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Consequences of director-density coupling theory for flexoelectricity in nematic liquid crystals
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We theoretically study how the measurements of the flexoelectric coefficients in nematic liquid crystals are
affected by the inclusion of the director-density coupling energy. It is shown that this investigation is quite relevant
for interpreting the data of experiments.
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I. INTRODUCTION

Most of the current interest in studying flexoelectric-
ity derives from technological applications based on the
flexoelectric-optic effect [1] and in the development of
a zenithally bistable nematic device [2]. The flexoelectric
effect in liquid crystals manifests itself as the appearance of
spontaneous polarization induced by deformation [3], which
in the nematic phase is given by

Pf = e1n(∇ · n) + e3[(∇ × n) × n]. (1)

Here, n is the liquid crystal director, and e1 and e3 are,
respectively, the flexoelectric coefficients for splay and bend
distortions. Two mechanisms contribute to the flexoelectric
couplings. The first is of a dipolar origin [3], arising from
pear- and banana-shaped molecules with permanent dipoles;
the second one relies on quadrupolar contributions [4], which
are of a more general character. Much additional progress
in our understanding of flexoelectric coefficients in terms of
molecular parameters has been actively researched over the
years [5–13].

In the early years after Meyer’s discovery, experimental and
theoretical works showed that the flexoelectric coefficients
are of order of few pC/m [5,6,14,15], being subsequently
confirmed by a great number of empirical evidences [16–29].
The announcement of giant flexoelectricity in bent-core
nematic material [30,31], therefore, came as a surprise to
most researchers. Some authors [32–35], however, have failed
to reproduce the strength of the effect observed by Harden
and collaborators. In addition, it appears to be impossible for
conservation of energy reasons [36,37].

There are several complicating factors involved in the
measurement of flexoelectric coefficients, such as ionic drift
in experiments using dc voltage [26,38,39] and the influence
of surface polarization [22,23,40]. An additional compli-
cation has been raised by many authors but has not yet
been clarified. It is about the fact that for certain liquid
crystal materials, different methods of measurement give
conflicting results [16,18,41–43]. It is our purpose in this
paper to discuss this problem with the aid of the elastic

energy
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introduced in Ref. [44] as a supplement to the Oseen-Frank
energy density. According to this theory, inhomogeneities in
the local mass density ρ couple directly with the liquid crystal
director n. Here, B, u1, and u2 are the coupling constants of
the theory. The B term, originally missing, has been added in
order to endow the theory with a minimum [45]. Also, it can
be justified on general grounds [46]. When fddc is included
in the total elastic energy of a nematic, it turns out that the
static behavior of the resulting theory predicts a Fréedericksz
transition accompanied by modulation in the mass density [45]
(see also Ref. [47]). Besides the experimental support already
given [44,48], there is convincing evidence [49–52] that the
theory we are working with is able to interpret the experimental
data on the acousto-optic effect reported in Ref. [53]. For this
reason, it is worthwhile to investigate the implications of fddc

on flexoelectricity with the aim towards shedding light on the
problem of conflicting measurements alluded to above. We do
this by calculating the effect of fddc in real experimental setups
designed to measure e3 and e1 (in Secs. II and III, respectively)
and the combinations e1 + e3 and e1 − e3 (in Secs. IV and V,
respectively). We reserve Sec. VI for concluding remarks.

II. MEASURING e3

Let us consider the following experiment designed to
measure e3. A nematic sample of thickness h is placed between
two large parallel plates; the alignment is homeotropic and
weakly anchored [see Fig. 1(a)]. The liquid crystal director
reads

n(z) = x̂ sin θ (z) + ẑ cos θ (z), (3)

and ρ = ρ(z) is assumed here (and throughout the paper). The
total energy density is given by

f = fof + fddc + fflexo, (4)
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FIG. 1. Cell of thickness h containing a nematic liquid crystal:
(a) Homeotropic alignment and (b) planar alignment. On the right,
the coordinate system defines the angle θ for the director.

in which

fof = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3|n × (∇ × n)|2, (5)

fflexo = −Pf · E. (6)

