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Magnetic interaction of Janus magnetic particles suspended in a viscous fluid
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We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid
under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized
into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic
particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic
particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy
of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor
that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems,
we show that the orientation of the particles has a significant influence on the dynamics of the particles,
the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and
staggered chain structures observed experimentally can be reproduced numerically in a multiple particle
problem.
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I. INTRODUCTION

Integrated microfluidic systems utilizing magnetic particles
have drawn attention because of their potential chemical and
biomedical applications [1–4]. In these systems, functional-
ized magnetic particles have been adopted for use as actuators,
stirrers to enhance mixing, capturers and carriers of target
analytes, and biosensors for diagnostic applications. Unlike
electric forces, the magnetic forces acting on the magnetic
particles are insensitive to the electrochemical conditions
of a surrounding fluid. Thus, the magnetic particles can
be manipulated in a more predictable manner. Spherical
particles with uniform magnetic properties (without magnetic
anisotropy) are typically used for magnetic particle-based
microfluidic systems.

For more advanced tasks such as the creation of building
blocks for photonic crystals, tissue engineering, and mi-
croelectronic architecture, targeted assembly structures for
specific applications become important [5,6]. Anisotropic par-
ticles, categorized by shape-anisotropic particles, chemically
patterned particles, and internally structured particles, are
fabricated to meet such needs. These particles exhibit more
complex interparticle interactions and self-assembly structures
than those observed in isotropic particles, enabling them to
overcome limits that constrain the use of isotropic particles.
Among anisotropic particles, Janus particles, named after the
Roman god Janus, are unique because they provide asymmetry
and directionality in a single particle [7].

A Janus (anisotropic) magnetic particle is composed of two
different magnetic materials, e.g., a magnetic particle with a
nonmagnetic cap, a nonmagnetic particle with a magnetic cap,
and a particle with a magnetic hemisphere [8–10]. By coating
one hemisphere of a particle with a thin layer of metal and
the other hemisphere with a fluorescent material, the particle
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rotates in response to a rotating external field. Such a particle
can be utilized as a rheological probe [8]. Janus particles with
a magnetic hemisphere are able to load chemical or biological
payloads such as dyes, fluorophores, proteins, or cells. This
facilitates applications such as detection in magnetic resonance
imaging, separation, and drug delivery in the biomedical field.
Nonspherical Janus particles such as Janus ellipsoids, Janus
dumbbells, and Janus cylinders can also be fabricated to meet
specific needs [11–13]. For more details on the synthesis, self-
assembly, properties, and applications of Janus particles, we
refer to two review articles [14,15].

Upon applying a uniform field, isotropic magnetic particles
form linear chain structures due to magnetic interactions
among the particles [16,17]. Janus magnetic particles, mean-
while, form chiral chains, staggered chains, or doubled chain-
like structures as well as linear chain structures, depending on
their internal structure [9,18–23]. In the presence of a rotating
magnetic field, magnetic Janus colloids are found to form
unusual crystal structures [24]. The type of magnetic material
(paramagnetic or ferromagnetic), the type of externally ap-
plied field (static or dynamic), the magnetic susceptibility,
the shape of particles, and the confinement of magnetic
material within a particle can influence field-induced structure
formation.

From a fundamental point of view, magnetic interaction
among anisotropic particles is an important subject in the
area utilizing Janus magnetic particles. In addition, the
inclusion of hydrodynamic interaction is crucial to accurately
predict the particle dynamics, even in simple two-particle
magnetic interactions [25]. Most research on the magnetic
interaction and self-assembly of Janus particles relies on
experimentation. Even though modeling and simulation are
employed to investigate the self-assembly and the dynamics
of Janus particles [26–31], further studies are still required to
understand the magnetic interaction lying behind the formation
of various self-assembly structures and the fluid flow induced
by the actuated particles. Direct numerical simulation schemes
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[32–37], which have been developed to solve particulate flows
with isotropic magnetic particles, are promising options in
tackling particulate flows with Janus magnetic particles if they
are enhanced to take into account the magnetic anisotropy of
the particles.

In this study, a previously developed two-dimensional
numerical scheme [36] is enhanced to treat the magnetic
anisotropy of the particles. To the best of our knowledge, this is
the first attempt to apply the direct simulation scheme to solve
particulate flows with suspended Janus magnetic particles.
First, the developed numerical scheme is validated using a
single-particle problem. Then we investigate the magnetic in-
teraction between two circular Janus particles under the influ-
ence of an externally applied magnetic field. In three-particle
interaction, the main focus will be on the effect of the orienta-
tion and the spatial configuration of the particles on particle dy-
namics, chain structures formed by the particles, and the flow
induced by the actuated particles. Finally, we introduce the
self-assembly in a multiparticle problem and compare numeri-
cal results with those reported in a previous experimental study.

II. MODELING

A. Problem definition

The problem we wish to solve is a two-dimensional
particulate flow with monodisperse circular Janus magnetic
particles suspended in a viscous fluid under the influence of
an externally applied uniform magnetic field H̄ . The Janus
particles used in simulations are equally compartmentalized
into paramagnetic and nonmagnetic sides, which correspond
to two-dimensional counterparts of spherical Janus particles
presented in Ref. [9]. Half of a particle is made of a
paramagnetic material with a constant magnetic permeability
and the other half is made of a nonmagnetic material, leading
to magnetic anisotropy and, consequently, unique behavior in
an externally applied magnetic field. Our problem is associated
with a real system where both the applied field and the normal
directions to the internal interfaces of the particles are parallel
to the plane on which the particles move.

