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The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the
electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal
potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence
on h. We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact
c(h), together with nonsingular geometric features of the cluster. Using this form, we determine the energies of
various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant
for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should
dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.
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I. INTRODUCTION

In self-assembled lattices of nanoparticles one often en-
counters clusters of metal particles [1–3] as shown in Fig. 1.
The remarkable stability of these clusters was argued to depend
partly on states of nonzero electric charge [1]. For particles of
nanometer scale, such states are dominated by the quantization
of charge. The energy to add a single electron to a particle
becomes large on the scale of the thermal energy kBT , so
net charge on a particle is atypical. Thus any net charge on
a cluster is necessarily unevenly distributed over its particles.
Still, a net charge on one particle must polarize the surrounding
particles, producing electrostatic attraction. This contrasts with
the macroscopic case in which the available charge would be
shared among the particles, producing repulsion. It is of great
interest to understand what types of clusters are favored under
this simple and novel binding mechanism. Mutual electrostatic
interactions between spherical conductors and with surfaces
are of interest in space environments [4] and in scanning probe
microscopy [5]. Merrill et al. [6] explored the interactions
among charged colloidal particles in clusters in solution.

Unlike most interactions of small particles, this electrostatic
interaction cannot be reduced to a pairwise potential energy.
Charge on one sphere induces polarization on each nearby
sphere. This polarization induces further polarization in other
spheres, as shown in Fig. 2. Since their separation is not
large compared to their radius, the polarization cannot be
accurately described by a dipole approximation. Instead, all
the spheres carry a polarization charge distribution that must
be found self-consistently to minimize the electrostatic energy.
It is not known what types of clusters would be favored by
this novel multibody interaction mechanism. Moore [7] has
provided a multipole formalism for calculating this energy
and has explored the energies of simple clusters. Recently Qin
and Freed [8] provided a systematic method for determining
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electrostatic energies for polarizable insulating spheres using
image charge methods.

These polarization effects are nontrivial even for the case
of two isolated spheres. Numerical solutions by A. Russell
[9], Pisler et al. [10], and Kalinin et al. [5] have been
developed. A case of special interest is that of identical
spheres of radius a bearing equal and opposite charge q at
separation h. At small separation h � a the charge becomes
concentrated arbitrarily strongly near the contact point. This
concentrated contact charge creates a logarithmically singular
mutual capacitance c(h) of the form c(h) → 1

4a log(αa/h)
(in electrostatic units [11]), where α is a numerical constant.
The resulting electrostatic energy 1

2q2/c(h) shown in Fig. 3
reflects this singular behavior. This divergent contact charge
complicates the treatment of clusters of spheres with different
charges. Moore’s recent work on such clusters [7] shows a
nonregular dependence of the energy on separation.

Below we investigate the implications of the singular
contact charge for the electrostatic energy E(h) of clusters
of conducting spheres i at small separation h when the total
charge Q resides on only one sphere, as sketched in Fig. 2.
We contrast this energy with the simpler equipotential case
where the charge Q is allowed to pass freely between the
spheres. Then there is no contact charge, and the electrostatic
energy Ee(h) varies smoothly with h. However, in the case
of interest where only one sphere is charged, new behavior
arises due to the appearance of contact charge. It is necessary
to characterize this new behavior in order to find the desired
electrostatic energy when the separations h are small. We find
that the energy at contact remains finite and equal to Ee(0), but
it acquires a logarithmic correction in h:

E(h) −→ Ee(0)[1 + A/c(h) + · · · ], (1)

where the coefficient A is independent of h and depends
only on position of the extra charge in the cluster, on the
equipotential charges, and on the topological connectivity of
the cluster.
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FIG. 1. (a) Transmission electron micrograph of experimental
superlattice structure containing lead sulfate and dark-colored palla-
dium nanoparticles showing formation of regular palladium clusters
as sketched in the colored inset. Scale bar is 20 nm. Reprinted by
permission from Macmillan Publishers Ltd: from Ref. [1], Fig. 1j,
courtesy D. V. Talapin. (b) Transmission electron micrograph of
a dodecagonal quasicrystal superlattice self-assembled from Fe2O3

nanocrystals and clustered dark-colored 5-nm gold nanocrystals.
Reprinted by permission from Macmillan Publishers Ltd: from
Ref. [2], Fig. 2b, courtesy D. V. Talapin.