In the above, K1, K2, and K3 are, respectively, the Frank
constants for splay, twist, and bend, and E is the electric field
applied to the nematic material. For the particular case in which
E = −Ex̂, one gets

fof = 1

2
(K1 sin2 θ + K3 cos2 θ )

(
dθ

dz

)2

, (7)

fddc = 1

2
B

(
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+
[
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(
d2ρ
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+ u2

(
dρ
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)2]
cos2 θ, (8)

fflexo = E(e3 cos2 θ − e1 sin2 θ )

(
dθ

dz

)
. (9)

The dielectric term fdiel is of O(E2) and has been neglected
(to be taken into account in Secs. IV and V). The equilibrium
configuration is that one which minimizes the total energy
F = ∫ h/2

−h/2 f dz and satisfies the conservation of mass M =∫ h/2
−h/2 ρ(z)dz. The solution of this isoperimetric calculus of

variations problem [54] is found by solving the following set
of equations,

d2

dz2

(
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− d
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(
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= 0, (10)
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)
− ∂f

∂θ
= 0, (11)

where ρzz ≡ d2ρ/dz2, ρz ≡ dρ/dz, θz ≡ dθ/dz, and f =
f + μρ. Here, μ is a (constant) Lagrange multiplier. Since
∂f /∂ρ = μ, it follows from Eq. (10) that

d
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(
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∂ρzz

)
− ∂f

∂ρz

+ μz = C. (12)

Next, we substitute f in the above equation to obtain

−u1
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sin(2θ ) − (B + 2u2 cos2 θ )
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)
+ μz = C.

(13)
Note that the conditions θ (0) = 0 and ( dρ

dz
)
z=0

= 0 [by virtue of
ρ(z) = ρ(−z)] automatically imply C = 0. The substitution
of f in Eq. (11), on the other hand, leads to

(K1 sin2 θ +K3 cos2 θ )

(
d2θ

dz2

)
+ 1

2
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(
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+
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u1

(
d2ρ
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)
+ u2

(
dρ
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)2]
sin(2θ ) = 0. (14)

It is reasonable to seek a solution of the form

θ (z) = Eθ1(z) + · · · , (15)

ρ(z) = ρ0 + E2ρ2(z) + · · · , (16)

where ρ0 is the average mass density and ρ(z) is an even
function of E. Hence μ = μ2E

2 + · · · and μ2 is field
independent. Consequently, the linearized form of Eq. (14)
reads d2θ1/dz2 = 0, which immediately furnishes θ1 = λz

since θ (0) = 0. In order to calculate the constant of integration
λ, we first return to Eq. (13), using our solution for θ1 to get

dρ2

dz
= (μ2 − 2u1λ

2)z

B + 2u2
. (17)

We now evaluate the corresponding energy cost by means of
Eq. (4),

f =
(

1

2
K∗

3 λ2 + e3λ + u1μ2

B + 2u2

)
E2 + · · · , (18)

where

K∗
3 ≡ K3 − 4u2

1

B + 2u2
. (19)

In the Appendix, it is argued that B ∼ 2u2 and u2
1/u2 ∼ K3.

We should expect, therefore, that fddc brings a significant
correction to K∗

3 . If one assumes that K∗
3 is positive, it is clear

that f (and then F ) becomes minimum when λ = −e3/K
∗
3 . In

this case, a distortion of the nonthreshold character is observed,
i.e.,

θ (z) = −
(

e3E

K∗
3

)
z + · · · . (20)

Note that the only effect of fddc, Eq. (2), is to renormalize
the Frank constant K3. The experiment we are discussing,
therefore, gives the ratio e3/K

∗
3 (presumably correct) instead
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of the classical result e3/K3 [55]. In light of this, the agree-
ment between experimental data with a theoretical prediction
(ignoring the effect of fddc) is achieved through the enhanced
flexoelectric coefficient

eeff
3 =

(
K3

K∗
3

)
e3. (21)

At this point, it is interesting to observe that the presence of
surface polarization mp has the effect of replacing e3 with
e3 + mp [40].