Since we are concerned with Janus particles that are a few
microns in size, the particles are assumed to be non-Brownian
and inertialess. The magnetic permeability of the magnetic
area is μp, and that of the nonmagnetic area is μ0, where μ0

is the permeability in vacuum and μp > μ0. In addition, we
assume a linear relation between the magnetic field and the
induced magnetic moment, neglecting magnetic saturation,
and solve magnetostatics [38]. The fluid is assumed to be
nonmagnetic with the permeability μ0 and Newtonian with
a constant viscosity η. Since typical flows in microfluidic
devices belong to the Stokes flow regime, the fluid flow is
governed only by viscous forces and magnetic forces.

Figure 1 depicts a representative problem to be solved. The
computational domain is a rectangular chamber filled with a
fluid and Janus particles all with the same radius a suspended
in the fluid. The chamber is 2w wide and 2h high. The four
boundaries of the chamber are represented by �1, �2, �3, and
�4. The origin of the coordinate system (x,y) is located at
the center of the chamber that is periodic in the horizontal
direction. The two boundaries, �1 and �3, are stationary walls.

qj

FIG. 1. Schematic representation of the problem with Janus
magnetic particles suspended in a liquid under the influence of
an externally applied magnetic field, H̄ = H0 j , where H0 is the
magnitude of the field and j is the unit vector along the y direction.
In each particle, the area shaded in orange is the magnetic domain of
the particle.

Pi(t) denotes the area occupied by a particle at time t . The
internal boundary separating magnetic and nonmagnetic areas
in the particle is denoted by ∂P ′

i and the outer boundary of
the particle by ∂Pi . The collective region occupied by all
the particles is defined by P (t) = ⋃N

i=1 Pi(t), where N is the
number of particles. The fluid domain is denoted by �\P (t)
with � being the entire domain.

A local coordinate system (x ′
i ,y

′
i), which moves with the

rigid-body motion of a particle Pi , is defined to represent the
orientation of the particle. The origin of the local coordinate
system is located at the center of the particle. A unit vector qi

in the direction of the x ′
i axis is employed as the orientation

vector for the particle, defined by q i = cos(θm,i)i + sin(θm,i) j ,
where i and j are unit vectors along the x axis and y axis,
respectively, and θm,i is the orientation angle of the particle.

B. Governing equations

In this section, we address the governing equations and
corresponding boundary conditions for two-dimensional mag-
netic and flow problems, focusing on the way to treat the
magnetic anisotropy of the Janus particle in both problems.
For other information on modeling magnetic particulate flows,
we refer to our previous works [33,37].

First, a magnetic problem is solved to obtain the magnetic
field in the entire domain � including the particles and the
fluid. In magnetostatics without free current, the governing
equation for the magnetic problem is given by

∇ · (μ∇φ) = 0, (1)

where φ is the magnetic scalar potential and μ the magnetic
permeability that is related to the magnetic susceptibility χ

by μ = μ0(1 + χ ). The externally applied magnetic field H̄
is imposed using constraints given by

φ(−w,y) = φ(w,y) + 	φx, on �2 ∪ �4, (2)

φ(x, − h) = φ(x,h) + 	φy, on �1 ∪ �3, (3)
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where 	φx is the potential difference between �2 and �4 and
	φy that between �1 and �3. The two potential differences
are related to the components of H̄ by Hx = 	φx/2w and
Hy = 	φy/2h. A reference potential (φ = 0) is specified at
one point �p in the domain. Once the magnetic potential is
obtained, it can be used to calculate the magnetic field intensity
H and the magnetic flux density B, defined by H = −∇φ and
B = μH , respectively.

The magnetic permeability μ is discontinuous across the
interface between the fluid and the outer boundary of the
magnetic domain in a particle. In addition, the magnetic

permeability is not uniform in a particle but discontinuous
across the internal interface ∂P ′

i between magnetic and
nonmagnetic domains. The magnetic permeability is evaluated
using the local coordinate system defined in each particle and
the signed distance function δ(x) at a spatial position x. The
distance function is defined by δ(x) = min {|x − Xi | − Ri}
(i = 1, . . . ,N), where X i is the position vector to the center
of the i th particle and Ri the radius of the particle. As depicted
in Fig. 1, the magnetic and nonmagnetic areas of a Janus
particle Pi are divided by the x ′

i axis. Therefore, the magnetic
permeability at a position x can be evaluated by

μ(x) =

⎧⎪⎨
⎪⎩

μ0 if δ(x) > 0 (fluid domain),

μp else if δ(x) � 0 and y ′
i(x) � 0 (magnetic area in Pi),

μ0 otherwise (non-magnetic area in a particle).