We begin by reviewing the origin of the singular c(h) in
Sec. II. Next we define a capacitance matrix C(h) that gives
the proportionality between the charges Qi and the potentials
Vi in Sec. III. In Sec. IV we separate the regular and singular
contributions to C(h) to obtain a parameterized expression for
small h. In Sec. V we derive the form shown in Eq. (1), valid for
asymptotically small h. In Sec. VI we discuss how this energy
is affected by extended versus compact cluster shapes. Because
the logarithmic singularity is weak, the regular contributions to
C(h) become significant for realistic contacts. In Sec. VII, we
determine the leading regular contributions for several simple

(a) (b)

FIG. 2. (a) Sketch of a cluster whose electrostatic energy is to be
calculated. Sphere 1 has a net charge Q; spheres 2, 3, and 4 have no
net charge. Spheres 1, 2, and 3 are in near contact. Sphere 4 is in
near contact with spheres 1 and 3 only. Near contacts have separation
h much smaller than the sphere radii. Contact charges q between
spheres 1 and 2 and between spheres 1 and 4 are shown. Similar
contact charges between spheres 1 and 3 and between spheres 2 and
3 are hidden from view. (b) Same cluster with the charge Q free to
migrate between spheres. Spheres are at the same potential and there
is no contact charge (cf. Fig. 3). The regular tetrahedron treated in
Fig. 6 is obtained by moving sphere 4 so it contacts all the other
spheres.
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FIG. 3. Coulomb energy E vs normalized separation for a pair of
conducting spheres with radius a = 27.8 nm, bearing one quantum e

of total charge. Radius was chosen to make the self-energy of a single
sphere equal to the thermal energy kBT at room temperature. Upper
solid curve: All charge on one sphere. Upper dashed curve: Energy
without charge polarization. Binding energy of about 0.24 kBT is
largely due to the rapid decrease of E at very small separation. Middle
curves: The charge is equally divided between the two spheres. Lower
curves: Equal and opposite charges on the two spheres. A change of
sphere radius a would change the energy scale in proportion to 1/a.

clusters using a straightforward numerical procedure. Finally,
we comment on experimental implications and tests.

II. MUTUAL CAPACITANCE OF TWO SPHERES
NEAR CONTACT

For completeness we recall the origin of the logarithmic
divergence of the mutual capacitance of two neighboring
spheres of radius a, bearing equal and opposite charges q.
The potential difference between the spheres is denoted V .
In the limit h/a � 1, the capacitance is dominated by the
adjacent sections of the two spheres. Since the curvature
there is very small on the scale of h, we may find the
capacitance from this region via the Derjaguin approximation
[12]. This approximation treats the system as a set of concentric
annular ring capacitors, neglecting the slopes of the surfaces
within each ring. At lateral distance x from the central axis,
where the separation is y(x), the electric field E is evidently
V/y(x). Thus the surface charge density σ (x) = E/(4π ) =
V/[4πy(x)]. To find the charge q, we integrate σ :

q =
∫

2πxdxσ (x). (2)

We note that the local height y(x) is given by x2 + [a − (y −
h)/2]2 = a2 so 2xdx + 2[a − (y − h)/2](− 1

2 )dy = 0. Then
for a � y,

2xdx → ady (3)

and

q →
∫ αa

h

2πV ady/(4πy), (4)
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where αa is some upper cutoff of thickness where the
Derjaguin approximation breaks down. Thus,

q → 1

2
V a

∫ αa

h

dy/y = 1

2
V a log(αa/h) (5)

as claimed. A change in the cutoff parameter α has no affect
on the singular amplitude; it only adds a constant independent
of h. Thus any choice of α is equally valid for describing
the singular behavior. We shall arbitrarily take α = 1 below.
The capacitance q/(2V ) → 1

4a log(a/h) + const thus goes
logarithmically to infinity as h → 0. We define the singular
part of this capacitance 1

4a log(a/h) ≡ c(h) for use below.
From this capacitance we can infer the energy needed to

separate the contacting spheres with charges ±q. At contact,
the energy E(0) is given by 1

2q2(2V/q). Since (q/2V ) → ∞,
we have vanishingly small E at contact. At infinite separation
we have the full Coulomb self-energy 2 1

2q2/a. Thus with equal
and opposite charges the polarization of the spheres cancels
virtually all the electrostatic energy of the separated spheres.
Figure 3 shows how this singularity influences the exact energy
for this case.

