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The interfacial free energy is a central quantity in crystallization from the metastable melt. In suspensions of
charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments.
In previous work, from these data effective nonequilibrium values for the interfacial free energy between the
emerging bcc nuclei and the adjacent melt in dependence on the chemical potential difference between melt
phase and crystal phase were derived using classical nucleation theory (CNT). A strictly linear increase of the
interfacial free energy was observed as a function of increased metastability. Here, we further analyze these
data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation
scheme and interpret our findings in view of Turnbull’s empirical rule. This enables us to present the first
systematic experimental estimates for a reduced interfacial free energy, σ0,bcc, between the bcc-crystal phase and
the coexisting equilibrium fluid. Values obtained for σ0,bcc are on the order of a few kBT . Their values are not
correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing
size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, σ0

also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy
of strictly monodisperse charged spheres may therefore be still greater.
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I. INTRODUCTION

Like their atomic counterparts, colloidal clusters bridge
between the realms of individual particles and of macro-
scopic bulk phases. New scale related features appear in
their structural and dynamic properties and challenge their
definition and description by well known purely macroscopic,
colloidal, or quantum concepts. Recently in this intensively
studied field, much progress has been made by combining
complementary approaches like analytical theory and sim-
ulations or microscopy and scattering experiments. At the
same time, well controlled model systems became available.
Their tuneable interactions are in many cases accurately
described by analytical expressions. Because of this, we
are now aware of a large variety of different colloidal
cluster types with different shape, internal structure, dynamics,
and cluster-cluster interaction. Their formation, stability and
properties are of fundamental interest [1–7] but moreover play
a decisive role in practical processes, like gelation, coating,
or food processing [8,9]. Clusters also appear as embedded
ensembles in colloidal (shear) melts during the initial steps of
freezing [10,11] and vitrification [12]. Unlike in condensation
problems, here the differences between cluster and melt
properties (e.g., density or structure) may become very small
and require special care in cluster discrimination [13–15].
Moreover, cluster and interfacial structure may be time and/or
size dependent [16–19]. Cluster energetics, dynamics, and
growth kinetics determine the polymorph selection and the
emerging solid’s microstructure [16,20,21] but furthermore
may make them a crystallization frustrating agent in vitrifying
melts [12,22–24]. In this instance, their local orientation
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prevents coalescence and their local symmetry hinders a
global transformation to the crystalline state [25,26]. Clusters
are therefore considered to be an important transient state
in the formation of (colloidal) solids. Both simulations and
microscopy reveal the shape of such nuclei to be anisometric
and their surface to be rough, extended, and (as expected by
scale arguments) not well definable in terms of continuous,
differentiable two dimensional manifolds [16,17,20,27,28].
Light scattering [10,24,29–32] and small angle x-ray scattering
experiments [33] return the statistically well founded temporal
development of the orientationally averaged cluster sizes,
the cluster numbers, and their rate of production [34–36].
Given their accessibility by complementary methods working
on different length scales, colloidal clusters appear to be
well-suited models for detailed studies of phase transformation
processes as well as critical assessments of the concepts
employed in their description.

The key quantity of interest in the present paper is the
reversible work involved in the creation of a dividing surface,
an interface between a cluster and its surroundings. It is termed
surface tension, interfacial tension, or interfacial free energy
(IFE). On the macroscopic level with adjacent continuous
phases, this is a well-defined quantity and it can be determined
with high accuracy by theoretical, numerical, and experimental
techniques. On the level of clusters, a statistically meaningful
description can only be based on orientationally averaged
quantities. To connect these data to the desired (equilibrium)
thermodynamic quantities, no generally accepted scale bridg-
ing theory is available. Thus very often approximate and
empirical schemes are used to parametrize the raw data. A
widely used parametrization for crystallization processes is
the so-called classical nucleation theory (CNT) [37–42]. Since
it basically ignores the cluster nature of nuclei and takes a
macroscopic view of this microscopic problem, conceptual
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difficulties have been pointed out. (The interested reader is
referred to Appendix A, where one finds a short outline of the
main objections raised and some suggestions to circumvent
these.) Still this approach has turned out to be eminently
practical and versatile. It has also opened a way to obtain
estimates of CNT-based effective IFEs from nonequilibrium
crystallization experiments on systems as diverse as metals
and colloids, hard spheres (HSs), and Lennard-Jones particles.
CNT therefore became central in modeling the kinetics of first
order phase transitions [43–46]. In polymorph selection, for
instance, CNT-based kinetic arguments suggest that the cluster
with the lowest nucleation barrier will reach its critical size and
continue to grow [47,48], rather than that of the lowest free
energy. CNT also found important practical application, e.g., in
the fabrication of advanced soft materials [49–51]. Moreover,
intriguingly simple empirical rules have been discovered
applying CNT to crystallization phenomena. This paper takes
particular interest in Turnbull’s rule relating the IFE per
particle in a surface to the latent heat of fusion per particle [52]
or the entropy of fusion per particle [53] in a linear fashion.

