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Transient cluster formation in sheared non-Brownian suspensions
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We perform numerical simulations of non-Brownian suspensions in the laminar flow regime to study the
scaling behavior of particle clusters and collisions under shear. As the particle fraction approaches the maximum
packing fraction, large transient clusters appear in the system. We use methods from percolation theory to discuss
the cluster size distribution. We also give a scaling relation for the percolation threshold as well as system size
effects through time-dependent fluctuations of this threshold and relate them to system size. System size effects
are important close to the maximum packing fraction due to the divergence of the cluster length scale. We
then investigate the transient nature of the clusters through characterization of particle collisions and show that
collision times exhibit scale-invariant properties. Finally, we show that particle collision times can be modeled
as first-passage processes.
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I. INTRODUCTION

Suspensions are ubiquitous in nature. They are important
in fields ranging from swimming bacteria [1] and blood
flow [2] to lava flows [3,4], debris flows [5], and subsurface
contaminant transport [6]. Understanding suspensions is also
important for several industrial and technological applications,
e.g., for the gas industry [7–9] and in microfluidics [10,11].
Since Einstein’s work on the effective viscosity of dilute
suspensions [12,13], a large number of studies on particle
suspensions have been performed. In 1972, Batchelor and
Green extended Einstein’s expression of the effective viscosity
to second order [14]. The model of Batchelor and Green has
since been thoroughly tested experimentally for low-volume
fractions (φ < 0.1), and the rheology of dilute suspensions is
now well understood [15]. The rheology of dense suspensions
is less trivial. Several phenomenological models have been
proposed, including the classical Krieger-Dougherty relation,
where the viscosity diverges at a maximum packing fraction
φm [16].

A number of studies have related rheology to the interaction
between close particle pairs [14,17–22]. Frankel and Acrivos
stated that the dominant interaction mode is the compression
mode of approaching particles [17] and developed a consti-
tutive relation for effective viscosity for high-particle-volume
fractions. Marucci and Denn later pointed out that the tangen-
tial mode is dominating, but they also stated that correlated
motion over length scales larger than a single particle are
important, i.e. the formation of particle clusters [18]. The
decrease in the size of the lubrication layer between close
particle distances with the shear rate has also been used to
demonstrate shear-induced thickening [19]. Several studies
have been performed that include interparticle forces. Brady
et al. have performed several studies on the rheology of
suspensions using a short-range repulsive force accounting
for particle roughness (e.g., [20,21]). Recent studies have also
explained discontinuous shear thickening as a sudden increase
in frictional contacts with the shear rate [23]. Studies have also
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been carried out to unify suspension and granular rheology
close to the jamming threshold [24], as well as to understand
the rheology of suspensions of nonspherical particles [25].

In 1979, de Gennes proposed a series of conjectures about
the microstructure of sheared suspensions [26]. Branched and
highly transient particle clusters form in sheared suspensions,
but there is a well-defined time-independent size distribution
of clusters. He also stated that an infinite cluster would
appear as φ exceeds a critical threshold value φc, that the
only motion allowed by such clusters would be uniform
translations and rotation, and that the divergence of the
cluster correlation length follows standard percolation laws.
de Gennes’ conjectures were recently tested by Gallier et al.
using numerical simulations based on the fictitious domain
method including frictional contacts. They found that most of
de Gennes’ conjectures hold, but found only a weak correlation
between transient spanning clusters and the measured effective
viscosity [27].

Suspension microstructure is essential to understand sus-
pension rheology [28,29]. However, while dilute suspensions
are fairly well understood, the relation between the mi-
crostructure and the rheology of dense suspensions is still
lacking, and analytical treatment of microstructure evolution is
complicated. The pair distribution function has been used with
only limited success to relate rheology and microstructure,
even though tensor descriptions of microstructure look more
promising [28]. This calls for a different approach to describing
the microstructure of suspensions.