III. MEASURING e1

We now consider an experiment intended to measure the
flexoelectric coefficient e1. The nematic material is sand-
wiched between two glass plates and is planarly aligned
[see Fig. 1(b)]. As in the prior section, the anchoring is
also supposed to be very weak. The liquid crystal director
is written as n(z) = x̂ cos θ (z) + ẑ sin θ (z). In this case, when
the external field E = Ex̂ is applied, the total energy density
is obtained by replacing θ → π/2 − θ and E → −E in Eqs.
(7)–(9). If we now substitute f into Eq. (12), we find that

u1

(
dθ

dz

)
sin(2θ ) − (B + 2u2 sin2 θ )

(
dρ

dz

)
+ μz = C. (22)

This is just the equation analogous to Eq. (13). Again, C = 0
(for the same reason) and we assume the validity of the
expansions given by Eqs. (15) and (16). Inspection of Eq. (8)
(after making the substitution cos θ → sin θ ) and Eq. (22)
reveals that the contribution of fddc to f is of O(E4). Hence, in
contrast to the previous case, no correction is predicted to the
established result that θ (z) = (e1E/K1)z + · · · [55], so that
one has eeff

1 = e1.

IV. MEASURING THE COMBINATION e1 + e3

Returning to Fig. 1(a), we are now assuming that there is a
surface free charge density σ = ẑ · D on the bottom surface of
the nematic cell (there is no other external source of electric
field). However, there are no free charge in the medium, so
that

∇ · D = 0. (23)

In the above, D = ε0[ε⊥E + (	ε)(E · n)n] + Pf is the electric
displacement, E = E(z)ẑ, ε0 is the permittivity of vacuum, ε⊥
and ε‖ are, respectively, dielectric susceptibilities perpendicu-
lar and parallel to the director, and 	ε = ε‖ − ε⊥ denotes the
dielectric anisotropy [55]. We confine ourselves to a negative
dielectric material, 	ε = −|	ε|. The aim is to describe an
experiment where a Fréedericksz transition takes place [56].
Thus, a strong-anchoring boundary condition is required,

θ (−h/2) = θ (h/2) = 0, (24)

along with [45](
dρ

dz

)
z=−h/2

=
(

dρ

dz

)
z=h/2

= 0. (25)

From Eq. (23) it follows that the z component of D is constant
and

E(z) = (σ − Pfz)ẑ
ε0(ε‖ + |	ε| sin2 θ )

, (26)

where

Pfz = − (e1 + e3)

2

(
dθ

dz

)
sin(2θ ) (27)

is the z component of Pf. Here, fof and fddc are given by the
same expressions as Eqs. (7) and (8). For the remaining terms
we have

fflexo = − Pfz(σ − Pfz)

ε0(ε‖ + |	ε| sin2 θ )
(28)

and the dielectric term

fdiel = 1

2
D · E = σ (σ − Pfz)

2ε0(ε‖ + |	ε| sin2 θ )
. (29)

The equilibrium configuration is found by solving Eqs. (13)
[in this case, Eqs. (24) and (25) together imply μ = C = 0]
and

(K1 sin2 θ + K3 cos2 θ )

(
d2θ

dz2

)
+ 1

2
(K1 − K3)

(
dθ

dz

)2

× sin(2θ ) + σ 2|	ε| sin(2θ )

2ε0(ε‖ + |	ε| sin2 θ )2
+ (e1 + e3)2

4ε0

×
[

2 sin(2θ )

ε‖ + |	ε| sin2 θ

(
d2θ

dz2

)

+ 4(ε‖ + |	ε| sin2 θ ) cos(2θ ) − |	ε| sin2(2θ )

(ε‖ + |	ε| sin2 θ )2

(
dθ

dz

)2]

× sin(2θ ) +
[
u1

(
d2ρ

dz2

)
+ u2

(
dρ

dz

)2]
sin(2θ ) = 0, (30)

which follows from Eq. (11). We now substitute Eq. (13) into
Eq. (30) and the resulting equation is then multiplied by dθ/dz

(the trick for exactly integrating [55]). After the calculation is
finished, one obtains

d

dz

[
1

2

(
dθ

dz

)2

f (θ ) − σ 2

2ε0(ε‖ + |	ε| sin2 θ )

