar anchoring. For reference, we
take the initial director n0 as along x and the applied field
E normal to the layer as along z. For BEPC, the static value
of εa was previously measured at 1.592 kHz by de Jeu and
Lathouwers [7] and was found to vary from 0.21 at the melting
temperature to 0.06 at 84 °C. Our independent measurement
at 1 kHZ using an Agilant 4284A precision LCR meter agrees
with these data to within ∼5%. For our sample, σ⊥ varied
between 13.9 nS m−1 at 40 °C and 72.7 nS m−1 at 75 °C; also,
σ‖/σ⊥ decreased from 2.76 at 40 °C to 1.16 at 80 °C. For
determining the dielectric spectra at various temperatures, we
used an HP4194A Impedance/Gain-phase analyzer. For opti-
cal observations, a Carl-Zeiss Axio Imager.M1m polarizing
microscope equipped with an AxioCam MRc5 digital camera
was used. The sample temperature � was maintained to an
accuracy of ±0.1 °C by an Instec HCS402 hot stage connected
to a STC200 temperature controller. The voltage source was a
Stanford Research Systems DS345 function generator coupled
to an FLC Electronics voltage amplifier (model A800). The
applied voltage was measured with a Keithley-200 multimeter.
The voltages given are the rms values unless otherwise stated.

III. RESULTS AND DISCUSSION

Before dealing with the electrical instabilities in BEPC, it is
relevant to mention the frequency and temperature variations
of dielectric anisotropy. In view of strongly hindered rotation
of molecules around their short axis, as expected, ε‖ relaxes
at a much lower frequency than ε⊥. The sine-wave frequency
dependence of in-phase components on principal permittivities
is illustrated in Fig. 1 for two representative temperatures. The
frequency of dielectric isotropy f S

i (superscript S indicating
sine wave) lies well below the relaxation frequency f S

R

corresponding to the maximum of the loss component ε′′
‖ .

For example, at 40 °C, f S
R is about 62.7 kHz, while f S

i is
21.7 kHz. As is evident from Fig. 2, f S

i is exponential in 1/�,
being given by log10fi

S = 17.085 98−3990.379 41�−1. The
activation energy derived from the slope of the linear fit
in Fig. 2 is ∼7.9 eV. It should be mentioned here that
de Jeu and Lathouwers [7] were the first to carry out
detailed dielectric measurements on several phenyl benzoates
(including BEPC) and to report on Debye-type relaxation of ε‖
in these compounds. They found that, in a mixture of phenyl
benzoates, both ln fR(1/�) and ln fi(1/�) are linear with
the same slope, involving the same activation energy. From
ln fi(1/�), they obtained 8.1 eV as the activation energy for
BEPC.

Figure 3 shows the comparative phase behavior of planarly
aligned BEPC, in the supercooled nematic state at 40 °C,
for various waveforms of frequency f � 0.5 kHz. Qualitative
features for all the waveforms are similar: In the frequency

FIG. 1. Typical plots showing the frequency dependence of in-
phase permittivity components ε′

‖ and ε′
⊥ parallel and perpendicular

to the nematic director, respectively. The relaxation of ε‖ leads to a
sign reversal of dielectric anisotropy beyond the point f S

i .

regime below the critical frequency of the patterned state
f Y

P (Y = S, SQ, ST, and T for sine-, square-, sawtooth-,
and triangle-wave fields), the rest state bifurcates into the
Fréedericksz state above a threshold UY

F and no secondary
bifurcations follow on increasing U. For f � f Y

P , the primary
instability is characterized by periodic stripes forming at a
critical voltage UY

P , with the wave vector along the initial di-
rector n0. The periodic instability reveals itself with maximum
contrast when the incident light vibration is along n0 and it
completely disappears for the vibration transverse to n0. Thus
the patterned state involves only the splay-bend distortion in
the xz plane, as in classical normal rolls of the conduction
regime. However, unlike in the latter case, where the successive
real lines are equally spaced, here we have double periodicity
or pairing of real lines. This feature, illustrated in Fig. 4 for
the SW field, is common to all the waveforms. It indicates a
coupling between the periodic EC and homogeneous splay
distortion states resulting in the so-called splay rolls (see
Fig. 10 in Ref. [4]).

FIG. 2. Dielectric inversion frequency fi as a function of 1/� for
the BEPC sample used.
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FIG. 3. Frequency variation of the threshold voltage UY
X in a

planar 20-μm-thick sample at 40 °C for different waveforms. In
UY

X , X denotes the instability state (=F for Fréedericksz and P for
patterned EC) and Y denotes the waveform (see the text). For f < f Y

P ,
only the Fréedericksz instability is observed at U � UY

F . Similarly,
for f � f Y

P , primary bifurcation into a periodic EC state occurs at
threshold UY

P . A slight discontinuity is observed in UY
X (f ) at the

transition between the Fréedericksz and periodic states.