From the transient nature of cluster formation as first
proposed by de Gennes [26], we expect the maximum
cluster size to diverge as the maximum packing fraction is
approached. This means that system size effects will be in-
creasingly important for high-particle-volume fractions since
the percolation cluster can occur well before the maximum
packing fraction [27]. Understanding the transient nature of
particle contacts and clustering could therefore provide useful
insights into the overall microstructural fluctuations of particle
suspensions.

In this work we focus on the transient nature of cluster
formation and breakup in suspensions of rigid particles in
shear flow, as well as close particle interactions. The methods
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we use are motivated by percolation theory as well as theory
of first passages. We define particles to be in contact below a
length scale ε and the percolation threshold εc to be the smallest
ε that results in a particle cluster that spans the system. We
establish a scaling relation between percolation and particle
fraction, both for the mean percolation threshold 〈εc〉 and
for the fluctuations in the percolation threshold δεc, which is
system size dependent. As φ approaches the maximum packing
fraction φm, the percolation threshold decreases towards 0. For
a system of finite size, we then expect transient percolating
clusters well before the maximum packing fraction if we define
particle contact with a small rim separation rε. We then show
that particle contact times are invariant under the choice of ε.

In this paper we use a Stokes flow description. Non-
Brownian suspensions can often be considered purely viscous
materials [15], i.e., the viscosity does not depend on the
shear rate. Even though two particles in Stokes flow show
reversible dynamics, and their trajectories are symmetric,
non-Brownian suspensions show rich dynamics even at zero
Reynolds number. Recent studies demonstrate chaotic particle
trajectories leading to a threshold of irreversibility related to
the growth of the Lyapunov exponent [30]. Chaotic behavior
can be demonstrated even for three particles settling under
gravity [31], and chaotic rotation has been demonstrated for a
single triaxial ellipsoid [32]. This failure of time reversibility
shows that chaos is an intrinsic property of slowly sheared
suspensions.

The paper is structured as follows: In Sec. II we introduce
the finite-element model we use to solve for the particle
trajectories. In Sec. III we first introduce a length scale ε that
defines particle contact, and we then discuss the statistics of
cluster formation in the system and give the scaling relations
with ε based on percolation theory. In Sec. IV we investigate
the statistics of particle collisions through the distribution of
collision times and introduce a first-passage random walk
model that explains several of the observed features of the
distribution of collision times. We sum up and conclude in
Sec. V.

II. MODEL DESCRIPTION

While numerous numerical techniques have been used to
study particle suspensions (e.g., dissipative particle dynam-
ics [33], lattice Boltzmann methods [34], and the LaGrange
multiplier fictitious domain method [35]), numerical investiga-
tion of particle suspensions has until recently been dominated
by studies using Stokesian dynamics simulations [36–38].
In this study we perform direct numerical simulations using
the finite-element method. Recent developments allow us to
go to large enough strains and particle numbers to perform
a statistical analysis. We solve the incompressible Stokes
equations. Conservation of mass yields

∇ · �v = 0, (1)

where �v is the velocity field. Conservation of momentum yields

∇ · σ = �0, (2)

where σ is the stress tensor, and

σ = −p I + T , (3)

where p is the pressure, I is the identity matrix, and

T = μ(∇�v + (∇�v)T ) (4)

is the deviatoric stress tensor. We use an adaptive two-
dimensional mixed finite-element discretization with the
Crouzeix-Raviart seven-node triangular element shape func-
tions for the velocities and discontinuous linear shape func-
tions for the pressure. We use a modified version of MILAMIN
for efficient computation in MATLAB [39] and Triangle for
meshing [40]. For rigid particles we replace the degrees of
freedom associated with the particle boundaries with three
degrees of freedom, two translational and one rotational.