III. CAPACITANCE MATRIX OF A CLUSTER

We now extend our discussion of charges and potentials to
a cluster of n spheres labeled by i. We denote the set of charges
Qi by the vector �Q. There is in general a linear relationship
between the charges �Q and the potentials on the spheres �V of
the form

�Q = C �V , (6)

where C is the n × n symmetric “capacitance matrix”.
In general the potentials Vi are not equal, so contacting

spheres i and j acquire a singular contact charge on sphere i

at its contact with sphere j : Qij = c(h)(Vi − Vj ). There is in
general additional nonsingular charge HijVj for any sphere j

in the cluster, which remains finite as h → 0. The total charge
on i is then given by

Qi =
∑

j

(c(h)(Vi − Vj ) + HijVj )

= c(h)
∑
j (i)

Vi − c(h)
∑
j (i)

Vj +
∑

j

HijVj . (7)

Here the index j (i) runs over all the spheres contacting sphere
i. The two terms in c(h) can be expressed compactly in terms
of the symmetric “Laplace matrix” L defined by Lij = −1 for
all contacting spheres i and j and Lii = −∑

j �=i Lij . Thus Lii

is the number of spheres contacting sphere i. Likewise, we
denote H as the matrix of Hij ’s. Thus

�Q = (c(h)L + H) �V (8)

and so C = c(h)L + H. In this language we may readily
express the electrostatic energy E for any charge state �Q:

E(h) = 1
2

�Q · �V = 1
2

�Q · C(h)−1 �Q. (9)

Since the c(h) term depends only on potential differences,
it vanishes whenever �V is uniform with potential Ve. This
“equipotential state” is an important starting point for our

derivation. It is convenient to define a “uniform vector”
�u ≡ (1,1, . . . ,1). Then in the equipotential state the potentials
have the form �V ≡ Ve �u. Since all spheres have the same
potential, there are no contact charges, L�u = 0 and C�u = H�u.
In general, the charges �Qe = VeH�u for the equipotential
cluster are not equal. These charges �Qe depend smoothly on
h with no singularity as h → 0. The total charge Q is given
by �Qe · �u. For a given total charge Q, the potential Ve is then
given by Q = �u · �Q = Ve �u · H�u. Evidently, the equipotential
capacitance Ce is simply Q/Ve = �u · H�u.

It remains to determine how the singular c(h) affects the
�V and E when the charges differ from �Qe. We note that
this problem bears a strong formal resemblance to that of
determining contact forces in a weakly compressed mass of
droplets [13].

IV. CLUSTER WITH IMPOSED CHARGES

When we specify the charges �Q �= �Qe, the potentials must
become unequal. Then contact charges must appear, and the
Laplacian matrix L becomes important. First we note that L �V
is nonzero for all nonuniform �V for the connected clusters
considered here [14]. Thus in the limit of c(h) → ∞, Eq. (8)
implies that any fixed, nonuniform �V creates diverging charges
�Q. Only if �V becomes uniform can the charges be equal

to the given charges. That is, the potentials must approach
the equipotential case treated above: �V → Ve �u, where Ve

is the equipotential voltage Q/(�u · H�u). For finite c(h) we
may separate �V into its limiting part Ve �u plus a (small)
remainder �V ′. Likewise, we may separate the charges �Q into
the equipotential part �Qe and a remainder �Q′. In this language,
Eq. (8) becomes

�Qe + �Q′ = H(Ve �u + �V ′) + c(h)L(Ve �u + �V ′). (10)

Noting that L�u = 0 and VeH�u = �Qe, this yields an implicit
equation for the remainder potentials in terms of the known
remainder charge:

�Q′ = H �V ′ + c(h)L �V ′. (11)

The uniform part of this equation can be found by forming
the dot product with �u. On the left side, �u · �Q′ vanishes by
construction, since �Qe contains the total charge. On the right
side the term in L vanishes, giving

0 = �u · �Q′ = �u · H �V ′ + c(h)�u · L �V ′ = �Qe · �V ′, (12)

i.e., �Qe is orthogonal to �V ′.
As a mapping from the space of �V ′ to the space of �Q′, L

is invertible, since L �V ′ �= 0 for all �V ′. To avoid confusion,
we denote the L restricted to the �Q′ and �V ′ space as L̃. The
operator L̃ sends a vector in the space �V ′ orthogonal to �Qe

uniquely to a vector in the space �Q′ orthogonal to �u, and its
inverse L̃−1 is understood as the exact reverse. We note that
�V ′ is not orthogonal to �u. Further, Eq. (11) is invertible for
sufficiently large c(h) [15]:

�V ′ = (H + c(h)L̃)−1 �Q′. (13)

We recall (Sec. II) that c(h) was only defined up to an arbitrary
additive constant. Here we see that this arbitrariness has no
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physical impact. If we add a constant c0 to c(h) and subtract
c0L̃ from H, then the equation is unchanged. Thus for any
choice of c0 there is always a regular H for which Eq. (13) is
valid.