In fact, it is with this rule in mind that in the present
paper we undertake a comprehensive analysis of presently
available CNT-based estimates of effective nonequilibrium
IFEs for several systems of polydisperse charged sphere
suspensions. The original data were obtained by optical
experiments [11,30,31,54–56] yielding nucleation rate den-
sities via KJMA theory [57–59] or Kashchiev’s theory of
transient nucleation [60]. Nucleation rate densities in turn
were parametrized using CNT [11,55] with the independently
measured melt metastability expressed in terms of the chemical
potential difference between the two phases, �μ, as in-
put [61,62]. This yielded kinetic prefactors and the CNT-based
effective nonequilibrium IFEs, γ , used as the starting point of
the present analysis.

In our analysis, we go beyond previous work, as we
apply a simple extrapolation scheme to obtain estimates of
CNT-based effective equilibrium IFEs for bcc-crystallizing
model systems. We compare these to values for equilibrium
IFEs obtained for various systems by direct observation
of equilibrated macroscopic interfaces. We also compare
to nonequilibrium IFEs, both CNT-based effective IFEs for
atomic and molecular systems and more directly obtained
ones from, e.g., direct observations of cluster fluctuations. Our
comparison to these data from both experiments and simula-
tions reveals that the IFEs of polydisperse charged colloidal
systems range between those of metals and of monodisperse
hard spheres but are much larger than those found for
point Yukawa systems. Next we search for correlations of
the inferred CNT-based effective equilibrium IFEs with the
system specific parameters characterizing strength and range
of the prevailing electrostatic interactions as well as to other
properties of the cluster constituents, e.g., their colloid specific
polydispersity. Interestingly we observe no correlations to the
former quantities. However, we do observe a pronounced
anticorrelation of the IFE to the system polydispersity. We
further propose an extension of the extrapolation scheme based
on Turnbull’s relation, some elementary thermodynamics, and
the assumption that the entropy of freezing does not depend on
the degree of metastability. This procedure returns estimates of
other thermodynamic quantities like the entropy of freezing,

the latent heat of freezing, and Turnbull’s coefficient. Our
findings allow rationalization of the observed anticorrelation
of the IFEs to the system polydispersity in terms of the
entropy differences between the adjacent structures. They
further support entropy based theoretical arguments for the
dependence of Turnbull’s coefficient on crystal structure.

Data for comparison come from different experimental and
theoretical approaches on a large variety of systems. Absolute
values of the IFE differ by orders of magnitude due to the
different particle number densities, n, involved for, e.g., metals
(n ≈ 1026 m−3) and colloids (n ≈ (1017–1019) m−3). In view
of this, we follow the original work of Turnbull [52] and
normalize γ with the area taken by a single particle in the
interface, AP , to compare reduced values of the interfacial
free energy, σ = γAP . In the literature, different measures for
AP have been employed. For metals [52] and hard spheres
(HSs) [29,63,64], but sometimes also for strongly screened
charged spheres [65], AP was approximated by (2a)2, where
a is the particle radius. This is generally considered as
a physically reasonable approximation, since at the large
volume fractions encountered in close-packed metals, HSs,
and slightly charged HS crystals the particles are (nearly)
in contact. Further, any change in density with increased
metastability is generally small, such that AP

∼= const for
all T below the melting temperature TM , respectively all
volume fractions above the freezing volume fraction (�F,HS =
0.492 [66]). By contrast, in low salt charged sphere (CS)
crystals the nearest neighbor distance at melting is usually
on the order of several particle diameters due to mutual
electrostatic repulsion (�F � 0.01 [67]; see also Table I).
Here, the area of interest is the square of the nearest neighbor
distance, dNN