In this paper we study the purely hydrodynamic limit, i.e.,
we use no repulsive forces. In order to achieve this, special
care has to be taken with spatial discretization as well as time
integration [38]. We use geometrical mesh refinement to ensure
that there are at least two elements across the aperture between
all close particle pairs at any time during the simulation. In
this way we ensure that the velocity field is accurate between
close particles. For time integration we use the second-order
Runge-Kutta method. We terminate the simulation if particle
overlap is detected. For dense suspensions this sets limits on the
maximum strains that we can achieve. For statistical measures,
it would be beneficial to have one very long run rather than
ensemble averaging over multiple shorter ones, but due to
computational challenges, the latter is used throughout the
paper. Using no repulsive force is especially problematic for
large area fractions (two-dimensional volume fraction) where
spanning clusters can occur, and particle distances can get
infinitesimal, and hence we cannot handle this numerically for
arbitrary strains. Still, we present results without any artificial
repulsive force up to significant strains for small to moderate
area fractions.

An additional strength of the finite-element discretization
is that arbitrary domain and particle geometries are trivial
to implement, and the velocity and pressure field are solved
for at the same time as the particle velocities, which allows
for studies of the coupling between fluid and particle motion
as well as access to the stress tensor at any position in
space and time. However, for simplicity we limit the study
to monodisperse disks.

Figure 1 shows a sketch of the system setup. The left
and right boundaries are periodic, while the top and bottom
boundaries have Dirichlet boundary conditions of opposite
velocities, setting up the average shear rate γ̇ . The system
is integrated forward in time with a second-order Runge
Kutta method with time step dt = 0.02

γ̇
. Due to the large

computational costs of direct simulations of suspensions using
finite elements, the time step should be as large as possible
without introducing error terms that are too large. The time
step used here is sufficient to conserve the symmetries of
two-particle encounters as shown in Fig. 4. We simulate the
fully lubricated limit; i.e., the particles always interact through
a thin fluid film.

III. CLUSTER STATISTICS

While many models assume a roughness parameter to
determine when particles are in contact, we do not have a
well-defined contact distance in our system since the particles
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FIG. 1. Sketch of the system setup. The left and right boundaries
are periodic, while the top and bottom have velocities in opposite
directions to give a background shear rate γ̇ . The particle configu-
ration is a snapshot from a simulation of N = 1024 particles at area
fraction φ = 0.4, ε = 1, γ̇ t = 30. Colored segments are generated
from a Delaunay triangulation where only segments shorter than
r(2 + ε), where r is the particle radius and ε is a dimensionless
parameter that defines contact, are kept. Here we can see that ε � εc,
where εc is the smallest ε that gives a spanning cluster in the vertical
direction. Segments that form closed triangles have a different shading
to highlight the branched cluster structure.

are always separated by a thin fluid film. We define particle
clusters using Delaunay triangulation of the particle positions.
We define active segments of the triangulation as segments
that are shorter than

| �χij | � r(2 + ε), (5)

where | �χij | is the distance between the particle centers, r is
the particle radius, and ε is a dimensionless distance. The
graph of active segments makes up the cluster structure. This
definition means that the somewhat arbitrary dimensionless
distance ε defines whether or not a particle pair is connected.
However, we show that several clustering parameters follow
classical percolation scaling laws for ε, rendering results
that are, to a large degree, independent of or insensitive to
the choice of ε. Figure 1 shows a snapshot of a simulation
containing 1024 particles at area fraction φ = 0.4, where
we have also highlighted the cluster backbone with triangles
where all segments are shorter than r(2 + ε) to demonstrate
the branched structure and the clusters. In the figure we use
ε = 1. The clusters in the system are highly transient; they
stretch, compress, rotate, and lead to transport of particles in
the vertical direction. Particles continuously attach and detach
to the clusters, so that the size and lifetime of a cluster are
not trivial to define. Still, we show that there is a unique
definition of the cluster size distribution if we average in
time.