]
= 0, (31)

where

f (θ ) = (K1 sin2 θ + K3 cos2 θ ) − u2
1 sin2(2θ )

B + 2u2 cos2 θ

+ (e1 + e3)2 sin2(2θ )

2ε0(ε‖ + |	ε| sin2 θ )
. (32)

Hence the integration can be easily performed, leaving us with

1

2

(
dθ

dz

)2

f (θ ) − σ 2

2ε0(ε‖ + |	ε| sin2 θ )
= C. (33)

The constant of integration

C = − σ 2

2ε0(ε‖ + |	ε| sin2 θm)
(34)
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FIG. 2. Twisted nematic cell of thickness h. On the right, the
coordinate system defines the angles θ and φ for the director.

is determined by imposing symmetric distortion around z = 0,
namely,

(
dθ

dz

)
z=0

= 0, θ (0) = θm, (35)

where θm is the maximum angle. We can express the solution
of Eq. (33) with dθ/dz � 0 as follows,

∫ θ

0

√
f (α)

g(α)
dα = z + h

2
, (36)

∫ θm

0

√
f (α)

g(α)
dα = h

2
, (37)

where

g(θ ) = σ 2

ε0

[
1

ε‖ + |	ε| sin2 θ
− 1

ε‖ + |	ε| sin2 θm

]
. (38)

For 0 < z � h/2, one has θ (−z) = −θ (z). It is now easy to
see that due to the presence of the second term in Eq. (32),
the fit between experiment and theory becomes problematic.
To better illustrate this point, let us admit that contributions of
O(θ4) can be neglected. In this case, it is the combination

(e1 + e3)2

2ε0ε‖
− u2

1

B + 2u2
(39)

that emerges from the experimental work. Let us assume, for
continuing discussion, that the combination is positive. Then
the counterpart of Eq. (21) reads

(e1 + e3)2
eff = (e1 + e3)2 − 2ε0ε‖u2

1

B + 2u2
. (40)

It should be noticed that for positive dielectric anisotropy,
Eq. (31) describes a Fréedericksz transition undergone by
a nematic material planarly aligned after the replacements
K1 → K3,ε‖ → ε⊥, |	ε| → 	ε, and u2 cos2 θ → u2 sin2 θ .
In view of the new form of f (θ ), the analogous to Eq. (40)
lacks the term involving u2:

(e1 + e3)2
eff = (e1 + e3)2 − 2ε0ε⊥u2

1

B
. (41)

V. MEASURING THE COMBINATION e1 − e3

Let us now consider a twisted nematic sample (pitch
infinite) and subjected to the electric field E = Ex̂ (see Fig. 2).
The director is written as n = x̂ cos θ cos φ + ŷ cos θ sin φ +
ẑ sin θ , where θ and φ are assumed to be functions of z

only and also to satisfy φ(−h/2) = φ1, φ(h/2) = φ2, and
θ (−h/2) = θ (h/2) = 0 [55]. Using fdiel = − 1

2ε0(	ε)(E · n)2

for the dielectric energy, the total energy density then takes the
form

f = 1

2
(K1 cos2 θ + K3 sin2 θ )

(
dθ

dz

)2

+ 1

2
K2

(
dφ

dz

)2

cos4 θ + 1

2
K3

(
dφ

dz

)2

sin2 θ cos2 θ

+ e3E

[(
dθ

dz

)
sin2 θ cos φ + 1

2

(
dφ

dz

)
sin(2θ ) sin φ

]
− e1E

(
dθ

dz

)
cos2 θ cos φ + 1

2
B

(
dρ

dz

)2

+
[
u1

(
d2ρ

dz2

)
+ u2

(
dρ

dz

)2]
sin2 θ − 1

2
ε0(	ε)E2 cos2 θ cos2 φ. (42)

To find the minimum, we have to solve the following set of equations,

(K1 cos2 θ + K3 sin2 θ )

(
d2θ

dz2

)
+ 1

2
(K3 − K1)

(
dθ

dz

)2

sin(2θ ) +
(

dφ

dz

)2[
2K2 cos3 θ sin θ − K3

4
sin(4θ )