2. Note that this area will shrink considerably
when the particle number density is increased above the
melting density. For the here-analyzed samples the spread
in dNN

2 covers about three orders of magnitude between
its value at melting for PnBAPS70 (nM,PnBAPS70 = 2 μm−3)
and the one at the largest investigated particle concentration
for Si77 (nmax,Si77 = 80 μm−3). We therefore normalize each
nonequilibrium IFE by the square of the nearest neighbor
distances at the particle number density investigated, dNN

2 =
n−2/3. We further use kBTM as the energy unit for the reduced
IFEs, where TM denotes the melting temperature.

Important reference data for our comparison come from
studies of equilibrated interfaces. Here, previous studies
focused on systems where the melt is in contact with a
close-packed crystal structure. Equilibrium IFEs, stiffness, and
anisotropy have been studied for theoretical model systems
like hard spheres (HSs) [64,66,68–73], Lennard-Jones (LJ)
particles, or particles interacting via inverse power poten-
tials [68,74–77]. These quantities have also been studied in
simulations of various metal systems utilizing embedded atom
potentials [78,79]. Experimental equilibrium studies are rare
for metal systems due to the practical difficulties involved in
working at the melting point [45,80]. Equilibrated interfaces
have, however, been studied experimentally in HS colloidal
systems [81]. Hernández-Guzmán and Weeks, for instance,
performed a capillary wave analysis of the equilibrated
interface between a face centered cubic (fcc) crystal of HS and
the adjacent HS fluid [82]. Rogers and Ackerson measured
the IFE for HS crystals from a careful groove analysis of a
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TABLE I. Suspension data: lab code and/or manufacturer’s batch no.; references for the kinetic data; diameter with experimental method
indicated. UZ: Ultracentrifuge measurements performed by the manufacturer; TEM: transmission electron microscopy; polydispersity index
PI [Standard deviation normalized by mean diameter, values given refer to diameters and standard deviations measured with the methods
indicated. Additional measurements employing USAXS form factor measurements, static light scattering and dynamic light scattering gave
values agreeing within some 5–7% with the values quoted; see text for further details.]; effective charge number, Zeff,G from elasticity
measurements; dimensionless effective surface potential, �eff , assuming the effective charge saturation limit; freezing (F) and melting (M)
number densities from static light scattering; nearest neighbor spacing dNN at melting in microns; and in terms of the particle diameter.

Sample dNN/μm dNN/(2a)
batch no. Ref. 2a/nm PI Zeff,G �eff nF /μm−3 nM/μm−3 at melting at melting

PNBAPS68 [30,54,55] 68 0.05 331 ± 3 9.5 6.0 ± 0.3 6.1 ± 0.3 0.55 8.1
BASF ZK2168/7387 (UZ)

PNBAPS70 [56] 70 0.043 325 ± 3 8.6 1.8 ± 0.2 2.0 ± 0.2 0.79 11.2
BASF GK0748 (UZ)

SI77 [11] 77 0.08 260 ± 5 6.4 > 28 ± 1 30 ± 1 0.32 4.1
(TEM)

PS90 [31] 90 0.025 315 ± 8 8.1 4.0 ± 0.5 4.6 ± 0.5 0.60 6.7
Bangs Lab 3012 (TEM)

PS100B [31] 100 0.027 327 ± 10 7.6 4.2 ± 0.5 5.5 ± 0.2 0.57 5.7
Bangs Lab 3067 (TEM)

HS polycrystal-fluid interface [83]. They obtained a value of
σ0,HS = (0.58 ± 0.05)kBT for the reduced equilibrium IFE.
This value is in close agreement with theoretical expectations
and simulation results which—depending on the approach
taken—give orientationally averaged values of the reduced
equilibrium IFE, σ0,HS = (0.56–0.68)kBT [64,66,68–73].

More recent work also addressed body centered cubic (bcc)
crystal structures in contact with their melt. Heinonen et al.
studied crystallizing point Yukawa systems, comparing state-
of-the-art molecular dynamics simulations and theoretical ap-
proaches [84]. For this particular kind of long ranged repulsive
electrostatic interaction, the authors obtained IFEs which were
much lower than those of HSs. Also for bcc-crystallizing
metals, a few simulation studies have been reported [85]. In
these studies, IFE values are on the same order as those of fcc
or hexagonal close-packed (hcp) metals [85,86], but their IFE
anisotropy and temperature dependence as well as Turnbull’s
coefficient are predicted to be considerably smaller than for
fcc metals.