A. Percolation threshold

If the particles were actually in contact, we would have a
precise cluster definition. Since this is not the case for slowly
sheared incompressible flows (without particle roughness),
we need an alternative approach. We define εc as the lowest
threshold at which a spanning cluster occurs. εc is then
a continuous value that goes to 0 if the system is truly
percolating, i.e., particles are in direct contact. For an infinite
system size, the jamming threshold is expected to coincide with
the random close packing fraction [42], which is φm = 0.82
for monodisperse disks [41]. Then

lim
φ→φm

εc(φ) = 0. (6)

Since εc → 0 will not occur in our system (except at maximum
packing), the minimum in εc is the best approximation we can
obtain. Figure 2 shows the percolation threshold as a function
of time for N = 1024 and φ = 0.4. We see that εc varies by a
factor of ∼2, indicating the transient nature of the clusters. We
also observe that 〈εc〉 is not particularly sensitive to system size
effects, while std(ε) decreases with the system size as N−1/3.
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FIG. 2. Top: Dependency of 〈εc〉 on the system size 1
N

and the area
fraction φ. 〈εc〉 as a function of the area fraction (crosses, x direction;
dots: y-direction). 〈εc〉 scales with (1 − φ/φm)((φ/φm)−1/2 − 1) (see
text), where φm = 0.82 is the maximum random packing fraction [41],
in the range of area fractions we have tested. Left inset: System size
dependency of 〈εc〉. We find no significant system size effects. Right
inset: System size effect of the fluctuations of εc, here given by the
standard deviation. We find that the standard deviation scales with the
system size approximately as std(εc) ∼ N−1/3. Bottom: Percolation
threshold εc as a function of strain (time) for N = 1024 particles at
area fraction φ = 0.3.
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Using scaling arguments we can predict the behavior of 〈εc〉
with φ. At the maximum packing fraction φm, the system is
spanning and εc goes to 0 according to Eq. (6).1 This means
that for φ approaching φm, we expect that

εc ∼
(

1 − φ

φm

)α

, (7)

where α > 0 is an exponent that could, in principle, depend on
φ. For small fractions we expect a different scaling behavior.
In very dilute systems, we can assume that the configuration
does not depend on the particle radius, so that changing φ is
equivalent to reducing r for all particles. Then

r(2 + εc) ≈ constant (8)

as r is reduced, and the constant is expected to be of the order
of L/

√
N , where L is the length of the simulation box. We are

searching for a relation that has the correct divergence of φ

in the dilute limit and is still well behaved in the dense limit.
Using the relation r ∼ φ

1
2 , εc is well approximated through

εc ∼
((

φ

φm

)− 1
2

− 1

)
, (9)

which is positive for φ ∈ [0,φm]. One scaling relation that
gives the expected behavior in both limits is

εc ≈ C

(
1 − φ

φm

)α
((

φ

φm

)− 1
2

− 1

)
, (10)

where C is a constant. Figure 2 shows 〈εc〉 as a function of φ.
We obtain a good fit using α = 1 and C = 3.

1. Cluster size distribution

We define the cluster size s as the number of particles
that form a connected structure. We then measure the cluster
number density n(s,ε) for different values of ε. The cluster size
distribution is highly dependent on the choice of the threshold
parameter ε. This is expected if we look at the system as
a percolation system where we have a percolation threshold
εc(φ) that depends on the area fraction φ. Figure 3 shows
the cluster number density for 1024 particles at φ = 0.3 for
various ε’s, where the largest clusters are removed because
they could, in principle, be spanning. As ε approaches the
percolation threshold εc, the cutoff in cluster size diverges and
we get a power-law distribution of cluster sizes; i.e., all clusters
of all sizes exist. We obtain a decent collapse of the data
using the universal percolation scaling exponent σ = 36/91,
which describes the cutoff in the cluster size distribution as
εc is approached, and τ = 187/91, which is the power-law
exponent of the cluster size distribution at the percolation
threshold [43]. However, even longer time series are needed
to obtain enough statistics to reach a firm conclusion on this
matter.

1Note that there can be subtle differences between the isotropic
maximum packing fraction and jamming when the system is
anisotropic, and we do observe minor systematic differences in the
percolation threshold in the x and y directions.
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FIG. 3. Cluster number density scaled with traditional percola-
tion parameters. N = 1024, φ = 0.3. Scaled with universal percola-
tion exponents τ = 187

91 , the exponent of the power-law distribution
at the measured percolation threshold εc = 1.34, and σ = 36

91 , which
describes how the cutoff in cluster size diverges as the threshold
is increased towards the percolation threshold. Inset: Unscaled
distributions. All data are equilibrated for γ = 20.

