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Characterization, nanoparticle self-organization, and Monte Carlo simulation of magnetoliposomes
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In this work we have developed and implement a new approach for the study of magnetoliposomes using
Monte Carlo simulations. Our model is based on interaction among nanoparticles considering magnetic dipolar,
van der Waals, ionic-steric, and Zeeman interaction potentials. The ionic interaction between nanoparticles and
the lipid bilayer is represented by an ionic repulsion electrical surface potential that depends on the nanoparticle-
lipid bilayer distance and the concentration of ions in the solution. A direct comparison among transmission
electron microscopy, vibrating sample magnetometer, dynamic light scattering, nanoparticle tracking analysis, and
experimentally derived static magnetic birefringence and simulation data allow us to validate our implementation.
Our simulations suggest that confinement plays an important role in aggregate formation.
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I. INTRODUCTION

The synthesis and development of nanoscale structures
have attracted a great deal of interest in the biomedical area.
This is mainly related to the fact that it is possible to design
and produce systems whose size is comparable to important
biological structures, such as viruses, proteins, and DNA, and
hence can interact directly with them. Magnetic colloids are
an interesting example of this class of nanosystem. Magnetic
colloids, also known as ferrofluids or magnetic fluids, consist
of surface-coated magnetic nanoparticles stably dispersed in
a liquid carrier. The choice of the surface coating give rise
to both polar or nonpolar magnetic fluids. Those nanofluids
have found a broad range of applications including heat and
mass transfer applications, such as liquid-cooled loudspeakers
and high-power transformers [1–3], magnetophotonics (mag-
netically controlling backward and forward scattering [4–6]),
environmental cleaning through water purification [7], and
several biomedical applications. This last topic is probably
one of the most appealing research areas and applications
on stem-cell labeling [8,9], atherosclerosis detection [10],
metastasis diagnostics [11], and even in vitro biodetection and
in vivo cancer treatment [12–16] have already been reported.
In fact, the use of magnetic nanoparticles in the biomedical
field has increased so much in the last years that this new field
is being called biomedical nanomagnetics [17].

The entrapment of these particles by liposome makes them
highly dipersible in aqueous media as well as biocompatible.
These structures, where a fraction of magnetic nanoparticles
are encapsulated into phospholipid vesicles, are known as

magnetoliposomes [18]. The importance of magnetoliposomes
is mainly related to their use as drug or other therapeutic agent
and/or peptide delivery systems and in the diagnosis and/or
treatment of diseases [18–22]. The synthesis of magnetoli-
posomes involves aspects of preparation and stabilization of
magnetic fluid and the formation of the multiphasic system,
since encapsulation efficiency and the ability of the carrier in
maintaining the entrapped substance until the desired target
is reached are among the major requirements for therapeutic
usage. Therefore, in order to take advantage of the full
potential of these systems, it is imperative to control the
number of nanoparticles encapsulated [23]. Additionally, all
research involving magnetoliposomes so far is restricted to the
experimental area. Indeed, the theoretical challenge involved
in this study is enormous. First, it is necessary to properly
describe the magnetic fluid, a difficult task by itself, as
recently described by us [24]. Next, a proper description of
the interaction of the liposome bilayer with the nanoparticles
must be developed.

Our aim in this work is to devise and implement a numerical
method that allows the simulation of magnetoliposomes. To
do so, we have developed a new approach where we explicity
consider the interactions not only among nanoparticles but also
between nanoparticles and the lipid bilayer. In this approach,
the interaction among nanoparticles follows the scheme
recently described by our group [24], while the interaction
between nanoparticles and the lipid bilayer is represented by
a ionic repulsion term. This ionic potential is a function of the
bilayer-nanoparticle surface electrical potential and depends
on the nanoparticle-lipid bilayer distance and the concentration
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of ions in the solution. As detailed in the next section, in our
model the liposome surface is divided into spheres with size
similar to the nanoparticles, and the interaction energy among
these pseudoparticles and the nanoparticles is represented
by an ionic potential. From this model, we investigated the
influence of the interaction of the bilayer with the magnetic
fluidon characteristics such as the number of particles in an
aglomerate and mean aglomerate size. Our numerical data
are directly compared to experimental results obtained by
our group, using various characterization techniques. Our
manuscript is organized as follows: in Sec. II we describe
the experimental setup and in Sec. III our Monte Carlo (MC)
implementation. Our results are discussed in Sec. IV and our
conclusions are presented in Sec. V.

II. EXPERIMENTAL DETAILS

Soybean phosphatidylcholine (PC) Lipoid S100 (1,2-
diacyl-sn-glycero-3-phosphocholine), >98% purity, was pur-
chased from Lipoid GmbH (Köln, Germany). Polycarbonate
membranes (600-, 200-, and 100-nm pore diameter) were
purchased from Whatman (Dassel, Germany). TES buffer was
from Sigma (St. Louis, USA). Fe+2, Fe+3, ammonia solution,
hydrochloric acid, citric acid sodium salt aqueous solution,
potassium hydroxide water solution, and distilled water of
analytical grade, used without further purification, were
purchased from Merck (Germany), Carlo Herba (Germany),
or Synth (Brazil).

For the synthesis of manganese ferrite (MNF) nanoparti-
cles, 50 mmol of FeCl3 and 25 mmol of MnCl2 (both dissolved
in 100 mL of HCl 3% w/w) were introduced into 500 mL
of boiling 2.0 mol/L methylamine solution under vigorous
stirring. After 30 min of reaction, the obtained solid was
magnetically separated from the supernatant and washed 3
times with distilled water. The precipitate was acidified with
0.5 mol/L HNO3 solution and magnetically separated from the
supernatant, which was discarded. The nanograins obtained
were hydrothermally treated by boiling with 0.5 mol/L
Fe(NO3)3 for 30 min and the excess ferric nitrate was removed
from the solution by magnetic decantation. For the elaboration
of the magnetic fluid sample, the precipitate was fractioned and
nanoparticles peptised in aqueous solution by modifying their
surface using sodium citrate, stirring for 30 min, with the mass
ratio of 5% between Na3C6H5O7 and MnFe2O4, in 50 mL
of water. The obtained precipitate was magnetically separated
and the supernatant disregarded. Afterwards, the precipitate
was washed with acetone 3 times, and then the desired amount
of water (around 50 mL) was added and the excess of acetone
evaporated in order to form the sample. The magnetic colloid
was stably dispersed in water under physiological conditions.

Liposomes containing magnetic nanoparticles were pre-
pared by thin lipid film hydration followed by extrusion. In
brief, PC was dissolved in chloroform in order to obtain
a thin dry film in a round-bottom flask using a rotary
evaporator (TE-210, TECNAL, Piracicaba, Brazil). The flask
was kept under vacuum for 24 h to ensure complete removal
of residual solvent. The dry lipid film was then hydrated
with TES buffer (pH 7.0). The dispersion was vortexed and
then extruded through 600-, 200-, and 100-nm polycarbonate
membranes (Whatman, Dassel, Germany) using a stainless-

steel miniextruder (Northen Lipids, Burnaby, Canada) with
nitrogen as the pressurizing gas.