In terms of the small quantity 1/c(h), this may be written

�V ′ = 1

c(h)

(
1 + 1

c(h)
L̃−1H

)−1

L̃−1 �Q′. (14)

We note that as c → ∞, for fixed �Q′, the factor in (· · · )
becomes unity, and the correction �V ′ becomes independent
of H. Thus in this limit the only part of H that influences the
full �V is the equipotential part: H�u.

V. ELECTROSTATIC ENERGY

Given the expression for the potential vector �V , we may
find the electrostatic energy E for a given charge vector �Q:
E = 1

2

∑
i QiVi = 1

2
�Q · �V . In terms of the charge difference

�Q′ ≡ �Q − �Qe and potentials �V ′, E can be written using
Eq. (14),

E = 1
2 ( �Qe + �Q′) · (Ve �u + �V ′)

= 1
2QVe + 1

2Ve
�Q′ · �u + 1

2
�Qe · �V ′ + 1

2
�Q′ · �V ′. (15)

The first term is simply the equipotential energy Ee. As noted
above, the second term vanishes because �Qe was defined to
have the total charge, leaving no net charge in �Q′. The third
term was shown to vanish in Eq. (12). Thus

E = Ee + 1

2
�Q′ · �V ′

= Ee + 1

2

1

c(h)
�Q′ ·

(
1 + 1

c(h)
L̃−1H

)−1

L̃−1 �Q′. (16)

In the limit where c(h) is so large that higher orders in
1/c(h) can be neglected, this reduces to the form announced
in Eq. (1),

E(h) = Ee + 1

2

1

c(h)
�Q′ · L̃−1 �Q′. (17)

Once the equipotential charges are determined from H�u, the
entire dependence on the charge distribution is governed by
the Laplacian matrix L, with no further dependence on the
geometry of the cluster. In practice, for h values as large as a
few times 10−2 this lowest-order expansion proves inaccurate
for the examples studied in Sec. VII. Thus the full matrix form
of Eq. (16) is preferable. This includes all the dependence
on c(h) but neglects the (presumed regular) dependence of H
on h. Since these are low-dimensional matrices, the needed
operations are straightforward.

Equation (16) shows that one may isolate the singular
part of the electrostatic energy for a cluster of conducting
spheres close to contact, using nonsingular quantities which
can be readily computed numerically. The energy at h = 0
but without conductance between spheres is the same as for
the equipotential case where conductance is allowed. This
means that the imposed distribution of charge among the
spheres has no effect on the energy when h → 0. Conversely,
if �Q = �Qe, then �Q′ = 0 and the energy obtained from Eq. (16)
is independent of h. The actual change of E with h then arises

only from the smooth and regular dependence of H on h,
neglected in our treatment. Finally, if �Q �= �Qe, but the total
charge Q = 0, then the leading Ee part of the energy vanishes,
and the entire energy goes to zero with h. In leading order,
the only aspect of the cluster that affects the energy is its
connectivity.

The correction in 1/c(h) in Eq. (17) is necessarily positive,
since both L̃ and L̃−1 are positive definite [14]. As seen from
Fig. 3 above, this increase of energy can depend strongly on
h. In general it depends on which sphere is charged.

VI. EFFECT OF CLUSTER GEOMETRY

A central question arising from this distinctive electrostatic
effect is to understand how the shape of the cluster affects its
binding energy E(∞) − E(h). Clusters with the smallest E(h)
and the strongest binding are expected to be more abundant.
It is natural to ask whether E favors compact clusters or
extended ones. In the limit h → 0 there is a clear preference
for extended clusters. Here the cluster is an equipotential and
is energetically equivalent to a single conducting object with
the given total charge. The favored shape is thus that with
highest capacitance to ground and largest spatial extent [11].
A cluster of n spheres thus has the strongest binding when
extended out in a straight line.

However, as shown above, any departure from the h → 0
limit brings strong changes in E . The derivative of E with h is
infinite at h = 0. Thus even small nonzero h can have a sig-
nificant effect on the relative E of different clusters. Appendix
argues that the binding penalty from the 1/c(h) correction in
Eq. (17) favors compact clusters over extended ones for large
n. Moreover, this correction can be strong enough that the net
binding is stronger for more compact clusters.

VII. EXAMPLES

In this section we show explicitly how the two matrices L
and H lead to the h-dependent Coulomb energy E for several
clusters of interest. We first consider a regular tetrahedron,
planar four-sphere clusters, and a regular octahedron.