Using the combination of the universal scaling exponents
τ and σ for the cluster size distribution as well as the scaling
relation between 〈εc〉 and φ, we can uniquely determine
the cluster size distribution given φ and ε. The fluctuations
are also well described through δεc ∼ N− 1

3 . With this result
established, we now turn to the particle collisions.

IV. COLLISION STATISTICS

Since we are dealing with an incompressible fluid in the
laminar regime and smooth particle surfaces, the particles are
not touching, they are only interacting through the fluid phase.
This means that we need to define what a collision is based
on a length scale that is not related to any physical quantities.
However, as we will discuss in this section, many results will
not be sensitive to this choice.

A. Collision trajectories

In the previous section we have defined a length scale that
we continue to use. We define two particles to be colliding
when they are within the distance | �χij | � r(2 + ε). Figure 4
shows the collision between two particles in simple shear,
when they are the only particles present in the system. The
black lines shows trajectories of the first particle in the
reference frame of the second particle. The blue region is
inaccessible since the particles have the same radius r . The
green region is the region defining the collision between the
two particles. Note that there are two types of trajectories: open
trajectories and losed trajectories, first described by Batchelor
and Green in 1972 [44], which will stay in contact indefinitely
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FIG. 4. Trajectory of two-particle collisions. The first particle
position is used as a reference frame. In incompressible flow, particles
will not actually touch. The blue circle shows the inaccessible region
of radius 2r , while the outer green circle shows the cutoff ε used to
define collisions. Note the existence of closed trajectories. The figure
was generated from simulations of two particles in simple shear with
dt = 0.02

γ̇
with a second-order Runge-Kutta integrator and a resolution

similar to that in the rest of the simulations presented in this paper.

as long as no additional particles are present that could disturb
the trajectory.

The collisions in suspensions are more complex due to
the interaction between more than two particles. Data from
a simulation of N = 1024 particles at area fraction φ = 0.1
are shown in Fig. 5. (Trajectories for larger φ’s are shown
in Appendix A.) From the figure one can clearly distinguish
two regimes: one for short-duration collisions and one for
long-duration collisions. Short-duration collisions follow open
trajectories similar to those demonstrated in Fig. 4, with some
deviation due to simultaneous interaction with other particles.
In addition, we observe trajectories similar to swapping
trajectories that were described by Zurita-Gotor et al. [45]
(we find that these trajectories are quite rare). It is, however,
not clear whether these trajectories occur due to the swapping
mechanism, which is related to boundary effects, or if they
originate from interactions between more than two particles.

The long-duration collisions follow trajectories more sim-
ilar to the closed trajectories in Fig. 4. We interpret the
long-duration collisions as particles that are pushed into closed
orbits by random interaction with multiple particles and then
back to open trajectories before they escape. This is visible
in the top-right panel in Fig. 5, where one can see that the
trajectories complete several loops before they escape.

To quantify the trajectory shape, we introduce the excursion
profile, which is a common measure in first-passage random
walks [46,47]. We reduce the problem to one dimension by
considering only the radial distance dij and velocity vr,ij

between colliding particles. Collisions that are ongoing at
the start or end of the simulations are not counted. A few

examples of such excursions are shown in the bottom two
panels in Fig. 5. The short collisions exhibit close-to-parabolic
shapes, while the longer collisions fluctuate in dij . To quantify
the shape of the excursions, we scale the time axis of the
individual excursions by the excursion time, 
γ , and average.
Figure 6 shows the mean excursion shape for various φ

and ε values scaled by the maximum value of the curves.
As expected from the symmetry of Stokes equations, the
average excursions are symmetric in time. A decreasing ε

pushes the shape from parabolic towards semicircular, which
is related to the hydrodynamic forces of very close particles.
An increasing φ has the same effect. However, the effects are
not particularly large over the range we have tested (ε ∈ [0.1,2]
and φ ∈ [0.1,0.4]).