(4)

As for the flow in the Stokes flow regime, the continuity and
the momentum balance equations in the fluid domain �\P (t)
are given by

∇ · u = 0, (5)

∇ · σ + ∇ · Tm = 0, (6)

where u is the velocity, σ the Cauchy stress tensor, and Tm the
Maxwell stress tensor. The two stress tensors are defined by
σ = −p I + η(∇u + (∇u)T ) and Tm = μ(H H − H 2 I/2),
where p is the pressure, η the viscosity, I the identity
tensor, and H 2 = H · H . The magnetic force is represented
by the divergence of the Maxwell stress tensor, added as an
additional body force to the momentum balance equation.
No-slip condition is imposed on the bottom (�1) and top
(�3) boundaries. The constraints for the horizontal periodicity
between the two boundaries (�2 and �4) are represented by

u(−w,y) = u(w,y), (7)

t(−w,y) = −t(w,y), (8)

where t is the traction defined by t = σ · n, where n is the
outward unit normal vector at the boundaries.

To treat the rigid-body constraints for particles with nonuni-
form magnetic properties, a modified rigid-ring description is
employed for the particle domain P (t). In this model, the fluid
also fills the particle domain, as used in the original rigid-ring
description [39]. But the rigid-body constraints should be
imposed on the internal boundary ∂P ′

i as well as the particle
boundary ∂Pi , given by

u = U i + ωi × r i , (9)

where U i is the translational velocity of the i th particle, ωi

the angular velocity of the particle, and r i = x − X i . In the
two-dimensional case, ωi = ωi k, where k is the unit vector
perpendicular to the xy plane and ωi the magnitude of the
angular velocity. In this manner, we are able to solve the same
governing equations for the whole domain �.

After solving the set of governing equations for the flow
problem, one can determine the unknown rigid-body motions

(U i ,ωi) of the particles as well as the velocity u and pressure
p. Using the rigid-body motions at time t , the position X i

and the angle θm,i of the particles are updated by solving the
evolution equations, represented by

d X i

dt
= U i , X i(0) = X0

i , (10)

dθm,i

dt
= ωi, θm,i(0) = θ0

m,i, (11)

where X0
i and θ0

m,i are the initial position vector and the initial
orientation angle of the i th particle, respectively. Then, for a
new particle configuration, the solution procedure of solving
the two problems is repeated to the time one want to analyze.

III. NUMERICAL METHODS

To solve the particulate flow with Janus magnetic particles,
in this study, we enhanced our previous method to be able
to account for the magnetic anisotropy of the Janus particles.
Compared with the method introduced in the previous studies
[32,36,37], the major differences are in the treatment of
the magnetic anisotropy of the particles dependent on their
orientations and the use of the modified rigid-ring description
implemented by means of Lagrange multipliers. Introduced
below are the weak forms to solve the two-dimensional
magnetic particulate flow with circular Janus magnetic
particles.

The weak form for the magnetic problem, governed by the
set of equations [Eqs. (1)–(3)] for the magnetic potential φ, is
given as:

∫
�

μ∇φ · ∇ψdA + 〈
λm,h,ψ(−w,y) − ψ(w,y)

〉
�4

+ 〈λm,v,ψ(x, − h) − ψ(x,h)〉�1 = 0, (12)

〈μm,h,φ(−w,y) − φ(w,y)〉�4 = 〈μm,h,	φx〉�4 , (13)

〈μm,v,φ(x, − h) − φ(x,h)〉�1 = 〈μm,v,	φy〉�1 , (14)

where ψ is the weighting function for the potential, λm,h

and λm,v are the Lagrange multipliers for the two constraints
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[Eqs. (2) and (3)], respectively, and μm,h and μm,v the
weighting functions for the two Lagrange multipliers, λm,h

and λm,v , respectively. We use biquadratic interpolation for the
potential and linear interpolations for the Lagrange multipliers.
When integrating the first term in Eq. (12), the magnetic
permeability μ at a quadrature point xq is evaluated by Eq. (4)
using the distance function δ(xq) and the local coordinate
y ′

i(xq) (if the quadrature point xq is inside a particle Pi).
Using a sparse Gauss elimination method, HSL/MA57 [40],
the resulting matrix equation is solved to find the potential in
the entire domain.

The flow problem is solved by using a finite-element-based
fictitious domain method [37]. Fluid-particle and particle-
particle hydrodynamic interactions are treated implicitly
through a combined weak form for the flow problem, given
by

∫
�

2ηD(v) : D(u)dA −
∫

�

(∇ · v)pdA

+
N∑

i=1

〈v − (V i + χ i × r i),λ
p,i〉∂Pi∪∂P ′

i

+ 〈λh,v(−w,y) − v(w,y)〉�4 = −
∫

�

D(v) : TmdA,

(15)

−
∫

�

q(∇ · u)dA = 0, (16)

〈μp,i(x),u(x) − (U i + ωi × r i)〉∂Pi∪∂P ′
i
= 0, (17)

〈μh,u(−w,y) − u(w,y)〉�4 = 0, (18)

where v, q, V i , χ i , μp,i , and μh are the weighting functions
for the velocity u, the pressure p, the translational velocity of a
particle U i , the angular velocity of a particle ωi , the Lagrange
multiplier for the rigid-body constraint λp,i , and the Lagrange
multiplier for the periodic condition λh, respectively.