Magnetoliposomes formulations were prepared to contain
a similar concentration of liposomes, i.e., 50 mM of PC,
and distinct amounts of magnetic nanoparticles obtained by
changing the amount of magnetic fluid in the preparation.
Magnetoliposomes were separated from nonentrapped mag-
netic nanoparticles in the dispersion by ultrafiltration using a
300 000 MWCO VivaSpin 2 device (Sartorius Stedim Biotech,
Goettingen, Germany) with 10 min of centrifugation at 4500g

at 20 ◦C.
The liposome size distribution and polydispersity index

(PdI) were determined by dynamic light scattering (Zetasizer
NanoS, Malvern, Malvern, United Kingdom) with the sample
previously diluted in TES buffer.

Nanoparticle tracking analysis (NTA) measurements were
used to estimate the liposome concentration and size distri-
bution. NTA was performed with a NanoSight NS500 (Ames-
bury, United Kingdom), equipped with a sample chamber and a
532-nm laser. Magnetoliposomes were diluted before analysis
with TES buffer and automatically loaded into the sample
chamber. The software used for capturing and analyzing the
data was the NTA 2.3. Video clips of the samples were
captured at room temperature by an electron-multiplying
charge-coupled-device camera for 215 s, with manual shutter
and gain adjustments. The liposome concentration, mean size,
and SD values are obtained by analysis of the phoretic mobility
of the nanocarriers, i.e., by following the Brownian motion of
each individual particle and the use of the Stokes-Einstein
relation [25].

Dynamic light scattering (DLS) measurements were per-
formed with a Malvern Zetasizer Nano ZS (Malvern, Her-
renberg, Germany) equipped with a 633-nm He-Ne laser and
operating at an angle of 173◦. The software used to collect
and analyze the data was the Dispersion Technology Software
version 6.01 from Malvern. Five hundred microliter of each
sample were measured in single-use polystyrene half-micro
cuvettes (Fisher Emergo, Landsmeer, The Netherlands) with
a path length of 10 mm. The measurements were made at a
position of 4.65 mm from the cuvette wall with an automatic
attenuator and at a controlled temperature of 25 ◦C. For each
sample, 15 runs of 10 s were performed, with three repetitions.
The size distribution by intensity and the Z-average diameter
were obtained from the autocorrelation function using the
general purpose mode. The default filter factor of 50% and
the default lower threshold of 0.05 and upper threshold of 0.01
were used.

Transmission electron microscopy (TEM) of the man-
ganese ferrite nanoparticles was obtained using a JEOL
JEM-2100 (Peabody, MA) microscope operating at 200 kV
(resolution 2.5 Å). The experimental size distribution follows
a log-normal function and was obtained from the TEM
micrographs:

g(D) =
[

1√
2πDσ

exp

(
−

ln2 D
Do

2σ 2

])
, (1)

where Do and σ are the median diameter and size dispersion,
respectively. Equation (1) was used to fit the TEM size
data. The standard deviation was calculated from the fitting
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parameters of the lognormal size distribution, i.e., SD =√
[exp(σ 2) − 1]D2

oexp(σ 2), with a mean diameter value D̂ =
Do ∗ exp(σ 2/2).

The manganese-ferrite-based nanoparticles investigated in
this work behave as soft magnets, i.e., they have a low
magnetic anisotropy, which was found [15] to be K =
2.5 × 104 erg/cm3 from electron magnetic ressonance (EMR)
measurements. The Shliomis diameter, i.e., the critical size
above (below) which brownian (Neel) relaxation becomes
dominant, was estimated to be of the order of 33 nm. From
TEM data it is possible to observe that all (or almost all)
nanoparticles are below this value. In addition, since the critical
value above which the nanoparticles are multi-domain is far
larger (around 80 nm, as indicated by Krishnan [17]), it is
possible to infer that all the nanoparticles in the assembly are
single domain and hence treated under this assumption.

The magnetic characterization was obtained using an ADE
vibrating sample magnetometer model EV7. Further, using
the VSM data of the colloidal suspensions, we were able to
obtain the magnetic particle volume fraction, i.e., the number
of nanoparticles per unit volume of the suspension, simply
using φ = Mfluid

s /M
particle
s .

For noninteracting monodisperse nanoparticles the mag-
netization of the colloid follows the well-known Langevin
behavior, i.e., M = φMsL(ξ ), where φ = NπD3

6 , with N the
number of magnetic nanoparticles per unit volume; L(ξ ) =
coth(ξ ) − 1

ξ
is the Langevin function with ξ = μ0πMsD

3H

6kT
,

where μ0 is the vacuum permeability; Ms is the particle
saturation magnetization; H is the applied magnetic field; kB

is the Boltzmann constant; and T is the absolute temperature.
In the low-field limit, the initial susceptibility is given by

χL = πφM2
s D3

18kBT
(this term is usually referred to as the Langevin

susceptibility). For a polydisperse system the magnetization
(ML) is given by

ML = πNMs

6

∫
L(ξ )D3g(D)dD.

Several models were developed to include the effect of
particle-particle interaction in the magnetization curve [26].
In particular, the second-order modified mean-field model de-
veloped by Ivanov and Kuznetsova [26], successfully applied
to magnetic fluids, was chosen by us as a first approximation.
In this model, an effective field rather than the applied field is
considered:

He = H + 1

3
ML(H )

{
1 + 1

48

dML(H )

dH

}
.

The initial susceptibility is now accordingly rewritten as

χ = χL

{
1 + 1

c
χL + 1

144
χ2

L

}
.

Although magnetization studies, and in particular initial
susceptibility ones, had been widely used to investigate the
effect of particle-particle interaction [24], an effect on the
initial susceptibility is only observed at quite high particle
volume fractions (greater than 7–9%) [26,27]. As discussed
later, these observations do not imply that aggregate formation
starts only at high concentration.

The amount of magnetic nanoparticles per liposome is
obtained by dividing the number of magnetic nanoparti-
cles per milliliter (from VSM analysis) by the number of
liposomes per milliliter (obtained from NTA analysis). In
this approximation, we assumed that there is no leaking of
nanoparticles from the liposomes within the experimental
window time, i.e., considering the whole window time between
the magnetoliposome preparation and the acquisition of the
magneto-optical experimental data, which is typically shorter
than 48 h. Previous stability analysis of magnetoliposome
dispersions indicated that size distribution of the nanocarriers
did not change within 7 days for samples maintained at both
25 ◦C and 4 ◦C. However, it is important to mention that
this is not a general feature. Indeed, we have already [23]
observed up to 50% of leakage after 48 h of the loading
of the carboxyldextran-coated magnetite nanoparticles inside
the liposomes. The main difference between this previous
observation and the new experimental procedure is that the
former nanoparticles were prepared through the sonication
method.