Our key result concerns variations in f Y
P , the lowest or

critical frequency at which the EC patterned state is formed
from the base state. As is evident in Fig. 3, f Y

P exhibits a
large downshift for the SQW and STW fields compared to
the TW and SW fields. For example, under SW excitation,
modulated structures appear at or above a frequency threshold
f S

P of 20.4 kHz. While the pattern threshold for the TW
remains the same as for the SW, it reduces to as low as
11.7 kHz for the SQW and further to 8.7 kHz for the STW.
At 40 °C, as mentioned earlier, f S

i is 21.7 kHz, so the ratio
f S

P /f S
i is 0.94. Thus, the patterned state sets in at a SW

frequency slightly below the dielectric inversion point, as
theoretically predicted and observed in other systems [8]. On
the other hand, f

SQ
P /f S

i (for SQW) and f STW
P /f S

i (for STW)
are unexpectedly low, being about 0.54 and 0.40, respectively.
This apparent anomaly could be traced particularly to the
harmonics in the immediate neighborhood of the dielectric
inversion point. With SQW fields, when the fundamental
frequency is 11.7 kHz, all the higher harmonics lie beyond
the inversion point f S

i . While the nematic is dielectrically
unstable at the fundamental frequency far removed from f S

i , it

FIG. 4. Pattern of focal lines formed in the sample exposed to a
SW field with U = 47.4 V and f = 22.5 kHz. A single polarizer is
set along x. Each scale division is 10 μm.

acquires stability for harmonic waves for which εa is negative.
These opposing effects simultaneously acting on the director
may be expected to prevent the dielectric realignment even
at voltages well above the threshold for only the fundamental
frequency. For example, at 17 kHz, the base state subjected to a
SQW field remains unperturbed even at 60 V, but it undergoes
dielectric reorientation at less than 10 V under SW excitation.
However, at a sufficiently large constraint, the Carr-Helfrich
torque due to the anisotropic 2πf ε′′ term corresponding
to the third harmonic of the SQW, being destabilizing in
nature, may be expected to generate the patterned instability.
Evidently, the importance of higher harmonics decreases with
increasing frequency due to the progressive drop in their
voltage amplitude. More specifically, the SQW, STW, and TW
voltages U(t) are given, respectively, by the Fourier series
expansions

U (t) = 4U0

π

(
sin ωt + 1

3
sin 3ωt + 1

5
sin 5ωt + · · ·

)
,

U (t) = 2U0

π

(
sin ωt − 1

2
sin 2ωt + 1

3
sin 3ωt ∓ · · ·

)
, (1)

U (t) = 8U0

π2

(
sin ωt − 1

32
sin 3ωt + 1

52
sin 5ωt ∓ · · ·

)
,

where ω = 2πf and U0 represents the peak voltage in each
case. Clearly, the third and higher harmonics of the TW
are too low in amplitude relative to the fundamental to be
of any significance for the pattern threshold; this explains,
qualitatively, why f T

P is almost the same as f S
P . In both the

SQW and STW, the amplitude of the third harmonic relative
to the fundamental is the same; the STW has, in addition, the
contribution from the relatively strong second harmonic that
lies close to but below f S

i , or in the dielectrically positive
region. The lowest threshold frequency f ST

P found for the
STW is primarily to be attributed to the combined effect of
the second and third harmonics.

As mentioned in the Introduction, the dependence of
threshold instability characteristics on the nature of the time-
varying field E(t) has been investigated for the conduction
and dielectric regimes, employing a wide variety of excitation
waveforms [15–23]. However, the conclusions derived thereby
cannot be readily transferred to electroconvection around fi

since, in this case, (i) the space charge generation is mainly
through anisotropy of dielectric losses and the usual definition
of ionic charge relaxation time as τq = ε0ε⊥/σ⊥ does not
apply, (ii) no definitive correspondence is established with
the classical regimes based on reversal of either the electric
charge distribution or director field, and (iii) the pattern wave
number, instead of showing a sudden upward jump as occurs
at the transition from the conduction to the dielectric regime,
increases continuously with frequency (Fig. 5). In the fi

region, as analyzed in Ref. [10], while the periodic splay-bend
reorientation of the director remains steady, the effective space
charge density interacts with the effective field, generating
the drag force necessary for convective flows; the charges
oscillate at frequency f but are phase shifted relative to
E. Thus, the EC region beyond fi has some resemblance
to the normal conduction regime of nematics with εa < 0
[7]. With this in view, we may speculate on the possible
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FIG. 5. Wave number (in units of π /d) of the periodic threshold
pattern in BEPC as a function of reduced frequency of the driving
sine wave field. The pattern period is λp .