In the combined weak form, the rigid-body motion of
the particles is enforced by the constraint equation [Eq. (9)]
using Lagrange multipliers λp,i defined on both the particle
boundary ∂Pi and the internal boundary ∂P ′

i of the Janus
particles [see Eqs. (15) and (17)]. We use biquadratic interpo-
lation for the velocity, bilinear interpolation for the pressure,
and linear interpolation for the Lagrange multipliers. The
resulting matrix equation is solved by the same solver as
used for the magnetic problem. The evolution equations for
the position and the orientation of the particles, Eqs. (10)
and (11), are solved by the same solution technique used in
Ref. [37].

IV. VALIDATION OF THE NUMERICAL SCHEME

To validate the numerical scheme, a single-particle problem
is used. The computational domain is a square chamber with
the length of a side 2h, filled with a circular Janus particle
and a nonmagnetic fluid. The particle with the radius 0.2h is
located at the center of the domain with its orientation directed
vertically, i.e., q1 = j , in the presence of an externally applied
magnetic field, H̄ = (i + j )/

√
2. For validation, we use the

following fixed material properties: The fluid viscosity is

(a)

(b)

FIG. 2. Two meshes for a single particle problem for the
validation of the numerical scheme. (a) Regular mesh and (b)
boundary-fitted mesh.

η = 0.01, the magnetic permeability of the magnetic material
is μp = 2μ0, i.e., χp = 1, and the magnetic permeability of
nonmagnetic materials is set to μ0 = 1.

Since there is no analytic solution for the particulate flow
with a circular Janus magnetic particle, we compare results
obtained from a regular mesh [Fig. 2(a)] with those obtained
from the corresponding boundary-fitted mesh [Fig. 2(b)].
The regular mesh is generated in such a way that both
the outer boundary ∂P and the internal boundary ∂P ′ of
the Janus particle do not coincide with element boundaries.
In Fig. 2, dots are nodal points on the two boundaries
(∂P and ∂P ′) of the particle. In the boundary-fitted mesh
problem, elements are generated such that the two bound-
aries of the particle coincide with the boundaries of the
elements.
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The convergence of the numerical solution is discussed
using the rigid-body motion of the particle and the fluid
velocity. We calculate the relative error in the angular velocity
ω of the particle εω and that of the velocity in the fluid domain
εu, defined by

εω = |ω − ωref |
|ωref | , (19)

εu = |V − V ref |
|V ref | . (20)

In Eqs. (19) and (20), variables with the subscript “ref” are
obtained from a boundary-fitted mesh problem and variables
without the subscript from a problem for which the errors are
calculated. Results obtained from the boundary-fitted mesh
that is 32 times finer than the mesh shown in Fig. 2(b) are used
as references for validation. The vector V is a 2n-dimensional
vector, defined by V = (u1,u2,u3, . . . ,un), where ui denotes

he
*

re
la

tiv
e 

er
ro

rs
 (

ε ω,
 ε

u
)

10-2 10-1 10010-5

10-4

10-3

10-2

10-1

εu

εω

(a)

he
*

re
la

tiv
e 

er
ro

rs
 (

ε ω,
 ε

u
)

10-2 10-1 10010-5

10-4

10-3

10-2

10-1

εu

εω

(b)

FIG. 3. Relative error of the angular velocity of the particle εu

and that of the fluid velocity εω with mesh refinement. The abscissa
is the element size scaled by the particle radius, h∗

e = he/a. (a) Errors
in the boundary-fitted mesh problem; (b) errors in the regular mesh
problem.
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FIG. 4. Dimensionless angular velocity (ω∗ = ωtm) and the ori-
entation angle θm with the nondimensional time (t∗ = t/tm).

the velocity at the i th node of the boundary-fitted mesh and n

the number of the nodal points.
The two errors, εω and εu, as functions of the dimensionless

mesh size (h∗
e = he/a) are plotted in Fig. 3. The errors obtained

from the boundary-fitted mesh problem show almost quadratic
convergence with mesh refinement [see Fig. 3(a)]. As shown
in Fig. 3(b), however, the convergence rates are almost linear
in the case of the regular mesh problem, slower than those
obtained from the boundary-fitted mesh problem. The slower
convergence rate is thought to be caused by applying the
magnetic forces, which are discontinuous at the interfaces
between magnetic and nonmagnetic materials, to a regular
mesh. Though one can obtain a more accurate solution by using
the boundary-fitted mesh, continuous remeshing is required
in that case, which is not an easy task for particles that
form chains or clusters evolving continuously with time.
All of the results that will be introduced in the following
sections are computed using the regular mesh with the size
h∗

e = 0.012, leading to an order of the errors less than
10−3. A more sophisticated numerical scheme based on the
extended finite element method (XFEM) [41] is one of possible
options to achieve higher accuracy and faster convergence
rates in a magnetic particulate flow problem using a regular
mesh.