The room-temperature static magnetic birefringence
(SMB) data were obtained using the traditional lock-in
detection technique [4,23]. The experimental setup consists of
a chopped laser beam (632 nm) of 10 mW crossing the sample
cell perpendicularly before illuminating the photodetector. The
sensitivity of the photodetector was 3.5 mV μW1 cm2. The
flat quartz sample cell has a sample thickness (L) of 2.0 mm.
Both the polarizer and analyzer are attached to a goniometer
device that allows full angular rotation. The sample cell is
mounted in the gap of an electromagnet so the laser beam
and the external magnetic field are mutually perpendicular.
The axes of the polarizer and analyzer are set perpendicular
to each other, forming an angle of π

4 in relation to the
magnetic field direction during SMB measurements. Also, an
absorption filter is positioned before the polarizer with the
purpose of decreasing the light transmission and avoiding
thermodiffusion effects [28]. In the absence of dichroic
contributions, the light intensity obtained in the detector is
given by

I = I0 sin2 πL�n

λ

with I0, L, and λ related to the incident light intensity, the
sample thickness, and the laser wavelength, respectively. �n

is the magnetic birefringence given by the following equation
[23,29]:

�n = πn0NQQ

12
(χzz − χxx)Q

∫
D3L2(ξQ)g(D)dD, (2)

where NQ is the number of nanoparticle chains per unit
of volume, n0 is the refraction index of the liquid carrier,
and χzz(χxx) is the effective electrical susceptibility of the
magnetic nanoparticle chain parallel (perpendicular) to the
anisotropy axis [30]:

χzz = 1

Q

Q∑
i=1

χo

1 − κzziχo
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FIG. 1. Difference between the effective electrical susceptibility
of the magnetic nanoparticle chain in the parallel and perpendicular
directions (χzz − χxx) as a function of the chain size (Q) for different
surface-to-surface particle distance (Dss) values.

and

χxx = 1

Q

Q∑
i=1

χo

1 + κxxiχo

with

κxxi = 2κzzi

and

κzzi = 1

3

(
D

D + Dss

)3 ∑
j �=i

1

|j − i|3 .

The electrical susceptibility of the nanoparticle is assumed to
be the same value as for magnetite [4] χo = 1.33.

From Fig. 1, it is clear that the difference χzz − χxx is
strongly influenced by both surface-to-surface particle distance
(Dss) and agglomerate chain size (Q). It is also interesting to
point out that the saturation value increases for lower Dss .

In Eq. (2),

L2(ξQ) = 1 − 3

ξQ

L1(ξQ)

is the second Langevin function, with L1(ξQ) = coth ξQ − 1
ξQ

and ξQ = μ0QπMsD
3H

6kT
, already defined earlier.

SMB data were adjusted following

I = I
exp
0

[
sin2

(
�ns

∫
L2(ξQ)D3g(D)d(D)

)]
, (3)

where only �ns and Q are adjustable parameters, since g(D)
is obtained from the polydispersity of the dried nanoparticles.
While Q represents the mean agglomerate size, the adjusted
magnetic birefringence, �ns , is related to the effective electri-
cal susceptibility of the magnetic nanoparticle chain

�ns = π2n0LQNQ

12λ
〈χzz − χxx〉Q.

Note that this technique allows us to extract the number
of particles (Q ∗ NQ) contributing to the static magnetic
birefringence signal. If the nanoparticles are perfect spheres,
then only agglomerated particles will contribute to the SMB
signal.

Our magnetic birefringence model is similar to the one
proposed by Xu and Ridler [30]. The main difference is in
the fact that we assume a mean agglomerate size instead of
considering separately each aggregate structure and summing
all contributions with their particular fraction amount. This
procedure decreases the number of fitting parameters and
might better represent average characteristics of the sample. It
is also important to mention that the SMB model considered is
valid at low particle concentration, which is the experimental
situation in this work. For high particle concentrations a more
general model, such as the one proposed by Rasa [27], must
be considered.

It is important to point out that among the the techniques
considered in this work, the magneto-optical setup is the
most powerful experimental technique to investigate aggregate
formation. This is because in birefringence experiments
only a fraction of nanoparticles (mainly the ones that form
aggregates) contribute to the signal. In contrast, in other
techniques, such as initial magnetic susceptibility studies in
magnetization curves, all the nanoparticles contribute to the
detecting signal (magnetic moment). Therefore, since in our
samples the nanoparticles encapsulated into liposomes are not
at high particle concentration, the static magnetic birefringence
(and not necessarily the magnetization analysis) is expected to
play a significant role in the validation of our Monte Carlo
simulations.

III. MONTE CARLO SIMULATIONS
OF MAGNETIC FLUIDS

The stability of a magnetic fluid is a balance between
attractive forces, such as magnetic dipolar and van der Waals,
and repulsive ones, like steric and ionic repulsion. When the
target system is a magnetoliposome, it is also important to
consider the interaction between the nanoparticles and the
lipid bilayer. Since this is our target sample, our systematic
comparison between experimental and theoretical data will
allow a better understanding of the role of the lipid bilayer
in key structural parameters, such as agglomerate size, mean
particle-particle distance, and magnetization. The size of
magnetoliposomes restricts quantum chemistry calculations
involving these systems, and therefore we have chosen Monte
Carlo simulations as our simulation tool.

Monte Carlo [31] is a label used to designate stochastic
methods for solving mathematical problems. Systems that
follow the Boltzmann energy distribution can be simulated by
means of the Metropolis algorithm [32,33], which starts from
a random configuration of the system and performs successive
small variations in all its coordinates. The procedure is as
follows: (a) For each variation, the change �E in energy is
calculated; (b) if the value of the new potential energy is lower
than the previous one, then the new configuration is accepted;
and (c) if the new potential energy is higher, then a random
number between 0 and 1 is generated and then compared
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with the factor e
−�E

kB T , where kB is the Boltzmann constant.
In this latter case, the new configuration is accepted only if
the random number is lower than this factor. The steps [from
(a) to (c)] are then repeated, and, after a period of stabilization
of the energy, the average values of the properties of interest
are computed considering all accepted configurations. This
procedure guarantees that the accepted configurations follow

the Boltzmann energy distribution, ke
−E
kB T , where k is an

arbitrary constant and E is the systems energy. Following
the Markov chain method of sampling [34], the calculated
average values represent the expected values of the respective
properties under investigation.

Since magnetic fluids are characterized by a large number
of coupled degrees of freedom, MC simulations have early
been chosen as a possible way of exploring its properties.
For a critical review on the evolution of MC use in the
description of magnetic fluids see Ref. [24]. The basic princi-
ples of our Monte Carlo simulations were already discussed
in detail [24,35]. In these works, our MC implementation
for an ionic-surfacted magnetic fluid model is extensively
compared not only to dipolar soft matter studies but also to
simulations where other kinds of interactions are included.
Therefore, our discussion in this matter will be brief: We
first point out the main features of our calculations and later
introduce the changes we have made in order to properly treat
magnetoliposomes.