A. Determination of L

The Laplacian matrix L for the tetrahedron is immediately
apparent since each sphere is in contact with all three others.
Thus, according to Sec. III,

L =

⎡
⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎦. (18)

For a square, we may number the spheres in sequence
around the perimeter. Each sphere is then in contact with its
predecessor and its successor, with no other contact:

L =

⎡
⎢⎣

2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

⎤
⎥⎦. (19)

If the square is collapsed into a rhombus, L remains unchanged
until two of the opposite spheres—e.g., 1 and 3—make contact
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to form a diamond shape. Then

L =

⎡
⎢⎣

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤
⎥⎦. (20)

Likewise, we can rotate sphere 2 out of the plane of the other
three. Again L remains unchanged until sphere 2 makes contact
with Sphere 4.

In an octahedron all six spheres are equivalent and each
makes contact with four others, so

L =

⎡
⎢⎢⎢⎢⎢⎣

4 −1 −1 −1 −1 0
−1 4 −1 −1 0 −1
−1 −1 4 0 −1 −1
−1 −1 0 4 −1 −1
−1 0 −1 −1 4 −1

0 −1 −1 −1 −1 4

⎤
⎥⎥⎥⎥⎥⎦

. (21)

B. Numerical determination of H

Equation (16) requires us to determine the regular part of
C, namely H. We perform this determination by numerically
computing the full capacitance matrix C for some small,
nonzero h and for the equipotential case. The equipotential
case gives �Qe and thus allows us to determine �Q′ for a given
�Q. Then we may find H using Eq. (8). The H thus obtained

depends on the separation chosen. Our supposition that H
is regular implies that this H(h) converges smoothly to an
asymptotic value as h → 0. Our numerical results provide a
test of this supposition.

Consider a cluster configuration with specified charge
vector �Q. The actual surface charge distribution minimizes
the total electrostatic energy. To use this fact, we discretize
sphere surfaces into N small patches uniformly distributed
over each sphere and denote the patch charges by σi,α . Here
i = 1,2, . . . ,n labels spheres and α = 1,2, . . . ,N labels the
patches. The energy for given {σi,α} then reads E = 1

2σ · Gσ =
1
2σi,αGi,α;j,βσj,β , where

Gi,α;j,β = |ri,α − rj,β |−1 (22)

is the Coulomb kernel between patches (i,α) and (j,β) and
ri,α is the vector position of the patch i,α. A diagonal entry
of G evidently represents the Coulomb energy of a patch in
isolation. This energy depends on the size and shape of the
patch. The contribution of this self-energy to the total energy
becomes negligible when the number of patches N becomes
sufficiently large. In our calculation we have taken all patches
to have a single self-energy, adjusted to reproduce the known
energy of an isolated sphere.

To minimize the energy subject to the constraints of total
charges on each sphere, we introduce a projection matrix P of
dimension n × nN that maps charges from the space of patches
to the space of spheres. The entries Pik are nonvanishing and
set to 1 only if the kth patch belongs to the ith sphere. Then
the constraints on charge distributions are Pσ = �Q. We note
that P and its transpose PT obey the relations PPT = N1n

and PTP = 1nN , where 1n and 1nN are identity matrices of
dimensions n and nN respectively.

We implement the constraint on �Q = Pσ by adding a
Lagrange multiplier energy λi

∑
α σi,α for each sphere i.

Defining �� = {λ1,λ2, . . . ,λn}, this amounts to minimizing
1
2σ · Gσ − �� · �Q = 1

2σ · Gσ − �� · Pσ . Setting the gradient
∂/∂σi,α equal to zero yields the implicit equation for the
minimizing σ , denoted σ ∗, in terms of ��:

Gσ ∗ = PT ��. (23)

Now the minimizing energy E∗ = 1
2σ ∗ · Gσ ∗ can be written

as

E∗ = 1
2σ ∗ · PT �� = 1

2 (Pσ ∗) · �� = 1
2

�Q · ��. (24)

From this it is clear that �� is simply the set of potentials on
the spheres �V . We may obtain �Q in terms of �� using Eq. (23),

�Q = Pσ ∗ = PG−1PT ��. (25)

Using �� = �V and simplifying,

�Q = Pσ ∗ = (PGPT)−1 �V . (26)

Evidently, the capacitance matrix C is the matrix (PGPT)−1.
Thus to determine C(h) it suffices to compute G, project it to
form the n × n matrix PGPT, and invert it. H is then calculated
by subtracting c(h)L from this C.