A second set of data was obtained in studies on nonequi-
librium clusters using CNT to extract effective IFE values
from their nucleation rate densities. Data are available for both
atomic systems [41,45,46,51,52,87] and colloids [24,29,34–
36,63,65,88–90]. The nonequilibrium CNT-based effective
IFEs for the hard sphere colloids agree with the values obtained
under equilibrium conditions with reduced values of about
σ ∼= 0.55kBT . This is particularly true for those values ob-
tained at the melting volume fraction [24]. Concerning metals,
we note that experimental data obtained at the nucleation
temperature of metals, TN , may be converted to estimates
of the effective IFEs at the equilibrium melting temperature,
TM . This has been demonstrated, e.g., in the case of Ni in a
combined study of calorimetrically obtained nucleation rates
and state-of-the-art simulations [91]. There, a near quantitative
agreement of the estimated values with the values measured
for the same system at equilibrium was observed [86]. To
perform these estimates and conversions for systems with

dominant hard-core interaction, a constant entropy of freezing
appears to be a sufficient assumption [53]. More sophisticated
corrections including size dependence of the IFE and the
temperature dependence of the enthalpy of freezing have
been discussed in [43]. This large data compilation further
suggests that Turnbull’s coefficient remains unaffected by the
mentioned conversion, i.e., it can equally well be read from the
reduced nonequilibrium IFE at the nucleation temperature and
the equilibrium IFE at the melting temperature. Interestingly,
the CNT-based effective nonequilibrium IFEs, the interfacial
stiffnesses, and their temperature dependencies are found
to be much smaller in the bcc than in the fcc case, when
compared for the same interaction type and strength. Also, in a
recent extensive simulation of nucleation in hard-core Yukawa
systems the nonequilibrium IFE was found to be a factor 2
smaller in the case of bcc crystals as compared to the case of fcc
crystals [17]. This observation is also theoretically supported
within the negentropic model of Spaepen et al. [92,93] and
the broken bond model of Gránásy and Tegze [94]. Thus,
also Turnbull’s coefficient CT should take different values
for different structures. In fact, experimental values for CT

of fcc crystallizing metals converge to CT,f cc = 0.43 [46]
while simulation results for fcc crystallizing metals are
better described by CT,f cc = 0.55 [85]. The few simulation
results available for bcc-crystallizing metals are best de-
scribed by CT,bcc = 0.29 [85]. Our first systematic estimate of
CT,bcc,expt = 0.31 ± 0.03 appears to be much smaller than the
values found for fcc crystallizing systems and is in remarkably
close agreement with predictions for bcc systems.

The comparison of theoretical and experimental results
faces yet another difficulty in that the bulk of theoretical
IFE studies focused on strictly monodisperse systems. By
contrast, all experimental studies on colloids have to cope with
an inevitable polydispersity, characterized by a polydispersity
index, PI = sa/ā, where ā is the mean particle radius and sa

is the standard deviation. Data considered in the present paper
were taken on samples of different PIs ranging 0.025–0.08.
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Interestingly, in their simulations on the crystallization of
polydisperse HS, Auer and Frenkel found both the (expected)
decrease of the nucleation barrier with increased metastability
but moreover observed an increase with increased polydisper-
sity. This increase occurred for PI > 0.05 and was interpreted
in terms of an increase of IFE with increasing PI [88]. On the
experimental side, Schöpe et al. reported a dramatic slowing
of the onset of nucleation, but at the same time also an increase
in nucleation rate densities for HS systems, when the PI
was increased by a mere percent from 0.048 to 0.058 [95].
These authors discussed their findings as indicative of the
onset of fractionation processes. The latter are expected to
occur for PI � 0.05 [96–99] and are also observed for eutectic
binary mixtures of HSs and attractive HSs [32,100–102].
They are also predicted and observed for charged particles
but at much larger PI [103,104]. Therefore, the PI seems
to have a strong influence on nucleation kinetics. But the
important open question that remains is how IFEs react to
polydispersity particularly at comparably low values of PI,
where fractionation effects are expected to play a subordinate
role. Having access to a large number of systems differing with
respect to polydispersity, we are able, for the first time, to look
at its influence in a more systematic way. We find that the IFE
systematically decreases with increasing polydispersity, while
the Turnbull coefficient remains unaffected.