In the following discussion, a Monte Carlo step (MC
step) indicates that a given configuration of nanoparticle’s
has its position and magnetic moments randomly changed
in order to generate a new configuration. In this study our
target structures are composed by magnetoliposomes, i.e.,
nanoparticles trapped in a 150-nm diameter lipid bilayer.
The magnetic nanoparticle diameters follow a log-normal
distribution, Eq. (1). By means of a stochastic method [36], our
program generates a sample of N diameters that follows this
distribution where each single diameter differs. The number of
nanoparticles is directly related to the magnetic nanoparticle’s
volume fraction. Since the process to achieve a given volume
fraction is based on random numbers, the total number of
nanoparticles for different ensembles of a given concentration
might slightly differ.

The net interaction potential (Utotal) between a pair of ionic-
surfacted magnetic nanoparticles (i and j , as represented in
Fig. 2) is obtained by summing the individual terms over all
considered pairs:

Utotal(ij ) = Um(ij ) + Uw(ij ) + Us(ij ) + Ui(ij ) + UB(ij ),

(4)

where Um is the magnetic dipolar interaction, Uw the van
der Waals interaction, Us the steric repulsion, Ui the ionic
repulsion, and UB the Zeeman interaction.

The magnetic dipolar interaction is given by:

Um(ij ) = μ

4π

[ 	mi · 	mj

r3
− 3

( 	mi · 	rij )( 	mj · 	rij )

r5

]
,

where μ is the magnetic permeability of the solvent, in our case
very close to the vacuum value; 	mi and 	mj are the magnetic
dipole moment vectors of the particles i and j , respectively;

FIG. 2. Illustration of two ionic-surfacted magnetic nanoparti-
cles, with surfactant molecules adsorbed on their surfaces. For
simplicity, the ionic double layer is not shown. Each surfactant
molecule is composed of an apolar chain that work as a bridge
between the adsorbed and the ionized polar heads. Di and Dj are
the diameters, 	mi and 	mi are the magnetic dipole moment vectors, δ

is the effective length of the surfactant molecules, 	rij is the relative
position of the center of the nanoparticle i in relation to that of
nanoparticle j , s is the perpendicular distance between the surfaces
of the nanoparticles, and s ′ is the perpendicular distance between the
surfaces formed by the ionized polar heads of the nanoparticles. RD ,
the Debye radius, is the estimation of the length of the ionic layer.

the vector 	rij is position of i in relation to j ; and r is the
modulus of 	rij . The magnitude of 	m is calculated by the product
MsV , where Ms is the intrinsic spontaneous magnetization
and V the volume of the nanoparticle. As Ms and V are
constant for a given nanoparticle, changes in the magnetic
dipole moments in different MC steps are simply given by
three-dimensional rotations. It is very important to mention
that, although this term can be depicted as magnetically
hard point dipoles with translational and rotational degrees of
freedom, we have clearly shown [24] that dipolar interactions
are dominant only for large nanoparticles or for systems
where the nanoparticles are far apart. Therefore, other types of
interactions are considered, as discussed below, specially due
to their relevance in aggregate formation in particular for low
particle sizes [24].

The van der Waals interaction is described by the potential
[37]

Uw(ij ) = − A

12

[
D2

ij

r2
+ D2

ij

r2 − D2
ij

+ 2ln

(
r2 − D2

ij

r2

)]
,

where A is the Hamaker constant, and Dij is the mean of the
diameters of the nanoparticles i and j [Dij = (Di + Dj )/2].
As we have discussed before [35], and according to the Lifshitz
theory [38–40], the Hamaker constant for this system can
be describe in terms of macroscopic characteristics of the
nanoparticles and the solvent as

A ≈ 3

4
kBT

(
εFeO4 − εH2O

εFeO4 + εH2O

)2

+ 3hνe

16
√

2

(
η2

FeO4 − η2
H2O

)2

(
η2

FeO4 + η2
H2O

)3/2 ,

(5)
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where h is the Planck constant, εFe3O4 is the electric permittivity
of magnetite (nanoparticles), εH2O is the electric permittivity
of water (solvent), ηFe3O4 and ηH2O are the corresponding
indexes of refraction, and νe is the main absorption frequency,
considered the same for both magnetite and water in this
approximation. For a temperature T = 30 ◦C, we have that
εH2O = 76.6 [41,42] and ηH2O = 1.40 [41,43]. The value of
νe for magnetite has been estimated to be between 0.3 and
3.0×1015 Hz [44]. Using Eq. (5), this leads to Hamaker
constants between 10−19 and 10−20 J.

The steric repulsion, in its turn, is described by the potential
[45]

Us(ij )=
{

πξkBT

2 D2
ij

[
2 − l

t
− l+2

t
ln

(
1+t

1+ l
2

)]
if (s/2δ)�1

0 if (s/2δ) > 1
,

where ξ is the grafting (surface density of adsorbed molecules
in the nanoparticles), deeply studied in previous works [35,46],
s is the perpendicular distance between the nanoparticles’
surfaces, and δ is the surfactant layer width, l = 2s/Dij e
t = 2δ/Dij . When each one of these molecules presents free
charge at its extremities, there is also an ionic repulsion.

The ionic repulsion is described by the potential
[38]

Ui(ij ) = 64πkBT ρ∞γiγj

DiDj

Di + Dj

R2
De−s ′/RD , (6)

where ρ∞ is the ion concentration in a point infinitely far from
the surfaces; Di and Dj are the diameters; s is the distance
between the surfaces; γi and γj are given by

γi = tanh
eψs(i)

4kBT
, and γj = tanh

eψs(j )

4kBT
, (7)

where ψs(i) and ψs(j ) are the electrical potentials at the
surfaces of the nanoparticles i and j ; and RD is the so-called
Debye radius, given by

RD =
(

εkBT

ρ∞Z2e2

) 1
2

, (8)

where ε is the electric permittivity of the solvent and Z is the
valency of the ions in the solvent. Finally, each nanoparticle
may also interacts with an applied magnetic field by the well-
known Zeeman interaction, described by the potential

UB(i) = − 	mi · 	B. (9)

Although our methodology is able to address different values
of magnetic field, in the present work only B = 0 and B = 0.3
T simulations are considered.

It is worth pointing out that, although we have included
all the relevant energy terms usually taken in consideration
in ferrofluids simulations, we have neglected the magnetic
anisotropy energy contribution. Its inclusion would probably
allow us to extract magnetization curves that are closer to
the experimental ones. However, in this work we will not
address this issue, although we plan to do so in the near
future. So far, our simulation focus has been mainly in the
study of aggregate formation [24,35]. For this purpose we are
convinced (at least for low particle sizes) that our simulation
does represent very well this system. We have found and
extensively discussed (see, for example, Ref. [24]) that, at

this size range (i.e., low dipolar interaction), the van der
Waals and the ionic-steric terms are dominant when aggregate
formation is the main concern. So, independent of considering
explicitly the magnetization rotation without particle rotation,
the aggregate configuration is expected to be the same for
parameters in the range considered in our investigations.