Figure 4 illustrates the results of this procedure for a regular
tetrahedron. Here C was computed for several small values
of h. The smallest h’s were comparable to the separation
between the patches, so discretization errors were significant.
Beyond this h C showed the expected logarithmic singularity
as in Fig. 3. However, once c(h)L was subtracted to form
H, the h dependence was gradual, smooth, and consistent for
different discretizations. Thus the expectation of smooth H
was confirmed.

We found similar confirmation for the Hij of other clusters.
The characteristic entries of H at h = 0 for all clusters con-
sidered are tabulated in Table I. Only the independent entries
are shown. The full capacitance matrix can be constructed
by considering symmetry. For all clusters considered, the
agreements are excellent for 0 � h/a � 0.05.

C. Cluster energies

Table I also includes values for the equipotential capac-
itance Ce = �u · H�u, which gives the h → 0 cluster binding
energies, Ee = 1

2Q2/Ce. This energy depends on the cluster
size and shape but not at all on the charge placement. As
anticipated in Sec. VI, we found that Ee increases with the
number of spheres n, as shown in Fig. 5. For compact clusters,
the data scale with the system size as n−1/3 while for extended
clusters Ee∼ ln n/n. This expected behavior is discussed in
Appendix.

Examples of energies E found using H from the previous
section are shown in Fig. 6 for a tetrahedron and a rhombus.
For the rhombus case, two sets of comparisons were made, one
having a charge placed on the sphere at the pointed position and
one at the blunt position. The discrepancy for h/a � 0.05 is
apparent and can be attributed to the weak h dependence of H.

The results in Fig. 5 show that the binding energy, attained
at h = 0, for a cluster with extended structure is always lower
than that of compact ones, which suggests that a typical
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(a)

(b)

FIG. 4. Capacitance coefficients C11 (a) and C12 (b) for a regular
tetrahedron vs normalized separation h/a, determined as described in
the text. The other eight elements of C are determined by symmetry.
Insets show the full capacitance, showing a strong dependence at
small h due to contact charge. Main graphs show the regular parts
H11 and H12 determined using Eq. (8). Segmented lines connect the
calculated values at different levels of discretization N : blue long
dashes for N = 1000, orange short dashes for N = 2000, and green
dot-dashes for N = 4000. Irregular dependence for smallest h is
attributed to discretization errors and improves for finer discretization.
The strong h dependence of the inset has been removed and the
different discretizations give a consistent extrapolation to h = 0.

cluster configuration is always a linear string. However, the h

dependencies of compact and extended configurations adiffer.
Since contacts can only lower the energy, the contact-energy
correction tends to favor compact clusters with the most con-
tacts. Further, for large clusters with a single charged sphere
(Appendix) the contact energy leads to a lower net energy for
compact clusters versus extended clusters. Figure 7 compares
the energies between compact and extended configurations
for cluster of 4 and 6 spheres. In both cases the compact
configuration is always energetically favorable for the visible
range of h.

Since the relevant Laplacian matrix L̃ of a connected cluster
is positive definite [14], moving spheres away from each
other always raises the energy, resulting in a logarithmically
attractive potential well. Consequently, we expect any types of
clusters to be stable at sufficiently small separation.

TABLE I. Elements of capacitance matrix H extrapolated to h =
0, tabulated by distance between spheres, measured in terms of the
sphere diameter d in units of the capacitance of a single sphere. γ =
0.577 is the Euler γ number. The last column shows the equipotential
capacitance Ce of the cluster.

Separation 0 d
√

2 d
√

3 d Ce

Dimer ln 2 + γ /2 −γ /2 2 ln 2
Trimer-π/2 0.870 − 0.193 − 0.249 1.671

1.036a

Trimer-π/3 0.781 − 0.121 1.616
Square 0.876 − 0.158 − 0.101 1.835

Rhombus 0.783b − 0.103d − 0.062 1.823
0.567c 0.036e

Tetrahedron 0.492 − 0.017 1.767
Octahedron 0.228 0.033 − 0.024 2.024
Cubic 0.703 − 0.072 − 0.061 − 0.016 2.308
Icosahedronf − 0.019 − 0.060 2.509
Dodecahedrong 0.774 − 0.091 3.497

aSelf-energy of the sphere with one contact.
bSelf-energy of the sphere at the pointed site.
cSelf-energy of the sphere at the blunt site.
dInteraction between the pointed and blunt sites.
eInteraction between the two blunt sites.
fFor icosahedron, the entries needed for distances 1.6 d and 1.9 d are
−0.013 and −0.007 respectively.
gFor dodecahedron, the entries needed for distances 1.6 d , 2.3 d , 2.6 d ,
and 2.8 d are −0.044, −0.007, −0.005, and −0.004 respectively.