RL LRRR

FIG. 5. Schematic illustration of two-particle problems with three
initial configurations: RR, RL, and LR. The arrow in each particle
indicates the orientation vector of the particle.
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V. RESULTS

In this section, particle motions and the flow in single-, two-,
and multiparticle problems will be investigated. Our main
focus is on the effect of the particle orientation on particle
motions and the fluid flow induced by the particle motions.
Janus magnetic particles are suspended in a square periodic
domain under the influence of a uniform magnetic field H̄
directed vertically, i.e., H̄ = H0 j . The fluid flow is driven
only by the particles actuated magnetically. The particle radius
is fixed to a = 0.1h and the susceptibility of the magnetic
material is χp = 1, i.e., μp = 2μ0. All the results will be
presented using dimensionless variables. The length has been
made dimensionless with the particle radius a and the time
with a magnetic time scale tm = η/(μ0β

2H 2
0 ), where β is the

effective polarization factor adopted from that of a spherical
paramagnetic particle [37].
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FIG. 6. Rigid-body motions of the two Janus particles with the
RR configuration at the five initial angles θ = 0◦, 20◦, 42.5◦, 45◦,
and 80◦. Initially, the centers of the particles are located on a
circle of radius 2a (gray circle). (a) Particle trajectories and (b)
dimensionless distance between the two particles (d∗

ij = dij /a) with
time (t∗ = t/tm).

A. The single-particle problem

We begin with a single-particle problem where the particle
is initially located at the center of the domain. The initial
particle orientation angle is set to θm = 0.1◦. Figure 4 depicts
the change of the orientation angle θm and the dimensionless
angular velocity of the particle, ω∗ = ωtm, with the dimen-
sionless time t∗ = t/tm. Once the external field is applied, the
particle begins to rotate counterclockwise due to the magnetic
torque and is eventually aligned with the field direction. The
driving force is generated by the magnetic anisotropy of the
particle, creating a nonuniform field around the particle. Note
that, in the case of a single circular (or spherical in 3D)
paramagnetic particle with uniform magnetic property, no
magnetic torque acts on the particle. The angular velocity
varies with the particle orientation and its maximum value
occurs at θm = 45◦, where the magnetic torque acting on the
particle is also maximum. When the particle orientation is
either vertical or parallel to the external field, the particle
cannot rotate.
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FIG. 7. Rigid-body motions of the two Janus particles with the
RL configuration at the five initial angles θ = 0◦, 20◦, 45◦, 53◦, and
80◦. (a) Particle trajectories and (b) dimensionless distance between
the two particles d∗

ij with time t∗.
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B. Interaction between two Janus magnetic particles

It is well known that the interaction forces between two
magnetic particles in a uniform magnetic field are dependent
on the angle θ between the field direction and the line
connecting the centers of the two particles [42]. Based on the
point-dipole approximation, the critical angle θc separating the
nature of the magnetic interaction (either attractive or repul-
sive) is cos−1(1/

√
3) ≈ 54.7◦ for two spherical paramagnetic

particles [42], while for two circular paramagnetic particles, it
is numerically found to be 45◦ [33,43]. The force is attractive
at an angle less than θc, but repulsive at an angle larger than
θc. The critical angle can also be affected by the interparticle
distance d12 due to the variation of the magnetic field around
the particles, as the distance changes [37].

To examine the magnetic interaction between two Janus
particles affected by the initial configuration, we choose
two-particle problems with three initial configurations, RR,
RL, and LR (see Fig. 5). Here it is assumed that each particle
is initially aligned with the field direction, i.e., qi = j or
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FIG. 8. Rigid-body motions of the two Janus particles with the
LR configuration at the five initial angles θ = 0◦, 20◦, 32◦, 45◦, and
80◦. (a) Particle trajectories and (b) dimensionless distance between
the two particles d∗

ij with time t∗.
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FIG. 9. Magnetic interaction between two particles in a uniform
magnetic field directed vertically. For the three configurations, the
critical angles separating the nature of magnetic interaction are
θc,RR ≈ 42.5◦, θc,RL ≈ 53.5◦, and θc,LR ≈ 32◦. (a) RR configuration
and (b) RL and LR configurations.
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FIG. 10. Change of the angles (θ , θm,1, and θm,2) and the dimen-
sionless interparticle distance d∗

ij with time t∗ for two configurations;
(a) RR configuration with θm,1 = θm,2 = 20◦ and (b) RL configuration
with θm,1 = 20◦ and θm,2 = 200◦. Initially, the distance d∗

ij = 4 and
the angle θ is 80◦.
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(a) (b)

FIG. 11. Instantaneous streamlines in RR configurations at (a)
θm = 90◦ and (b) θm = 20◦. The angle θ between two vectors, H̄ and
X2 − X1, is 80◦ in the two figures.

qi = − j . The initial configuration of a particle Pi is deter-
mined by its orientation vector. If the vector is directed upward,
i.e., qi = j , and the magnetic area is on the right side of the
particle, then this configuration is assigned the letter “R,” but if
directed downward, i.e., qi = − j , and the magnetic area is on
the left side of the particle, it is assigned the letter “L.” In the
RL configuration, for example, the two orientation vectors are
defined by q1 = j and q2 = − j . Initially, the distance (d12)
between the particles is fixed to be 4a. In the following, the
magnetic interaction between the two particles is characterized
in terms of the angle θ initially in the range 0◦ � θ < 90◦ and
the initial orientation of the particles.