As described in detail in previous works [24,35], our Monte
Carlo implementation starts from a random configuration
of the considered nanoparticles [subject to the interactions
in Eq. (4)] and performs successive small variations in all
its coordinates. For the magnetic fluid system simulated in
this work, a configuration is determined by the positions
of the nanoparticles and the orientations of its magnetic
dipole moments. Therefore, in each iteration of the Metropolis
algorithm, both the positions and the orientations of the
magnetic dipole moments of all considered nanoparticles
experience a random change. In each simulation the number
of nanoparticles were adjusted to precisely achieve the desired
particle volume fraction considering a liposome with a fixed
radius of 150 nm.

In our analysis two nanoparticles are considered as being
part of the same agglomerate if their surface-to-surface
distance is less than the sum of their surfactant molecule
lengths and their Debye radius values. For two nanoparticles
with the same surfactant molecule length and the same Debye
radius value, this condition is written as s � 2δ + RD . This
agglomerate-belonging condition based on proximity was
detailed discussed [24] and found to be a good approximation
in our simulation-experience comparison.

The ionic-surfacted layer is composed of two parts: the
surfacted layer, which provides steric repulsion when two of
them are in contact, and the ionic layer, which is itself a
double layer of ions and counterions that provides an ionic
repulsion between the nanoparticle pair. It is clear that both
interactions are correlated, as their microscopic origin is the
same: the adsorbed layer. In order to build up a model that
relates these repulsions, we assume [24] that each surfactant is
adsorbed radially in the nanoparticle and its polar head stays
at a certain distance from the nanoparticle surface. In such
case, a effective charge density, with spherical format, provides
ions with a charge opposed to the charge of the electrolyte
solution.

Considering that each ionized extremity presents a charge
zse, the relation between the charge density (ς ) can be written
as a function of the grafting (ξ ) [24]:

ς =
[
zse

R2

(R + δ)2

]
ξ, (10)

where R is the radius of the nanoparticle and δ is the width of
the ionic-surfacted layer.

Following these assumptions, we can model the ionic-
surfacted layer as the superposition of the steric and ionic
repulsion potentials and use relation 10 to write the ionic
repulsion’s parameters that depends on ς as functions of ξ .
As in our model each nanoparticle i has a different radius,
it is clear that their surface charge densities (ςi) also differ
and hence any properties related to ςi should be individually
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TABLE I. Surface electric potential ψs (equivalent to the so-
called ζ potential) and the charge density ς for selected values of
grafting ξ for the target system considering D = 13.32 nm and δ =
0.55 nm.

ξ (m−2) ψ (V) ζ (C/m2)

0.06 × 1018 −1.55 × 10−2 −0.81 × 10−2

0.12 × 1018 −2.99 × 10−2 −1.62 × 10−2

0.18 × 1018 −4.20 × 10−2 −2.44 × 10−2

computed. This is done considering the relations

{ψs}i = −kBT

e
acosh

(
1 + {ς}2

i

4εkBTρ∞

)
, (11)

{RD}i =
∥∥∥∥ εψ0

{ς}i

∥∥∥∥, (12)

and

{γ }i = tanh

(
Ze{ψ0}i

4kBT

)
, (13)

as functions of ξ using Eq. (10).
Both the nanoparticle surface electric potential ψs (equiv-

alent to the so-called ζ potential) and the charge density ς

are linked to the grafting ξ , to the diameter D, and to the
surfactant molecule effective length δ. Table I shows ψs and ς

as a function of ξ for selected graftings considering D = 13.32
nm and δ = 0.55 nm. It is interesting to note that our estimated
values for both ψs and ς are inside or near experimentally
observed ranges [47–49]: ψs between 20 mV and 85 mV and
ς around 0.1 Cm−2, frequently reaching 0.3 Cm−2.

The experimental value of the ζ potential was obtained from
electrophoretic mobility measurements performed by phase
analysis light scattering using ZetaSizer Nano ZS equipment
(Malvern Instruments, Malvern, UK). Measurements were
performed after sample preparation revealing a ζ potential
of −28 mV. According to our theoretical analysis, this
corresponds to a grafting around 0.22 nm−2.

Finally, it is important to stress that our model was exten-
sively tested not only by us [24,35] but also by other groups
[50] for different types of nanoparticles in different conditions.

A. The nanoparticle: Lipid bilayer interaction model

Usually the interactions between the lipid bilayer surface
and the surrounding liquid are described by van der Waals,
Coulomb, hydration, and steric potentials. In colloidal sys-
tems, on the other hand, rarely more than two of those interac-
tion potentials are considered [38]. In the formation of miceles,
bilayer, and liposomes, the auto-organization of amphiphilic
molecules is mainly governed by hydration and hydrophobic
interactions [51]. In complex systems, such as the magnetoli-
posomes considered in the present work, all these interaction
potentials might play a crucial role in the system’s properties.
Indeed, a number of other specific interactions, such as ad-
hesion, ligant-receptor, and other interface reactions might be
present [38]. In the following we briefly analyze the contribu-
tion of some of these interaction potentials in our target system.

The van der Waals interactions among amphiphilic
molecules and their derived structures are relatively weak.
This is because the Hamaker constant [A, in Equation (5)]
between hydrocarbon radicals and water is at least one order
of magnitude smaller than the typical values observed for
magnetic colloids: 4 − 7 × 10−21 J for the former against
6 − 20 × 10−20 J for the latter [38].

The hydration interaction between phospholipid bilayers
was recently found [52] to be of very short range. The
molecular dynamic simulations of Kanduc, Schneck, and
Netz [52] indicated that hydration interaction in phospholipd
bilayers present an exponential decay, with a decay length of
the order of 0.4 nm. This is consistent with the fact that, in the
scale of the water molecule, the phospholipid bilayer does not
present a smooth interface and hence water molecules are not
expected to be in an ordered phase.

The electrostatic repulsion, on the other hand, presents a
more long-range character. Although electrostatic interactions
in complex systems like magnetoliposomes might be very
sensitive to the pH, surface potential and the type and con-
centration of the electrolytes in the solution, their long-range
character suggest that they have a key role in the properties
of these systems. Following this assumption, in our model
the interaction between the liposome surface and the magnetic
nanoparticle is basically governed by electrostatic repulsion as
described by the Gouy-Chapman [38,53,54] approximation.
This choice is based on the experimental observation by
Aguilella et al. [55]. In their work, Aguilella et al. found that
differences between the experimental measured surface charge
density of charge lipid layers and the Gouy-Chapman approx-
imation could be explained if the area per lipid molecule, the
pH, and the dependence between the dissociation degree and
concentration were taken in consideration. Aguilella et al. [55]
have found that the surface potential ψ0 between the interface
and the electrolytic solution is given by

ψ0 = 2RT

F
arcsin(f α), (14)

where

f = −e[A24RT εε0ρ)]−1/2, (15)

and R and F are the ideal gas and the Faraday constants,
respectively, A is the lipid polar head group area, ε is
the dielectric constant, ε0 the vacuum permittivity, ρ the
concentration of ions, and α the degree of lipid dissociation.
This results were found to be consistent with the experimental
data obtained by Taylor and coworkers [56] for surface
potential measurements on stearic acid monolayers.