VIII. DISCUSSION

The preceding sections have explored a peculiar type of
Coulomb interaction arising from the charging constraints en-
countered at the spatial scales of nanoparticles. Below we note
the limitations of our work and suggest experimental situations
where the interaction discussed here might nevertheless be
relevant.

� �

�
�
�
�

FIG. 5. System size dependence of equipotential capacitance
energy Ee for a single sphere, a dimer, equilateral triangle, a
tetrahedron, an octahedron, a cube, an icosahedron, and a dodeca-
hedron. Upper curve: E = (2/n)1/3/[2 ln(2)], the energy for compact
configurations. Lower curve: E = ln(2na/r0)/[n ln(2) ln(2a/r0)], the
energy of cylinder [16] of the same volume, with length L = 2n a

and radius r0 = 0.816 a.
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(a)

(b)

FIG. 6. (a) Energy of a tetrahedron cluster with one charge placed
on one of the spheres. (b) Energy of a rhombus cluster with the charge
placed on the pointed (solid) and blunt (dashed) corners.

In order to demonstrate the specific features of our mech-
anism, we have considered the simplest example that shows
the necessary features. First, a cluster of spheres like those
considered here has charge polarization extending beyond
the induced dipoles normally considered. Second, any excess
charge on the cluster is dominated by single electron charges
residing on one or another of the spheres. Given these two
features, one should observe the singular dependence on
separation h found above. Our main aim has been to show the
form of this singularity and how its dependence on separation
may be understood.

The relative electrostatic energies of different clusters are
important for determining their relative abundance and sta-
bility. For real experimental situations the relative abundance
of actual nanocluster shapes doubtless depends strongly on
several other factors as well. In real clusters, it is likely
too simplistic to assume a single charge on a particular
sphere; a number of charge distributions likely have significant
probability. If a single charge is present, then it may reside on
any sphere of a cluster that does not require an extra energy
much higher than kBT . Thus in practice one may need to
consider an average over several charge positions in order to
determine the stability of a given cluster shape.

Our calculations have concentrated on the effects of the
logarithmic singularity, important when the separation h is
much smaller than the sphere radii. In cases where more
accuracy is desired for larger separations, our scheme can be
naturally extended by replacing the regular part H by a Taylor
series H0 + hH1 + · · · .

(a)

(b)

FIG. 7. Energies of tetrahedron and octahedron clusters and
their linear string correspondence, with one charged sphere. (a)
Tetrahedron (solid) and string (dashed); upper curve: Charge is on
the sphere at the end of string; middle curve: Charge is on the second
sphere. (b) Octahedron (solid) and string (dashed); top curve: End
sphere is charged; second and third curves from top: Second and
third from end sphere is charged.

One might expect that this attractive mechanism should
extend beyond conducting spheres to dielectric spheres,
especially if the dielectric contrast is large. However, the
concentration of charge near a contact is qualitatively weaker
for dielectrics than for conductors. For dielectrics in an external
field, the charge density remains finite at contact; it does not
diverge as in the conducting case.

Though we have only treated the specific case of clusters of
spheres of equal size, the effects explored here apply generally
to conductors. When any two smoothly curving conductors
approach each other, the Derjaguin argument of Sec. II implies
a logarithmically diverging mutual capacitance, whose c(h)
depends only on the mean curvatures of the two adjacent
surfaces.

In real materials a net charge on a cluster is only created in
combination with a countercharge elsewhere. In practice these
countercharges may lie close to the cluster and thus modify
the coulomb energy significantly. Thus our results only apply
when the screening length due to external charge is larger than
the cluster.

Naturally real clusters like those of Fig. 1 experience
other forms of interaction unrelated to net charge on the
cluster. The organic coronas [1] used to stabilize the particles
exert interparticle forces as do steric interactions with other
neighboring nanoparticles. Dispersion forces and solvent-
specific chemical interactions are also present. In order to
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make reliable predictions of cluster shapes, one would need
to add these conventional interactions to the charge-induced
interactions considered here.

Experimental consequences of our clustering mechanism
could potentially be found in the binary lattices like in
Fig. 1 that motivated our study. If our mechanism is important,
then one expects that (a) cluster shapes with lower electrostatic
energy as calculated above should be relatively more prevalent
and that (b) particles with a thicker ligand layer should be less
strongly bound but have greater preference for specific charge
sites. Still, the number of competing effects that determine the
specific cluster shapes precludes any decisive predictions.