B. Collision times

Another quantity of interest is the distribution of collision
times, i.e., how long particle contacts last. Figure 7 shows the
distribution of contact times for various ε and φ values. As
previously, collisions that are ongoing at the start or end of
the simulations are not counted. The distribution of collision
times has the surprising feature that it is scale invariant, i.e.,
independent of ε for a wide range of ε values tested. Also,
it is not sensitive to system size and only weakly dependent
on the particle area fraction φ. The short collision times are
dominated by open trajectories where the probability density
scales as 
γ , with the most likely collision time of order

γ ≈ 1. Short collision times are well described by the
hydrodynamic interaction between members of an isolated
particle pair. Long collision times, however, exhibit a different
scaling; we observe a scaling exponent ≈
γ −3.

While Stokes equations are in principle reversible, it has
been shown that slowly sheared suspensions exhibit chaotic
behavior [48]. Stochastic-like behavior is possible even in
deterministic systems, if they are chaotic [49]. This concept
has been been discussed in light of shear-induced self-diffusion
in suspensions, which occurs even without the presence of
Brownian motion [48]. Here, we are interested in the relative
motion of close particle pairs, so we use the same concept
and assume that interactions with additional particles can be
modeled as a series of statistically independent events. This
allows us to approximate the motion of close particle pairs as
random walks.

In an attempt to explain the scaling behavior in Fig. 7, we
turn to the theory of first passages. It follows from straight-
forward scaling arguments that the first-passage distribution
of a random walk is scale invariant under the condition that
the standard deviation of the velocity over the mean value
of the velocity is kept constant, i.e., δv/〈v〉 = constant. This
is consistent with the standard deviation and mean velocity
measured for collisions in our data. The results are shown in
Fig. 8, where we see that equal φ’s have equal ratios δvr/〈vr〉.

The first-passage time distribution of a random walk is a
power-law distribution with exponent β = − 3

2 [50], which
does not match the long-time limit observed in our data.
One possible explanation for this discrepancy is long-time
correlations of the collision velocities. We would then expect
a transition from β = −3 to β = − 3

2 in the very-long-time
limit. The reason we did not see this is because our time series
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FIG. 5. Example collisions with ε = 2 from a simulation of N = 1024 particles at area fraction φ = 0.1 in simple shear demonstrating two
collision regimes. Top left: Examples of collisions with collision time 
γ � 5. Top right: Collisions with collision time 
γ � 50. Bottom:
Distance between the two particles as a function of γ . The line colors correspond to the line colors (darker lines) in the top figures.
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〈dij 〉m. Dashed lines show the standard deviation. A decrease
in ε pushed the mean excursion from fairly parabolic towards
semicircular. All data are from simulations of N = 1024 particles.

are not long enough. Even though collisions that long are
very unlikely, the scaling behavior for long collision times is
important to determine whether or not the mean collision time
diverges because the first moment of a power-law distribution
diverges for β > −2.

C. First-passage random walk model

We attempt to model the collision time distribution using
correlated random walks. The first thing we need to do is to
parametrize the parameters that we need to input to the random
walk. They are the mean radial velocity during a collision
and the standard deviation, as well as the self-correlation of
each walk. For the self-correlation we use the power spectrum
because we use the same power spectrum to generate random
walks. We perform a discrete Fourier transform of vr for all
collisions that last longer than 
γ = 50. This is because the
short collisions are not long enough to get reliable frequency
spectra. The insets in Fig. 9 show δvr , 〈vr〉, and the frequency
spectrum Pvr

(1/γ ) for a single run with N = 1024, φ = 0.1,
and ε = 2, as well as the fits used as inputs for the random walk
model. δvr and 〈vr〉 show the correlations on the time scale
of order δγ ∼ 20. The frequency spectrum shows power-law
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show radial symmetry (dashed gray line) and a uniform distribution
in y at −r(2 + ε) (solid gray line).

noise at high frequencies and a transition to white noise at low
frequencies.