In order to proper apply this approximation to our target
system, in our model, the phospholipid bilayer is represented
by pseudoatoms, as is usually done in coarse-grained calcula-
tions [57]. Coarse-grained calculations are basically reduced
models which retain close connections to the underlying
atomistic representation. A common pattern employed by
many simulation methods is lumping groups of atoms together
into a single interaction site [57] or pseudoatoms. The
coarse-grained approach is widely used in studies of lipid
bilayers, where the lipids are divided in a few interaction sites.
The number of interaction sites, the system’s size and the
interaction potentials used might have several consequences
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in the model’s capability of properly describing the system’s
properties [58]. In our approach, the phospholipid bilayer is
represented by a single interaction site or pseudoatom. This
choice is mainly justified by the size of our system and the
interaction potential considered. Each pseudo-atom interacts
with the magnetic nanoparticles by an ionic potential described
by Eqs. (14) and (15) connected with Eqs. (6) and (7). It
is also important to mention that this model needs further
improvements in order to address PEGylated liposomes, such
as those studied by Amstad and coworkers [59].

B. Simulated system

In the next section, all simulations are performed con-
sidering the following parameters: ion concentration in the
solution, ρ = 0.05 mol/L; electric permittivity ε = 7.09 ×
10−10 C2/Nm2, magnetic permeability μ = 1.26 N/A2; par-
ticle volume fraction, φ = 0.0075 → 0.050; median diameter,
D0 = 12.7 nm; diameter dispersion, σ = 0.31; surfactant
layer thickness, δ = 0.55 nm; Hamaker constant, A = (5 −
20) × 10−20 J; and grafting, ξ = 0.22 × 1018 m−2. A giving
Monte Carlo step is characterized by the positions and
magnetic moments of the nanoparticles distributed inside the
liposome. Although our experimental data (see next section)
indicates that the liposome diameters are around 150 nm, in
all simulations the liposome diameter considered is around
100 nm. This choice is made in order to guarantee that the
number of nanoparticles is not very small, especially for
small particle volume fraction concentrations and, at the same
time, the size of our simulated magnetoliposome is no smaller
than the experimental samples considered. In other words, the
liposome size is chosen in order to guarantee that the minimum
number of trapped nanoparticles is statistically significant and
at the same time only a small amount of experimental data is
collected below this limit.

In order to carry out simulations involving a fixed number of
particles, the distribution must be discretized. We have tested
our discretization scheme following the proposal of Ivanov

TABLE II. The first six moments 〈Dn〉
Dn

0
of the discretized sim-

ulation distribution and the exact distribution defined in Eq. (1).
Deviations between the simulation and exact values in percentage
are also shown.

Order 1 2 3 4 5 6

Exact 1049 1212 1541 2157 3323 5683
Discrete 1106 1321 1690 2294 3274 4876
Deviation (%) 5.4 9.0 9.7 6.3 −1.5 −14.3

[26]. In this approach the moments 〈Dn〉
Dn

0
of the discretized

simulation distribution gdiscrete(D) considering 1000 particles
and the exact distribution g(D) [Eq. (1)] are compared. The
moments obtained from our discrete simulation and the exact
distribution are presented in Table II. The deviations do not
follow a definite pattern and are always lower than 15%. Since
the magnetization is proportional to the third-order moment
while the susceptibility is proportional to the sixth order,
we expect quantitative deviations between the experimental
and simulated values, as discussed latter. This is because
in order to simulate the considered size magnetoliposomes
and the nanoparticle’s concentration range the number of
nanoparticles entrapped is usually around 100 or less. In this
limit, deviations of the sixth-order moment were found to be
higher. Since Kumar et al. [50] have extended our previous
calculations [35] for FM considering 200 nanoparticles up to
2000 nanoparticles and found only small numerical differ-
ences, we understand that our choices for the MC simulations
will correctly represent the target system.

IV. RESULTS

Figure 3 (right) shows the TEM image of the manganese
ferrite citrate-coated nanoparticles. In this image it is possible
to observe the size dispersity and spherical-like shape of the
synthesized nanoparticles. In the inset in Fig. 3 (right), the
derived experimental histogram data obtained from several

FIG. 3. Right: Transmission electron microscopy (TEM) image of the manganese ferrite citrate coated nanoparticle. Inset: Histogram
data derived from TEM image and lognormal fit of the distribution. Left: Specific magnetization curve of the dried (powder) nanoparticles.
Inset: Magnetization curve of the magnetic nanoparticle sample. The specific saturation magnetization of the nanoparticle was found to be
44.3 emu/g, which corresponds to a saturation magnetization of 226 emu/cm3 (226 kA/m).
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FIG. 4. Size distribution from nanoparticle tracking analysis
(NTA) and dynamic light scattering (DLS) measurements of the
liposome sample with the corresponding 3D graph (size vs intensity
vs concentration; inset).

images, as well as the theoretical fit of log-normal size
distribution. Our data indicates that our sample is composed
of nanoparticles with a mean diameter D̂ = 14 nm with a
standard deviation SD = 4 nm. In Fig. 3 (left) the magnetiza-
tion curve of the dried (powder) ferrite nanoparticles at room
temperature is shown. The specific saturation magnetization
of the nanoparticle was found to be 44.3 emu/g, which
corresponds to a saturation magnetization of 226 emu/cm3

(226 kA/m). This soft-ferrite does not show any coercivity at
this experimental condition, indicating a superparamagnetic-
like behavior. The inset in Fig. 3 (left) shows a typical
magnetization curve of a magnetic colloid sample. From the
saturation magnetization value of the colloid it is possible to
extract the particle volume fraction of the colloid (0.9%). It
is important to mention that these magnetic properties were
obtained before the magnetic nanoparticles were trapped in
the liposome.

In the next step of our investigation, NTA and DLS
measurements were used to estimate the liposome concen-
tration and size distribution. Figure 4 presents a comparison

between NTA and DLS data obtained for a liposome sample.
In the inset a representative 3D graph indicating size as
a function of intensity and concentration is also shown.
Both techniques showed good sizing accuracy and relatively
narrow distributions in agreement with previous systematic
investigations [25].

In Table III NTA- and DLS-derived diameter size (d),
standard deviation (SD), concentration in liposomes per
mL, Z-average diameter, and polydispersity index (PdI) are
presented. The samples are named, 200 and 100 nm, after the
diameter of the polycarbonate membranes pores they were
extruded and X μL according to the amount of magnetic
fluid added to the formulation. In the majority of samples
considered, the liposome diameters are around 150 nm. As
expected, for almost all samples, the mean size values obtained
by NTA are slightly smaller than the Z average given by DLS.

Figure 5 shows the static magnetic birefringence of the
magnetoliposomes as a function of the magnetic field for
different encapsulated magnetic nanoparticle concentrations
considering (a) 100 nm and (b) 200 nm liposome samples. The
symbols represent the experimental data while the solid lines
are the best fit using Eq. (3) with only two fitting parameters:
�ns and Q.