The remainder of the paper first will quickly recall the
characteristics of the investigated samples, the experimental
procedures, and the evaluation schemes leading to the reported
nonequilibrium IFEs. We then will determine the σ0,bcc for
the five pure species and one binary mixture from a simple
extrapolation scheme. In an extension of this scheme, we
will further estimate other thermodynamic quantities including
Turnbull’s coefficient. We continue with an extensive discus-
sion of our findings, where we address the observed values
and their spread, the observed anticorrelation of σ0 to the PI,
and the observed Turnbull coefficients for bcc-crystallizing
systems. After that we will give our conclusions. There are
several appendixes that provide more background information
on (A) additional correlation checks, (B) the characterization
of particle interactions under deionized conditions, (C) the
determination of CNT-based effective nonequilibrium IFEs
from nucleation and growth measurements, and (D) the use of
CNT and related schemes to obtain nonequilibrium IFEs.

II. ANALYZED SYSTEMS AND THEIR
CHARACTERISTICS

A. Particle characterization

We start with shortly recalling the characteristics of the
investigated systems and the methods employed in obtaining
the nonequilibrium IFE. A more detailed discussion of the
experiments and raw data interpretation can be found in
Appendix C. We analyze data of five species of moderately
to highly charged colloidal spheres in aqueous suspension and
one binary mixture. Copolymer particles were kindly provided
by BASF, Ludwigshafen. Silica particles were homemade
employing Stöber synthesis. Systems under consideration are
compiled in Table I with the corresponding references for the
measurements of the nucleation rate densities [11,30,31,54–
56]. Sample laboratory codes refer to the particle material

(polystyrene: PS; poly-n-butylacrylamide: PNBA; silica: Si)
and particle diameter (in nm).

For the present investigation, size characterization is of
prime importance. Si and PS diameters were obtained from
Transmission Electron Microscope (TEM) images with the PS
data quoted from the manufacturer. Ultrasmall angle x-ray
scattering (USAXS) form factor measurements on the Si
particles gave coincident values. PS particles were further
investigated by static light scattering returning slightly larger
values for the geometric radii, indicating a slight shrinkage of
particles under TEM conditions. They were also investigated
by dynamic light scattering returning hydrodynamic radii
which are larger than the geometric radii by some 5%.
The copolymer particles are not stable under the TEM.
Their diameters were determined by the manufacturer from
ultracentrifugation. Here, static light scattering gave slightly
smaller diameters (by about 1.5%), dynamic light scattering
again gave some 5% larger values. While this spread in
diameters reflects the (known) differences between the applied
methods [105], this study is primarily interested in the corre-
sponding polydispersities. Using TEM, some 1500 particles
were counted for each species. Form factors from USAXS
and static light scattering were analyzed using a polydisperse
Mie fit [106], dynamic light scattering was analyzed using the
cumulant method. In each case the statistical uncertainties of
the standard deviation of the diameters are estimated to be
below 10%, with the lowest uncertainties for the analytical
ultracentrifugation and the largest for the cumulant method.
However, for ultracentrifugation an additional systematic
uncertainty arises from the use of the bulk PnBAPS-copolymer
density, as does for static light scattering from modeling the
particles as homogeneous spheres utilizing the bulk index of
refraction. The combined statistic and systematic uncertainty
in the PI are therefore dependent on the choice of method to
determine the average diameter. A conservative estimate gives
15% uncertainty as an upper limit for the PIs shown in Table I.
Interestingly, however, for each species, the PI values obtained
by different methods agreed within 5% to 7% .