implication of earlier dynamical studies to the present work.
For illustration, we choose the analysis in Ref. [18] of the
instabilities observed under triangular wave excitation. In this
case, neutral curves in the voltage-wave number space are
found to depend on, among other factors, f and the waveform
asymmetry defined by the parameter p = (4Ts/T ) − 1, with
Ts the time to reach the peak voltage from t = 0 and T,
the period of the waveform. For p > 0.76, the subharmonic
regime in which charge and director fields are of periodicity 2T
comes into existence. It exists between the conduction regime
terminating at fc1 and the dielectric regime beginning at fc2,
with the interval fc2 − fc1 increasing with p. Importantly, the
original cutoff fc of the conduction region corresponding to
the triangular waveform (p = 0) downshifts remarkably to fc1

corresponding to the sawtooth waveform (p = 1) (see Fig. 4
in Ref. [18], where fc/fc1 is about 1.62). We might think of a
similar effect as responsible for the relative shift between the
threshold curves for sawtooth and triangle waveforms in Fig. 3.
However, the large downshift of the SQW threshold curve in
Fig. 3 is not explicable by invoking the subharmonic response
as it is elicited under the condition E(t) �= −E(t + T/2).

We may think of a straightforward switching application
based on the frequency-threshold profiles in Fig. 3. For exam-
ple, in the frequency region between f

SQ
P and f S

P , where the
SW-induced dielectric response can lead to near homeotropic
reorientation at a sufficiently high voltage, at which the base
state is stable for the SQW, switching between the dark and
bright states through waveform interchange is feasible. This is
most conveniently achieved using a 90°-twisted nematic cell.
We have studied the UY

X (f ) behavior of BEPC in such a cell
and found it to be very nearly the same as depicted in Fig. 3
for untwisted planar cells. The switching performance of the
twisted nematic is illustrated in Fig. 6. Essentially, at 17 kHz,
we applied a 55-V (peak) SW field to get the dark state in
frame F1, for the sample between suitably crossed polarizers.
Upon switching to the SQW field, the sample reverted to the
quiescent state in which, due to the Mauguin waveguiding
action, the polarizers in effect became parallel, leading to the

FIG. 6. Switching between dark and bright states in a 20-μm
90°-twisted nematic sample at 40 °C, kept between crossed polarizers
with their axes along n0 at the entrance and exit planes and subject to
a 17-kHz 55-V (peak) field. Here FN stands for the Nth frame of the
time series with 0.158 s as the interval between successive frames:
F1, near homeotropic realignment in the SW field; F2, partially bright
texture soon after switching to the SQW field; F4, eventual bright base
state texture under the SQW field; F17, patterned state 0.32 s after
switching back to the SW field; and F22, intermediate loop domain
texture before reaching the near dark state in F56.

bright state in frames F3 and F4. Upon switching back to the
SW field, the dark state was recovered, but after a considerable
delay due to the formation and slow decay of metastable loop
walls, as indicated in frames F17 − F56. At lower frequencies
and voltages the delay time could be reduced. Evidently,
optimization of switching would require decreasing the layer
thickness d since the transient times may be expected to vary
as d2 [1].

The instability features described for different waveforms
(Fig. 3) are observable at all temperatures in the nematic
range. For illustration of temperature variation of the pattern
threshold, we may compare the data for the SQW and the SW.
As depicted in Fig. 7, the critical frequency ratio f S

P /f
SQ
P

shows an overall decrease from about 1.75 to 1.25 as �

is increased from 40 °C to 70 °C. Further, the temperature
dependence of f S

P , as well as of f
SQ
P , is very well represented

by a single-exponential function. As the inset in Fig. 7 shows,
ln fP (1/�) is linear for both waveforms, which is a direct
consequence of fi(�) following the Arrhenius equation. As
concerns the dependence of the EC threshold on temperature,
the variation for the SW is more pronounced and regular
than for the SQW (Fig. 8). Significantly, the temperature
coefficients in the two cases are of opposite sign, being positive
for the SW. Here US

P (�) is known to be governed by several
material parameters. If the critical wave vector at f S

P is taken
as 2d, from Eq. (30) of Ref. [10], we have

U 2
P = 2π2K ηeff(R + s + 1)