Using the SMB data we extract the mean chain size Q and
the fraction of agglomerates for the liposome formulation.
Experimentally, the fraction of monomers and aggregates
(dimers, trimers, and high other agglomerates) is obtained from
the ratio of nanoparticles contributing to the SMB signal and
the total number of particles obtained from the magnetization
data for the liposome. Figure 6 shows the SMB data (circles)
for the 200-nm sample and the Monte Carlo simulation results
(squares). As previously found by our group [46] the higher
the particle concentration the lower is the fraction of isolated
nanoparticles (monomers). It is also clear that the simulated
data is in good agreement with the experimental results,
indicating that our MC implementation properly describe this
property.

In the inset of Fig. 7, the inverse of the agglomerate mean
value (1/Q) as a function of the particle volume fraction is
shown for magnetoliposome experimental data black spheres
(200 nm) and blue squares (100 nm) and Monte Carlo

TABLE III. Diameter size (d), standard deviation (SD), concentration in liposomes (lip.) per mL, Z-average diameter, and polydispersity
index (PdI) obtained using nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS) techniques for different liposome
formulations.

Technique

NTA NTA NTA DLS DLS
Formulation d (nm) SD (nm) lip./mL Z average (nm) PdI

Lip. 200 nm + 10 μL PM 168.6 47.6 4.2246×1013 148.1 0.048
Lip. 200 nm + 25 μL PM 160.2 45.8 3.212×1013 150.4 0.058
Lip. 200 nm + 50 μL PM 167.0 47.4 3.3848×1013 143.2 0.061
Lip. 200 nm + 75 μL PM 161.4 45.8 3.3136×1013 138.9 0.091
Lip. 200 nm + 100 μL PM 172.2 50.6 3.7899×1013 139.4 0.125
Lip. 100 nm + 10 μL PM 140.0 48.2 3.7456×1013 110.0 0.048
Lip. 100 nm + 25 μL PM 131.8 40.4 4.7696×1013 106.7 0.062
Lip. 100 nm + 50 μL PM 203.0 59.4 5.6328×1013 105.1 0.078
Lip. 100 nm + 75 μL PM 137.0 48.0 4.6344×1013 102.7 0.064
Lip. 100 nm + 100 μL PM 144.6 51.0 4.9848×1013 105.4 0.097
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FIG. 5. Static magnetic birefringence of the magnetoliposomes as a function of the magnetic field for different encapsulated magnetic
nanoparticle concentrations.

simulations (red hexagons). The experimental data are derived
from SMB analysis as discussed in Sec. II. As expected,
we observe the increasing of the agglomerate size Q when
the number of encapsulated nanoparticles inside the liposome
increases. Although some variations can be noted, again the
Monte Carlo simulations show the same behavior observed for
the experimental data. In order to allow a better visualization,
in the next analysis only 200-nm ML-derived data will be
shown.

Our experimental analysis is devoted to the investigation
of low particle volume fraction samples. In this regime we
expect that a chain model might give an insight about aggregate
formation. At high concentrations, on the other hand, this
approach is probably less accurate, especially due to the
formation of more complex self-organized structures. One of
the first models designed to access the chain size concentration

FIG. 6. SMB derived fraction of agglomerates (closed circles)
and monomers (closed squares) for the 200-nm sample and Monte
Carlo simulation results (open circles and squares). Aggregates
indicates dimers, trimers, and high-order clusters.

dependence was the rigid chain model developed by Tsebers
[61] and Zubarev and Iskakova [62] (TZI model). In this
approximation, the chain size is given by [4,24]

Q = 2φz0√
1 + 4φz0 − 1

(16)

with

z0 = e2λ

3λ2

and

λ = π2

36

M2
s D6

(D + Dss)3kBT
.

As indicated earlier, this model is valid only for rigid chains.
In the search for a more general description, Mendelev and
Ivanov [60] introduced the so-called MI model, which is also
valid for flexible chain aggregates. In the MI model, the chain
size has the same dependence as in Eq. (16), except that now

z0 = e2λ

3λ3
{1 − exp−λ}.

It is interesting to note that this expression is equivalent
to that obtained by de Gennes and Pincus for the infinite
dipolar interaction limit [63]. In the MI model, initial magnetic
susceptibility is given by [60]

χ = χi

1 + p0κ(λ/2)

1 − p0κ(λ/2)
, (17)

where

p0 = 1 + 2Z0φ − √
1 + 4Z0φ

2Z0φ

and κ(x) is a correlation coefficient that describes the zero field
orientational correlations between the magnetic moments of
interaction particles, which is given by a Langevin function,

κ

(
λ

2

)
= coth

λ

2
− 2

λ
.
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FIG. 7. Experimentally derived mean chain size Qmean (cir-
cles) for the 200-nm sample and Monte Carlo simulation results
(hexagons). The solid, dashed, dotted, and dashed-dotted lines
represent theoretical values obtained following the Mendelev-Ivanov
model [60]. In the inset, the inverse of the agglomerate mean value
(1/Q) as a function of the particle volume fraction. Experimental data
are represented by black spheres (200-nm liposome sample) and blue
squares (200-nm liposome sample) while Monte Carlo simulations
are respresented by red hexagons.

This expression for the susceptibility is equivalent to that
obtained for the TZI model [61,62] when a very high dipolar
interaction term is considered. This is a direct consequence
of the fact that the Langevin function saturates, i.e., tends
to the unity value, at this regime. Considering our magnetic
nanoparticle mean diameter (14 nm) and Ms = 226 emu/cm3

we obtain λexp ≈ 0.74. In principle, this model is valid for
λ greater than 1, which is larger than the calculated value.
Alternatively, λ can be extract for a given sample using the
log-normal distribution property. It is important to mention
that that the dispersity of λ is 3 times higher than the one found
for the particle diameter. From our size distribution we have
found a mean value of λmean = 1.14, which would indicate
that the particles do not interact strongly.

The mean chain size (Qmean) concentration is defined as

Qmean = Qfagg + Qmon(1 − fagg),

where Qmon = 1, since it is an isolated nanoparticle and fagg

is the fraction of aggregates. This later value is obtained from
the comparison of the analysis of the SMB and magnetization
data from which we extract the total number of nanoparticles.
Qmean as a function of the particle volume fraction for the
200-nm magnetoliposome (black spheres) and from the Monte
Carlo simulations (red hexagons) is shown in Fig. 7. In
agreement with our previous analysis, the mean chain size
increases for higher volume fractions. Again, good agreement
between experimental derived data and simulation results was
achieved for lower particle concentrations. In addition, we
have also compared our results with the Mendelev-Ivanov
model (MI) [60] with distinct interaction parameter values
(λ). The theoretical values are indicated by solid, dashed,
dotted, and dashed-dotted lines. It is clear from this figure that
nanoparticles trapped in a magnetoliposome are in a highly

FIG. 8. Comparison between experimental data (dashed and solid
lines), Langevin model (dashed-dotted line), and MC simulation
(symbols) for the field dependence of the reduced magnetization
( M

Mz
) for a system considering a particle volume fraction of 0.01.

interacting situation. This can be numerically represented by
the obtained λ values that better fit the experimental (λ = 3)
data. It is important to mention that the Monte Carlo simulated
values do not present a smooth behavior. This is probably
related to the small number of nanoparticles entrapped in each
liposome, especially at low concentration limits.