The trajectory of the particles and the interparticle distance
with time at several initial angles are plotted in Figs. 6–8. In
RR configurations, the particles are finally assembled into a
straight configuration depicted in the lower right of Fig. 6(a).
The rigid-body motions of the Janus particles with the RR con-
figuration are similar to those of isotropic magnetic particles
reported in a previous study [33]. However, the critical angle θc

differs from that found in the isotropic magnetic particles. The
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Y
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FIG. 12. Trajectories of the particle P2 in the RR configuration
with θm = 20◦, 40◦, 60◦, and 90◦. The initial angle between the field
and the line connecting the center of the particles is θ0 = 80◦.
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FIG. 13. Maps showing the magnetic interaction between two
Janus particles characterized in terms of θ and θ̄m at the two
configurations, (a) RR and (b) RL.

critical angle in this configuration is found to be approximately
θc,RR ≈ 42.5◦. Though the two-particle chain is aligned with
the field direction, interestingly, the two orientation vectors,
q1 and q2, are neither parallel to each other nor aligned with
the field direction but tilted slightly after joining together,
which is similar to that observed experimentally [9]. At

45o

FIG. 14. A three-particle problem with a linear RRR configura-
tion. The angle between the externally applied field H̄ and the line
connecting the centers of the particles is 45◦.
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FIG. 15. Trajectories of the three particles for three initial
configurations, (a) RRR, (b) RRL, and (c) LRL. Solid circles in
the plots denote the initial locations of the particles. The final
conformation of the three-particle chain is shown in the lower right
part of each plot.

this final conformation, the magnetic energy Wm, defined by
Wm = ∫

(B · H)/2d�, is found to be at a minimum.
Figures 7 and 8 depict the trajectories of the particles

and the time history of the inter-particle distance in the RL
and LR configurations, respectively. As shown in the lower
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FIG. 16. Dimensionless interparticle distance d∗
ij with time t∗ for

the three initial configurations, (a) RRR, (b) RRL, and (c) LRL. Here
d∗

ij = dij /a and t∗ = t/tm.

right corner of Fig. 7(a) and Fig. 8(a), inclined two-particle
chains are formed in both cases. The critical angle in the RL
configuration is θc,RL ≈ 53◦, while that in the LR configuration
is found to be θc,LR ≈ 32◦. The two critical angles (θc,RL and
θc,LR) show notable deviations compared with that of two
isotropic paramagnetic particles. Since, at a given value of
θ , the distance between two magnetic areas is the shortest in
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the RL configuration, the interaction force is higher than that
in the other two cases, leading to a faster assembly of the
particles. Note that, in the RL configuration, the time required
to form a chain at θ0 = 20◦ and 45◦ is shorter than that at
θ0 = 0◦ [see Fig. 7(b)], which is not the case in the RR and
LR configurations.

Due to the magnetic anisotropy of the particles, each
configuration has a unique critical angle and a unique final
conformation, which completely differ from those obtained
from a corresponding counterpart with isotropic magnetic
particles. Magnetic interactions between two circular Janus
magnetic particles in the three initial configurations are
graphically summarized in Fig. 9. The maps describe the
magnetic interaction between one particle (P1) (fixed at the
center) and the other particle (P2) around the fixed one. If
the second particle P2 is positioned in the shaded region
in the maps, then the interaction is repulsive, otherwise the
interaction is attractive. From the simulations introduced, we
show that, in addition to the angle θ and the interparticle
distance d12, the orientation of the Janus particles is also a
factor with an influence on the two-particle interaction and
resulting particle motions.

C. Effect of the initial orientation on two-particle interaction

In this section, the effect of the orientation of each
particle on the two-particle interaction and the fluid flow
are investigated in more detail by extending the definition
of the “R” and “L” configurations. Two-particle problems
for RR and RL configurations are chosen as representative
examples. The problems are the same as those introduced in
Sec V B except that the particles are initially not aligned with
the externally applied magnetic field directed vertically. The
configuration of a particle Pi with the orientation angle in
0◦ < θm,i < 180◦ is assigned “R,” while it is assigned “L” if
180◦ < θm,i < 360◦. For a specific orientation angle θ̄m, the
particle orientation angles are set to θm,1 = θm,2 = θ̄m for the
RR configuration, and θm,1 = θ̄m and θm,2 = θ̄m + 180◦ for the
RL configuration. To see the influence of the initial orientation
on particle motions, we solve the two-particle problem by
changing the two angles, θ̄m and θ0.

As an example, we introduce rigid-body motions of the
particles for the two configurations with the initial angle
θ0 = 80◦. Figure 10 shows the evolution of the orientation
angles (θm,1 and θm,2), the interparticle distance d12, and
the angle θ between the field and the line-of-centers of the
particles with θ̄m = 20◦. Upon applying the field, each particle

FIG. 17. A three-particle problem with a triangular RRR
configuration.