We construct our random walk in Fourier space that
satisfies the measured power spectrum. Each collision velocity
vr follows a power spectrum made from uniform random
weights scaled with Pvr

(1/γ ). vr (γ ) is then obtained from
an inverse discrete Fourier transform. We then multiply by the
measured standard deviation and add the mean value that we
observed. The resulting collision time distribution C is plotted
in Fig. 9. The correspondence with our data from finite-element
simulations is very good, and the simplified model also predicts
a crossover from β = −3 to β = − 3

2 at very long times.
This transition from pink noise at high frequencies to white
noise at low frequencies is responsible for the power-law
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FIG. 8. Ratio between the standard deviation δvr and the mean
radial velocity 〈vr〉 for colliding particles. Only particles within the
distance r(2 + ε) contribute to the curves. Equal φ (equal colors)
collapse onto the same lines for different ε’s, consistent with scale
invariance of the return time of random walks.
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FIG. 9. First-passage probability density for the random walk
model with data for N = 1024, φ = 0.1, and ε = 2. The features
from the finite-element data are recovered, and a β = − 3

2 scaling is
found for large 
γ . The gray line shows the boundaries in Fig. 7.
Top inset: Mean and standard deviation of vr from finite-element
data. Dashed lines show the parameterized curves that are used as
inputs for the random walk. Bottom inset: Frequency spectrum of
vr from finite-element data where we have subtracted 〈vr〉. Only
data from collisions with 
γ > 50 are used. The dashed line shows
the parameterized curve used in the random walk model. Note the
transition from pink (1/f a) noise at high frequencies to white noise
(constant) at low frequencies.

behavior with β = − 3
2 in C(
γ ) for 
γ � 102. The good

correspondence between the collision time probability density
and the return time of the correlated random walk suggests that
our interpretation of the collisions as particles that are pushed
into what would, in the two-particle case, be closed orbits,
and are then subjected to random interactions with additional
particles in the suspensions, is justified. Details of the effect
of Pvr

, δvr , and 〈vr〉 are discussed in Appendix B.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced a two-dimensional finite-
element model to study particle suspensions in simple shear at
zero Reynolds number. We use geometrical mesh refinement
in the regions between close particles to assure that lubrication
forces are modeled accurately. This allows us to avoid the use
of repulsive forces that are commonly implemented to avoid
particle overlaps. This does set constraints on the γ we can
reach for high-particle-area fractions, but we have reached
γ values large enough to perform a statistical analysis when
combined with ensemble averaging.

The particles form transient clusters that rotate and transport
particles in the vertical direction. To study the cluster statistics
we have introduced a dimensionless contact length ε and
investigated how particle collision statistics depend on this
length. The cluster number density follows classical percola-
tion theory and scales with the universal scaling exponents
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τ and σ . While the percolation threshold fluctuates in time,
with the fluctuations scaling with the system size as N− 1

3 , the
time-averaged cluster number density is well defined.

Even though de Gennes proposed that transient spanning
clusters are directly related to an increase in the effective vis-
cosity, a recent study by Gallier et al. [27] finds that, although
spanning clusters can support more stress, the correlation
between the effective viscosity and the occurrence of transient
spanning clusters is weak. However, the relation between
effective viscosity and cluster formation in suspensions is still
an interesting research question for future studies.

Two particles in simple shear exhibit two types of collision
trajectories: open and closed trajectories. For particle colli-
sions where many particles are present and can change the
trajectories of a particle pair, this distinction is still visible.
Short collisions are similar to open collision trajectories
involving only two particles, while we interpret long collisions
as particles pushed into what would, in the two-particle case, be
closed trajectories. The trajectories are then subject to random
interactions with other particles, until they are pushed out of the
closed trajectory. This interpretation is supported by the close
resemblance between the collision time probability density and
the return time of a correlated random walk. Using 〈vr〉 and
δvr as well as the power spectrum of each collision trajectory,
we have reproduced the collision time probability density. We
also predict that the long-time behavior scales as a power law
with exponent β = − 3

2 , but we have not reached strains large
enough to confirm this prediction. β = − 3