]

−
[
u1

(
d2ρ

dz2

)
+ u2

(
dρ

dz

)2
]

sin(2θ ) + (e1 − e3)E

(
dφ

dz

)
cos2 θ sin φ − 1

2
ε0(	ε)E2 sin(2θ ) cos2 φ = 0, (43)

K2

[(
d2φ

dz2

)
cos4 θ − 4 cos3 θ sin θ

(
dφ

dz

)(
dθ

dz

)]
+ K3

[
1

4

(
d2φ

dz2

)
sin2(2θ ) + 1

2

(
dφ

dz

)(
dθ

dz

)
sin(4θ )

]

− 1

2
ε0(	ε)E2 cos2 θ sin(2φ) + (e3 − e1)E

(
dθ

dz

)
cos2 θ sin φ = 0, (44)

and Eq. (22) with μ = C = 0 [after use of Eqs. (24) and
(25)]. It is clear that Eq. (44) comes from Eq. (11) [this

applies equally to Eq. (43)] when θ is changed to φ. Instead
of proceeding with the calculation, we are interested only in
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pointing out the relevance of fddc in this kind of experiment.
Indeed, if we assume that the equilibrium configuration can be
written as

θ (z; E) = Eθ (1)(z) + E2θ (2)(z) + E3θ (3)(z) + · · · , (45)

φ(z; E) = φ(0)(z) + Eφ(1)(z) + E2φ(2)(z) + E3φ(3)(z) + · · · ,

(46)

then it can be seen from Eq. (43) that both terms, the dielectric
and the one coming from fddc, are of O(E3). This means, in
essence, that fddc should not be ignored while maintaining the
dielectric term.

VI. CONCLUDING REMARKS

It has been recorded in the literature that for certain
liquid crystal materials, different methods of measuring the
flexoelectric coefficients give rise to conflicting results. In an
effort to shed light on this issue, we have studied the effect
of the director-density coupling theory in real experimental
situations designed to measure the flexoelectric coefficients
e3 and e1, and the combinations e1 + e3 and e1 − e3. It is
worthwhile to recall that this theory has passed a crucial test
[52] and, therefore, we believe our findings are of great interest
to the ongoing debate on flexoelectricity in nematic liquid
crystals.
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APPENDIX: CONJECTURE ON THE MAGNITUDE OF u1

Unfortunately, only the magnitude of u2 is known [44,48];
what follows provides a conjectural approach to get the order

of magnitude of u1. The argument is based on the results of
Ref. [52]. If our explanation in this reference is correct, then the
optical transparency M behaves as M = AJ 2 + BJ 3. Here, J
is the acoustic intensity (assumed to be low) and A and B

are constants. To derive this, it was assumed that the action
of a monochromatic ultrasonic plane wave of wave vector k
and frequency ω causes a rapid fluctuation in the local mass
density of the form

ρ(r,t) = ρ0 + (	ρ) sin(k · r − ωt), (A1)

where

J = v3(	ρ)2

2ρ0
. (A2)

Here, v is the sound velocity. If we insert Eq. (A1) into Eq. (2),
we obtain

fddc = 1

2
Bk2(	ρ)2 cos2(k · r − ωt)

−u1(	ρ)(n · k)2 sin(k · r − ωt)

+u2(	ρ)2(n · k)2 cos2(k · r − ωt). (A3)

On the other hand, it is experimentally verified that for
J � 75 mW/cm2 (see Fig. 2), the mechanism of streaming
dominates the physics. We thus argue that for this acoustic
intensity, the amplitude of the oscillating terms in Eq. (A3) are
of same order, so that B ∼ 2u2 and

u1 ∼ u2(	ρ). (A4)

Combining Eqs. (2) and (A4), we get

u2
1

u2
∼ 2ρ0Ju2

v3
= 0.58 × 10−11 N ∼ K3, (A5)

with the use of ρ0 = 1.0 g/cm3, J = 75 mW/cm2, v =
1500 m/s, and u2 = 1.30 × 103 cm7 g−1 s−2 [44,48].
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