ε0(R + s − 1)ε⊥γ1
, (2)

where K is the elastic modulus under one constant approxi-
mation, ηeff is the effective flow viscosity, γ1 is the rotational
viscosity, R = 2ε0πfiε

′′/σ⊥, and s = σ ′/σ⊥, with σ ′ the real
part of complex conductivity parallel to the director. It is known
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FIG. 7. Temperature variation of the critical frequency fp above
which the periodic EC state forms as the primary instability. At all
temperatures, the critical frequency f

SQ
P for the SQW is considerably

lower than the corresponding frequency f S
P for the SW. Solid lines

are exponential fits. The inset shows the linear dependence of ln fP

on 1/� (� being in K) for the two waveforms.

that ηeff/γ1 is generally an increasing function of �, exhibiting
a universal variation for calamitics [24]; 1/ε⊥ shows a similar
trend. These threshold elevating effects under rising � are
partly countered by the decreasing nature of K(T). Going by
the marked increase in UP with � for the SW, we may surmise
the ratio (R + s + 1)/(R + s − 1) to be an increasing function
of �.

Next we consider the flow field for the periodic state
occurring around fi . It is relevant to note that there has
been no report to date of experimental observation of co-
herent flows associated with the modulation in the dielectric
inversion region. In fact, in Refs. [8,9] the patterned state is
taken to be the result of a purely orientational deformation,

FIG. 8. Temperature variation of the critical voltage Up above
which the periodic EC state forms as the primary instability. The
critical voltage US

P for the SW approaches the corresponding voltage
U

SQ
P for the SQW as the temperature increases.

FIG. 9. Tracer particle motion around the vortex axis appearing
as oscillatory traverse between adjacent focal lines. Here FN refers to
the Nth frame of the time series with 0.323 s as the interval between
successive frames. The parameters are 70 °C, 52.2 V, 218 kHz, and
d = 20 μm. Parallel polarizers are along x. Each scale division is
5 μm.

involving no hydrodynamics. This view is later modified in
the viscoelastic approach [10], where allowance is made for a
steady velocity field of very small amplitude. In a subsequent
study [25] demonstrating switchable diffraction gratings based
on dielectric sign reversal, the patterned instability near fi

is described as the Fréedericksz state that is modulated in
the plane of the substrates. Experimentally, we find the flow
field associated with the modulated state formed around fi to
be readily observable through the motion of tracer particles
immersed in the fluid and the corresponding velocities are
not inconsiderable. In Fig. 9, for example, we demonstrate
the projected oscillatory motion of a chance particle, which
is correlated with the vortical motion of the fluid. In the
figure, FN denotes the Nth frame of a time series of 200
images captured, with the interval between successive frames
being 0.323 s (see Supplemental Material [26] for a movie
clip NR.avi of this series that runs at four times the original
frame rate). The brighter focal lines are a period λp apart
and two counterrotating cells exist between them. The in
between feeble focal line is shifted slightly to the left of
center because of the double periodicity mentioned before.
The particle completes one oscillation in about 30 s. If we take
the particle as having a diameter of 4 μm and hence orbiting in
an ellipse of semimajor and semiminor axes measuring 15 and
8 μm, respectively, the length traversed in a cycle would be
about 75 μm corresponding to an average speed of 2.5 μm s−1.
In the conduction regime, the speed of flow estimated near
threshold is, interestingly, of the same order [27].

The plot in Fig. 10 of the projected position s of the particle
along x as a function of t shows some finer features of flow.
The velocity component vx along x is expectedly the largest
midway between the turning points. The times for forward (A
to B) and reverse (B to C) motions are consistently different,
pointing to dissimilar conditions at the two substrates.

On slowly increasing U at f < fi , the normal roll state, with
the threshold control parameter �p = [(U/Up)2 − 1] = 0,
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FIG. 10. Position along x of a particle revolving around the axis
of a flow cell as a function of time.

undergoes a regular sequence of symmetry-breaking transi-
tions into various stationary structures prior to the eventual
onset of the Fréedericksz instability. In Fig. 11, which
exemplifies this feature, the transformation from the normal
to oblique or zigzag roll state via the undulatory instability,
as in Figs. 11(a)–11(d), has a striking resemblance to a
similar occurrence in the classical conduction regime, above
the Lifshitz frequency [28]. Just as in the latter case, the
streamlines for the undulatory and oblique roll states here are
observed to be helical as in Fig. 12 (see Supplemental Material
[26] for a movie clip OR.avi on helical motion that runs at 12
times the original frame rate).