2 in the long-time
limit indicates that the mean collision time diverges since
the first moment of a power-law distribution with exponent
β > −2 diverges. Due to the conservation of the ratio δvr/〈vr〉
with changing ε, the distribution of the collision time is scale
invariant. This is again due to the self-affine properties of vr ,
which are visible in the power spectrum Pvr

.
Our results on the collision time probability density

highlight some of the challenges we face with regard to
long-time series using finite-element simulations of particle
suspensions. The interpretation of contacts as first-passage
processes implies that we are quite likely to find very close
particle pairs in sheared suspensions. The probability of
finding such pairs would scale with the total number of
contacts, i.e., N and φ, as well as the total strain γ . Close
particle pairs are difficult to treat numerically due to the large
variation in element size and the singularity of the zero spacing
between particles; this puts severe constraints on the likelihood
of running large systems to large strains. To overcome this
difficulty, approaches such as upscaling of the lubrication layer
between close particles and short-range repulsive forces are
necessary.

Several studies have been performed using repulsive forces
motivated by friction, electrostatic repulsion, or van der Waals
forces (see, e.g., [20], [21], [23], and [29]). Even short-range
repulsive forces will break the symmetry of the two-particle
interaction in Fig. 4. We do not expect short-range repulsive
forces to change the short collision trajectories significantly,
but the long collisions will be altered, and if the repulsive force
is large enough, closed trajectories will cease to exist.

An interesting question is whether simple random walk
models can be used to predict the transient properties of

the cluster size distribution. Given the probability density of
particle collision times, one would imagine that combining
it with a collision rate could lead to predictions of the
cluster size distribution using a purely statistical approach.
However, we leave this open for possible future investigations.
Understanding the microstructure of particle suspensions and,
in particular, the transient nature of close particle contacts is
an important step towards understanding the relation between
suspension microstructure and effective properties, including
fluctuations. In particular, close to the maximum packing
fraction, the fluctuations in the percolation threshold show
that transient percolation clusters appear.
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APPENDIX A: RELATIVE PARTICLE TRAJECTORIES
FOR φ = 0.3 AND φ = 0.4

To supply the trajectories plotted in Fig. 5, we give a few
examples of relative particle trajectories for φ = 0.3 and φ =
0.4 in Fig. 10. While the concept of open and closed trajectories
still applies, the trajectories for large φ are more complex than
what we observe for φ = 0.1.

APPENDIX B: DETAILS OF THE RANDOM WALK MODEL

In this section we give the details of the random walk model
used in the discussion of the collision times. The parameterized

−r(2+ε) −2r 2r r(2+ε)
−r(2+ε)

−2r

2r

r(2+ε)

x

y

FIG. 10. Examples of relative particle trajectories for N = 1024
at φ = 0.3 (cyan lines) and φ = 0.4 (black lines).
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curves we use at inputs are

Pvr
(1/γ ) ∼ 1(

1 + b
γ

)a , (B1)

〈vr〉
〈vr (0)〉 = 5

3
e−γ /c − 2

3
e−γ /d , (B2)

and

δvr

〈vr (0)〉 = 2

5
γ 2e−γ + 1

4
e−γ /40 + 1

20
, (B3)

where we have used a = 1.1, b = 12.5, c = 1, and d = 8
in the model in the text. The random walk is constructed
using uniform random weights scaled with Pvr

. In addition, we
use cutoff frequencies 1/γ > 5. We then perform an inverse
discrete Fourier transform, scale it to get the correct standard
deviation δvr

〈vr (0)〉 , and add 〈vr 〉
〈vr (0)〉 to get vr .

Figure 11 shows how a, b, c, and d control the shape of
C(
γ ), where we have performed a series of random walks
and measured C(
γ ). a and b control the behavior at long
times, while c and d control the short-time behavior. a controls
the fractal dimension of the walk at high frequencies, while b

controls the crossover from a self-affine walk to white noise.
c shifts the maximum point of C(
γ ), while d controls the
shape of the peak. It is the combination of these parameters
that makes up Fig. 9.
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right: Effect of b on the return time distribution C(
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