Having established that the flexible chain model can prop-
erly describe our system, we have used it in order to analyze
our experimental data and Monte Carlo simulations. Figure 8
shows the field dependence of the reduced magnetization
curves ( M

Ms
) of some of our samples, namely the magnetic

fluid (solid line) and the magnetoliposome (dashed line) for
a particle volume fraction close to 0.01. For comparison the
calculated noninteracting Langevin curve (dashed-dotted line)
for the sample parameters is also shown. The experimental
data clearly indicate a highly interacting system since both
ferrofluid and magnetoliposome appears to orient more rapidly
than the Langevin case. At low field the response of the colloid
is higher, while above a field of the order of 200–300 Oe the
magnetoliposome starts to saturate faster. Our Monte Carlo
simulation, indicated by symbols, correlate well specially at
higher field limits.

In the determination of the susceptibility of magnetoli-
posomes at very low particle concentrations, the magnetic
signal of the sample has diamagnetic (liquid carrier and
liposome) and superparamagnetic contributions. The later is
used to extract information of the susceptibility. In Fig. 9 the
initial susceptibility as function of particle volume fraction for
the magnetic fluid and magnetoliposome samples is shown.
Open squares represent the magnetic fluid and spheres the
magnetoliposome experimental data, while closed squares the
magnetic fluid and closed hexagons the magnetoliposome
Monte Carlo simulations. Experimentally, we found a lower
susceptibility for the magnetoliposome samples in comparison
with the magnetic fluid. The dashed-dotted line represents
the Langevin model considering the sample parameters. The
experimental data for both magnetic fluid and magnetolipos-
some differ considerably from the expected noninteracting
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FIG. 9. Initial susceptibility as function of particle volume frac-
tion for magnetic fluid (squares) and magnetoliposomes (spheres).
The red line represents a Langevin calculation.

case (Langevin model) indicating, again, a highly interacting
system. In order to compare available data with the flexible
chain model, we simulated the susceptibility using Eq. (17)
and different interaction parameters. The solid, dashed, and
dotted lines are calculations using the MI model for distinct
λ values, i.e., λ =3, 4, and 5, respectively. Good aggreement
with the data is achieved for the highest λ value. Although
the value found from this analysis is distinct from the chain
size analysis reported before, it is possible to extract from both
models that the samples have aggregates. In contrast with the
experimental value, the MC simulations of the magnetic fluids
approaches the Langevin model. The magnetoliposome MC
simulations, on the other hand, is in good aggrement with the
experiental data indicanting a high interacting system.

Our theoretical discussion was based on the MI model that is
mainly valid for monodisperse colloids, while our samples are
polydisperse in nature. Although there is a model, which was
proposed by Ivanov and Kantorovich [64], where the chain
formation process considers the polydispersity by assuming
that a real sample can be approximated by a bidisperse system,
we have not considered this approach. We understand that this
later proposition is certainly a better approach when compared
the the monodisperse one. However, it is quite complex. In
principle, if one assumes a given particle configuration with
large particles in the center of the aggregate and small ones at
the edge, it is possible to extract information of these system.
However, there is no guarantee that this configuration will
be present in our samples. In our opinion, without cryogenic
transmission electron microscopy pictures, such as those
reported by Butter and coworkers [65], to give support for
a typical aggregate configuration choice of a colloid sample,
such an approach could be seen experimentally aa a bit
speculative. Therefore, we prefer to use the polydispersity
analysis as reported in our work, which is based on an average
chain size (see Sec. II).

Next we compare the chain distributions in two situations:
nonconfined magnetic fluid, which is usually the subject of
most of the works in the literature, and the magnetoliposome
case, i.e., when nanoparticles are entrapped in the liposome.

FIG. 10. Histograms of the cluster size distribution for the
magnetic fluid (MF) and magnetoliposome samples (ML), for the
0.0013, 0.03, and 0.05 particle volume fractions (indicated in %),
considering a 0.3-T magnetic field. In the inset, mean chain size as a
function of particle volume fraction includes the 0.00075 (or 0.075%)
data.

Histograms of the cluster size distribution for the magnetic
fluid (MF) and magnetoliposome samples (ML), for the
0.0013, 0.03, and 0.05 particle volume fractions (indicated
in %), considering a 0.3-T magnetic field are shown in Fig. 10.
The histograms are based on the final particle configurations.
In the inset, the main chain size as a function of the particle
volume fraction for MF and ML is also presented, including a
lower-volume-fraction result.

Our simulation data indicate that, at lower volume fractions,
ML presents a lower aggregate formation. This is consistent
with our susceptibility results, since at lower magnetic fields
the susceptibility of the ML approaches the Langevin function,
which represents a noninteracting system. Our simulation re-
sults are also consistent with with the experimental indication,
at lower volume fractions, of a lower susceptibility for ML
when compared to MF.

Our results indicate that, for higher concentrations, ML
presents a higher degree of aggregation. Indeed, more complex
chain distributions, including clusters of the order of 30
particles, are observed for the ML samples with particle
volume fractions of 0.03 and 0.05. This is consistent with
the ferrofluid simulations under plate confinement reported by
Richardi and Weis [66]. For the nonconfined MF, on the other
hand, our calculations show distributions that are similar to
those obtained by Osipov and coworkers [67]. Our simulation
data indicate that, for ML, there is a particle volume fraction-
dependent transition from a situation of few aggregates to
more complex system. Indeed, a complete study about the
influence of such complex structures might be an interesting
topic. An example of possible changes in the properties of MF
due to the formation of complex structures was recently given
by Kantorovich et al. [68], who found a decrease in the initial
susceptibility in dipolar fluids when temperature decreases due
to the formation of ringlike structures (flux closure particle
arrangements). In ML this behavior might be relevant at
very high particle concentration, when the nanoparticles are
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entrapped into the vesicles. One might expect change in their
magnetic properties, which could have implications in the
biomedical field. However, this is not the focus of this work
and will be left for future investigations.

V. CONCLUSIONS

In this work we have developed and implemented a new
approach for the study of magnetoliposomes using the Monte
Carlo method. Our model is based on interaction among
nanoparticles considering various particle-particle interaction
terms, while the interaction between nanoparticles and the
lipid bilayer is represented by a ionic repulsion electrical
surface potential that depends on the nanoparticle-lipid bilayer
distance and the concentration of ions in the solution. In
our experimental approach, magnetoliposomes containing a
different amount of magnetic particles encapsulated were
prepared by thin lipid film hydration followed by extrusion.

The nanosystems were investigated by transmission electron
microscopy, vibrating sample magnetometer, dynamic light
scattering, nanoparticle tracking analysis, and SMB. SMB
allowed us to extract information about the nanoparticle self-
organization inside the vesicles. In addition, magnetization
and susceptibility data are also accessed. A direct comparison
between experimental and simulation data allows us to validate
our MC implementation. Our simulations suggest that at lower
volume fractions, ML presents a lower aggregate formation,
while for higher concentrations, ML presents a higher degree
of aggregation when compared to MF.
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