(a) (b)

(c) (d)

FIG. 18. Snapshots of the streamlines obtained from a three-
particle problem with triangular RRR configurations: (a) θt = 0◦,
(b) θt = 5◦, (c) θt = 15◦, and (d) θt = 30◦.

rotates and is aligned with the field direction in the early
stage of the rigid-body motion, due to the magnetic torque
induced by magnetic anisotropy of the particle. Then the two
particles show similar rigid-body motions to those observed
in Sec. V B, eventually forming a two-particle chain. In both

(a) (b)

(c) (d)

FIG. 19. Snapshots of the streamlines obtained from a three-
particle problem with triangular RRL configurations: (a) θt = 0◦,
(b) θt = 5◦, (c) θt = 15◦, and (d) θt = 30◦.
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FIG. 20. Trajectories of the particles obtained from a three-particle problem with triangular RRR configurations: (a) θt = 0◦, (b) θt = 5◦,
(c) θt = 15◦, and (d) θt = 30◦. Solid circles indicate initial positions of the particles. The final conformation of the three-particle chain is shown
in the lower-left part of each plot.

configurations, the time scale of the rotational motion of the
particles is much shorter than that of the translational motion.
Once the particle orientations become parallel to the field
direction, the particles are irrotational in the RL configuration.
In the RR configuration, however, the particles show rotational
motions just before joining together to form a two-particle
chain depicted in Fig. 6(a).

To demonstrate the change in hydrodynamics affected
by particle orientation, we plot instantaneous streamlines at
θ = 80◦ for two RR configurations with θ̄m = 20◦ and 90◦ (see
Fig. 11). When the particles are aligned with the field direction
(i.e., θ̄m = 90◦), vortical flows around the particles are induced
purely by the repulsive translational motion of the particles [see
Fig. 11(a)], which is similar to those obtained with isotropic
magnetic particles [43]. In the other case with θ̄m = 20◦, how-
ever, a completely different flow pattern is obtained, as shown
in Fig. 11(b). Inside a globally rotating flow, two small corotat-
ing flows exists due to spinning of the particles. In this case, the
flow is mostly induced by the spinning motion of the particles
rather than translational motions of the particles. The rotating
flows at θ̄m = 20◦ lead to a faster decrease in the angle θ

compared to the case with θ̄m = 90◦, subsequently resulting in

a faster transition from the repulsive interaction to the attractive
interaction in the two-particle interaction problem. Figure 12
depicts changes in the trajectory of the particle P2 at the four
orientation angles, θ̄m = 20, 45, 80, and 90◦. The smaller θ̄m the
shorter the path of the particles, which is due to the combined
effect of the hydrodynamic interaction and the magnetic
interaction dependent on the orientation of the particles.

Given the externally applied magnetic field, the angle θ

and the orientation angle θ̄m are key factors that determine
the magnetic interaction between two Janus particles. To
characterize the magnetic interaction governed by such factors,
simulations are conducted in a wide range of θ and θ̄m. The
angle θ is varied from 0◦ to 90◦ and the orientation angle
θ̄m from 0◦ to 180◦ with an increment of 10◦. Depicted in
Fig. 13 are maps showing the nature of the magnetic interaction
affected by θ and θ̄m for the RR and RL configurations. In each
plot, the forces working on the particles are attractive in the
region left to the dashed line, but repulsive in the region right
to the dashed line. The critical angle, separating the nature of
the magnetic interaction, is found to lie between 35◦ and 55◦
for the RR configuration. In the RL configuration, the critical
angle is in between 35◦ and 65◦.
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FIG. 21. Trajectories of the particles obtained from a three-particle problem with triangular RRL configurations: (a) θt = 0◦, (b) θt = 5◦,
(c) θt = 15◦, and (d) θt = 30◦.

D. Three-particle interactions

Now we extend our interest to multiparticle problems.
First, a three-particle problem is solved for RRR, LRL, and
RRL configurations. Figure 14 shows an RRR configuration
as an example. Each particle is initially equidistant from its
neighboring particle(s) with its orientation vector parallel to
the magnetic field directed vertically. In the beginning, the
distance dij between two adjacent particles, Pi and Pj , is
set to 4a and the angle θij between the line-of-centers of
the two particles and the magnetic field is 45◦ for all the
cases. The susceptibility of the magnetic material is fixed to
χp = 1.

Figure 15 depicts the trajectories of the particles and the
final three-particle chain (shown in the lower-right part of each
plot) for the three configurations. We also plot the dimension-
less distance d∗

ij between two particles (Pi and Pj ) with the
dimensionless time t∗ (see Fig. 16). In the RRR configuration,
the second particle (P2) remains stationary and the other
two particles move towards P2, eventually forming a linear
chain. While, in the other two configurations (RRL and LRL),
staggered chains are formed, implying that the final chain
structure is affected by the initial orientation of the particles.
A pair of particles (P2 and P3) for which the distance between

two magnetic domains is the shortest join together to form a
two-particle chain. This is due to a stronger magnetic attraction
than that of the other pairs. Then the third one is joined to the
two-particle chain and a three-particle chain is formed. In the
LRL configuration, the repulsive motion between P1 and P2

in the early stage of particle motion is stronger than that of
the RRL configuration. Accordingly, it takes longer to form
a three-particle chain, compared with the case in the RRL
configuration.

Next introduced is another three-particle problem, where
the three particles are initially in an equilateral triangular
configuration with the centers of the particles located at the
vertices of the triangle. Kang and Suh [43] studied three-
particle interactions among circular paramagnetic particles
for the same triangular configurations as used in this study.
Figure 17 shows a three-particle problem with a triangular
RRR configuration. The origin of the coordinate system is at
the center of a circumcircle passing through the three vertices
of the triangle. The circumdiameter is 4a, thus dij = 2

√
3a.