For a large control parameter, the original splay-bend
structure develops a twist component that is opposite in
sense for the zig and zag sections [29]. The kinks separating
these straight sections involve line singularities, which appear
as bright points in Figs. 11(e) and 11(f). This is followed
by the rolls turning into Brochard-Leger walls [30], as in

FIG. 11. Focal lines corresponding to (a) normal rolls at � =
0.13, (b) undulatory rolls at � = 0.22, (c) undulatory rolls of
increased amplitude at � = 0.23 V, (d) zigzag Williams-like rolls at
� = 0.37, (e) zigs and zags separated by disclinations at � = 0.57,
and (f) hybrid state formed during transformation of rolls into
Fréedericksz loop walls at � = 0.89. Here f S

P /f S
i = 0.89. Parallel

polarizers are along x.

FIG. 12. Helical motion of a tracer particle in the oblique roll
state viewed by z stacking of 600 images recorded over 148 s. The
image is inverted to enhance the visibility of the spiral trajectory
between the inclined focal lines now appearing dark. The axis of the
helix is at a slight angle to the vertical (y) due to a slow drift of the
pattern to the left. Each scale division is 2 μm. The parameters are
60 °C, 107 kHz, and � = 0.23.

Fig. 11(f), and in the final stages leading to the homogeneous
Fréedericksz state, metastable loop walls with opposite kinks
along the easy axis are obtained. Far from fi , where the
pattern period is small, higher-order instabilities manifest
first as oscillatory EC domains and then as highly dynamic
chevrons. In Figs. 13(a)–13(d), depicting the chevrons formed
at various voltages at a given frequency, the progressive
increase in chevron angle with � is evident. Notably, at such
large values of f and � corresponding to Fig. 13(d), the
attendant dielectric heating [31] elevates fi to a value above
the applied frequency so that the chevron state gives way to
the Fréedericksz instability. This transition occurs via several
intermediate states involving bimodal structures. In Fig. 13(e)

FIG. 13. (a) and (d) Chevron states for f/fi = 1.13 showing
increasing chevron angle with control parameter. �-values are (a)
0.37, (b) 0.81, (c) 1.26, and (d) 1.31. (e) and (f) Transformation of
the chevron state to the Fréedericksz state at � = 1.44, consequent
on a change in the sign of εa (or upward shift of fi) due to dielectric
heating. In (e), the region on left shows the transient bimodal state;
eventually, as can be seen on the left in (f), the uniform Fréedericksz
state is established all over.
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illustrating this feature, the bimodal pattern in the left half
decays with the passage of time, resulting in the homogeneous
Fréedericksz texture that is shown in Fig. 13(f). A comparison
between the chevron textures in the right half of Figs. 13(e) and
13(f) shows how the chevron angle decreases as the transition
to the homogeneous state is approached. This is explicable
by the decrease in effective � during heating. The minimum
increase in temperature that would induce the transition to the
Fréedericksz state could be estimated by setting f/f S

i = 1.
From the f S

i (�) relation mentioned previously, the increase in
� here is by 1.5 °C. These high-frequency thermal effects
have not been previously considered in textural studies at
frequencies near f S

i [32].

IV. CONCLUSION

In the present study, we have focused on EC that involves
charges created via dielectric loss and occurs in a narrow
frequency band around the dielectric inversion point fi , within
which the sign of εa changes. The results demonstrate the
importance of the driving waveform in the evolution of EC
states around fi . In particular, the frequency band of EC
is found to exhibit a large downshift for square-wave and
sawtooth-wave fields relative to sine-wave and triangle-wave
fields. This implies a corresponding shift in the effective

relaxation frequency for SQW and STW fields. In conse-
quence, a planar nematic layer exposed to a SQW or STW
field exhibits dielectric stability at such high voltages as will,
under a SW or TW field, render the layer almost completely
homeotropic. In addition, the experiments here clearly reveal
the elliptical and helical streamlines associated, respectively,
with normal and oblique splay rolls formed at or near f S

i . This,
together with the sequence of secondary bifurcations identified
herein, points to the likeness of the instabilities to those
occurring in the classical conduction and dielectric regimes.
An additional interesting feature recognized is the evolution of
two-dimensional patterns in the course of transition from the
dielectrically negative state to the positive state occasioned
by dielectric heating. Overall, the results underscore the
need for a theoretical analysis of the EC instability under
nonsinusoidal excitation, taking into account the contribution
of dielectric loss to space charge generation. Experiments on
spatiotemporal features of distortion (using high-speed image
acquisition as in, for example, Ref. [18]) are also of interest
in exploring the dynamical aspects of the instability states and
their dependence on the excitation waveform.
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