Other simpler systems give a brighter prospect for decisive
predictions. One such system is a dilute dispersion of nanopar-
ticles in a nonpolar solvent [17]. One may induce charge
separation by adding large counterions to the dispersion [18].
Then any nanoparticle with a net charge will attract neutral
nanoparticles via the mechanism described above. If the
counterions are sufficiently large and distant, then their effects
can be made minor. Then one expects to observe clusters
with relative abundance dictated in thermal equilibrium by
the electrostatic binding energies described above.

IX. CONCLUSION

We have shown that the electrostatic energy of a cluster of
spherical conductors has a novel form when one conductor is
charged and their separations are small. In the limit of small
separations the energy is finite, but the corrections to this limit
are logarithmically singular. Thus for real clusters where the
separation is nonzero, it is important to know the singular
contribution. Both the limiting energy and the corrections can
be expressed in terms of nonsingular operations. It appears
from our numerical examples that these small separations
can have a significant impact on the binding of the clusters.
In certain situations as noted above, this distinctive form
of binding could be significant in determining the prevalent
cluster shapes.
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APPENDIX: SHAPE DEPENDENCE OF CLUSTER
ENERGY

In this appendix we estimate how the Coulomb energy of a
cluster depends on its overall shape: compact versus extended.

We consider a large cluster of n spheres under two extremes
of compactness. On the one hand, we consider the cluster of
least compactness, where all the spheres are extended along a
one-dimensional line. On the other hand, we consider the state
of maximal compactness in which the spheres form a spherical
aggregate of maximum density. As noted in the main text, the
equipotential part of the energy favors extended structures.
Here we focus on the leading logarithmic correction to the
binding energy E(h) from Eq. (17). We denote it as E ′,

E ′ = 1

c(h)
�Q′ · L̃−1 �Q′.

Our interest is in the case where the charge �Q is concentrated
in a single sphere.

In both of these clusters, one may use a continuum approach
to characterize L. The L has a simple interpretation in terms of
a quantum system. In this system one replaces each sphere by
a site and each contact by a connecting junction. The L matrix
is then the Hamiltonian of a quantum particle in this system
and its eigenstates are the energy levels. For a homogeneous
solid these eigenstates are the well-known tight-binding states
of solid-state physics [19]. The n eigenstates �k are normalized
plane waves of wave vector k and eigenvalues of order k2.
Using this fact we may write E ′ as

E ′ ∼ 1

c(h)

∑
k

�Q′ · �k 1

k2
�k · �Q′.

Here sum goes over the n distinct wave states compatible
with the boundary conditions. The vectors �Q′ are constructed
to have vanishing projection on the k = 0 state, so k = 0 is
omitted from this sum.

To compute the sum, we need to know the dot products
�Q′ · �k. The �Q′ is the sum of two parts: �Q and �Qe. We first

consider the �Q part, which vanishes except on a particular
sphere. It is the discrete analog of a δ function in space.
Accordingly, it has an equal dot product onto all the k

eigenstates, each of order n−1/2. Thus we may treat these dot
products as constants in the sum. We may also replace the

∑
k

by the integral Ld
∫

ddk for a d-dimensional cluster of linear
size L. Then E ′ simplifies to

E ′ ∼ 1

c(h)
(�k · �Q)2Ld

(∫ kmax

kmin

1

k2
kd−1dk

)
.

Here kmin ∼ L−1 and kmax ∼ L0.
For a one-dimensional cluster the integral is dominated by

the lower limit and

E ′ ∼ 1

c(h)
(�k · �Q)2L(L).

Since (�k · �Q)2 ∼ 1/n and L ∼ n, we have E ′ ∼ n.
For a three-dimensional cluster the integral is dominated by

the upper limit and

E ′ ∼ 1

c(h)
(�k · �Q)2L3.

Using (�k · �Q)2 ∼ 1/n and L ∼ n1/3, we conclude E ′ ∼ n0.
We now consider the effect of the �Qe part of �Q′. For

both clusters �Qe is concentrated at the outer boundary. It
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thus has significant Fourier components at large k. However,
this charge concentration is in any case qualitatively weaker
than the complete concentration found in �Q. Accordingly, we
expect the �Qe part of �Q′ to have a minor effect and the scaling
estimates for E ′ to hold for the full �Q′ as for the �Q.

The foregoing estimates indicate a qualitative difference
in E ′ in the two cases. This positive energy diverges with n

for the extended cluster but remains finite for the compact
cluster. It disfavors the extended cluster. This contrasts with
the equipotential part of E , which favors extended clusters.
This equipotential energy Ee is of order log n/n for extended
clusters and of order 1/L ∼ n−1/3 for compact clusters. The
total energy E = Ee + E ′ thus favors compact clusters, in
contrast to the “leading” Ee alone.
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