As for the initial orientations of the particles, we choose two
configurations, RRR and RRL. To investigate the effect of the
initial positions of the particles on particle motions, four cases
classified by the angle θt are selected. Here θt is the angle

022607-12



MAGNETIC INTERACTION OF JANUS MAGNETIC . . . PHYSICAL REVIEW E 93, 022607 (2016)

between two vectors, H̄ and X2 − X3, in this study ranging
from 0◦ to 30◦.

Figures 18 and 19 depict the snapshots of streamlines in
the beginning for the flows induced by actuated particles
in the RRR and RRL configurations, respectively. In the
RRR configuration with θt = 0◦, four vortical flows that
are symmetric with respect to the x axis are observed [see
Fig. 18(a)]. As the angle θt increases, the symmetry in
the particle configuration is broken and the flow field gets
distorted due to the magnetic interactions dependent on the
particle orientations. At θt = 30◦, the triangle formed by
the centers of the particles is symmetric with respect to the
y axis [Fig. 18(d)]. If the orientation of each particle is
considered, however, the configuration itself is not symmetric,
leading to a flow field with broken symmetry, which differs
from the case with uniform magnetic particles. Comparing
a flow field obtained from the RRL configuration with that
from the corresponding RRR configuration, one can find
that the two flow fields completely differ from each other.
The reversed orientation of the third particle P3 leads to
changes in the magnetic interactions among the particles and
subsequently changes in the fluid flow driven by the actuated
particles.

Depicted in Figs. 20 and 21 are the trajectories and
final conformations of the particles for the two triangular
configurations. In the RRR configuration, the particles form
a linear three-particle chain, except for the case with θt = 0◦
where a two-particle chain and a separate particle keep moving
away [see Fig. 20(a)]. It should be noted that, at θt = 5◦
and 15◦, the sequence of particles constituting a chain is the
same. However, the sequence of particles at θt = 30◦ is in a
different order, compared with the other two cases. While,
in the RRL configuration, the particles form three-particle
chains in all the cases, the final chain conformation and the
sequence of the particles at θt = 0◦ differs from the other three
cases.

The results obtained from the three-particle problems
clearly manifest the influence of the orientations and the
relative positions of the Janus particles on the magnetic
interactions, the chain conformation, and the flow field induced
by the particle motions.

E. Chain formation

Motivated by the experimental study conducted by Yuet
et al. [9], we finally solve a multiparticle problem that is related
to one of their experimental results depicted in Fig. 22(a). In
this problem, particles are randomly distributed in the chamber
under the influence of the uniform magnetic field directed
vertically. Figure 22(b) shows the final conformation of the
particles with N = 30, resulting in straight and staggered
chains. At a higher particle concentration with N = 50,
complex chains with branches are also formed [see Fig. 22(c)].
The detailed structure of each chain is highly dependent on
the initial configuration of the particles. The two-particle
chain in the upper-left corner of Fig. 22(a) is similar to
the numerically predicted one [shown in Fig. 6(a)] in the
way that the internal interfaces of the particles are not
aligned with the field direction. Even though our numerical
scheme is two dimensional, we are able to reproduce similar

(a)

(b) (c)

FIG. 22. Chain formation in a multiparticle problem with the
externally applied magnetic filed directed vertically. (a) Chain
structures observed experimentally by Yuet et al. [9] (Reprinted
with permission from Ref. [9]. Copyright 2010 American Chemical
Society.) and chain structures obtained from a numerical simulation
with (b) N = 30 and (c) N = 50.

chain structures to those observed experimentally by Yuet
et al. [9].

VI. CONCLUSION

We numerically investigated the magnetic interaction of
circular Janus magnetic particles suspended in a viscous liquid
in the presence of an externally applied uniform magnetic field.
To solve particulate flows with Janus particles, a previously
developed direct simulation scheme was enhanced to be able
to treat the magnetic anisotropy of the particles. In validation
of the numerical scheme, it was shown that the solution
converged with mesh refinement. Though the developed
numerical scheme has been applied to flows with circular
Janus magnetic particles, it can be extended to problems
with noncircular magnetic particles, computationally inten-
sive three-dimensional problems, and viscoelastic flows with
suspended Janus particles.

If the orientation of a Janus particle is neither parallel nor
vertical to the field direction, contrary to a single circular
isotropic paramagnetic particle, then the magnetic torque
caused by magnetic anisotropy acts on the Janus particle
and induces the rotational motion of the particle. As for
two-particle interaction, the critical angle separating the nature
of magnetic interaction (i.e., attractive or repulsive) and
the trajectories of the particles are significantly affected by
the configuration of the particles. A specific configuration
results in a unique final chain conformation that is not

022607-13



SEONG, KANG, HULSEN, DEN TOONDER, AND ANDERSON PHYSICAL REVIEW E 93, 022607 (2016)

observed in case of isotropic particles. When the initial
orientations of the particles are not aligned with the field,
the time scale of the rotational motion of the particles is
found to be much shorter than that of the translation motion
caused by the magnetic interaction. Given spatial positions
of the particles, the differences in the orientation of each
particle lead to notable changes in the nature of magnetic
interaction, the particle trajectories, the fluid flow induced
by particle motions, and the final conformation of the chain

structures. Using a multiparticle problem, we were able to
reproduce similar Janus particle chains to those observed
experimentally.
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