Size polydispersities range from low (PI = 0.025) to
moderate (PI = 0.08). These values are the geometric polydis-
persities, which hardly alter the interparticle spacing and thus
the strength of pair interactions. For charged spheres, however,
one expects an additional charge polydispersity, altering the
pair interaction at dNN . For highly charged low salt systems,
like the ones investigated, a suitable analytic expression for
the effective pair interaction is given by a Debye-Huckel
pair potential with a renormalized effective charge [107–110]
which scales linearly with the particle radius [111] (see also
Appendix B). Thus any size polydispersity directly translates
into a charge polydispersity. However, little is known about the
effects of charge polydispersity on the properties of charged
sphere suspensions, with the exception that effects on the phase
behavior are smaller in CS than in HS systems with the same
PI [112]. In fact, a procedure proposed by Löwen et al. [113]
to map charge PIs to HS size PIs gave some 50% smaller
values in the latter case. Unfortunately, this procedure is not
reliably applicable for the present highly charged low salt sys-
tems [114]. In a recent study, van der Linden et al. showed that
the maximum PI compatible with crystal formation without
fractionation is about 0.13 [103] which is to be compared to
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the maximum PI of about 0.062 in the HS case [97]. Similarly,
no fractionation effects are observed for any of our single com-
ponent systems and furthermore the mixture crystallizes as bcc
substitutional alloy with a spindle type phase diagram [115],
whereas binary mixtures with HS-like interactions would form
a eutectic at this geometric size ratio [116]. We therefore note
that the given PIs should be taken as upper limit and that the
effective PIs are probably much smaller.

All particles are negatively charged and were investi-
gated under thoroughly deionized conditions using advanced,
continuous ion exchange techniques [117]. For further de-
tails of the preparation procedure and the characterization
of the interaction strength and range under deionized and
strongly interacting conditions, the interested reader is referred
to Appendix B. We assume to have the highly charged
particles in or close to the effective charge saturation
limit [109,110] and calculate the dimensionless effective
surface potential �eff = Zeff,GλB/a as a measure of interaction
strength [107,108]. Here a is the particle radius, λB = 0.72 nm
is the Bjerrum length in water and Zeff,G is the effective
charge from elasticity measurements [118]. In the deionized
state, all samples including the mixture form polycrystalline
bcc solids for n � nF = 2–8 μm−3 with the location of
the melting line coinciding with theoretical expectations
[115,119,120].

B. Crystallization experiments and determination
of nonequilibrium IFEs

Use of the continuous deionization technique cycling the
suspension in a closed tubing circuit keeps the systems in a
homogenized shear-molten state prior to resolidification [117].
Growth measurements were performed in rectangular cells
with the growing wall crystals observed by Bragg mi-
croscopy [34]. For all samples and n > nM , growth was
observed to be strictly linear in time, characteristic of reaction
limited growth. The number density dependent growth velocity
v was interpreted in terms of a Wilson Frenkel growth law
to obtain an estimate of the difference in chemical potential
between melt and crystal, �μ. This was done for PnBAPS68,
PnBS70, PS100B, and Si77 by fitting a modified Wilson-
Frenkel expression which, following Würth, was based on
a reduced energy density difference calculated with a density
dependent interaction potential [62]. For PS90, no growth data
were available at the time of publication of the nucleation rate
densities [31]. Therefore a simple estimate for �μ was used
based on the reduced density difference: �μ = B(n − nF )/nF

with the proportionality constant reported by Aastuen et al. for
particles of 91 nm size: B = 10 [61]. Later, measurements of
the growth velocity in dependence on particle concentration
were made for PS90. The modified Wilson-Frenkel fit of these
data using Aastuen’s expression returned a proportionality
constant of BPS90 = 4 ± 0.6 ([121], see also Appendix C).
Since also the evaluation of PS100B growth data using
Aastuen’s approximation yielded a value of B = 4.0 ± 0.2,
we choose to adapt a value of B = 4 for the mixture, too.

The nucleation rate density J varies drastically with
increasing n. Therefore, different techniques were employed
in its study. At low densities, J was determined directly
from videomicroscopy in Bragg-microscopic mode [34,54],

at medium densities via past-solidification size counts
from polarization microscopy [56], and at high densities
from Bragg scattering or time resolved USAXS measure-
ments [11,30,31,55]. All three approaches yield consistent
J (n) for a given sample. For CS, J (n) first increases near
exponentially with increasing n, then the increase gradually
slows, but no decrease like the one known from HSs is observed
(for a comparison see, e.g., [31] and Appendix C). From
the combined data sets of J (n) and �μ(n) the nucleus-melt
interfacial free energies γ (n) were derived in the framework
of CNT. Either we performed a least-square fit of Eq. (C8)
to the data using a proportionality constant A, an effective
long time self-diffusion coefficient DS

L(n) and γ (n) as free
parameters, or a graphical evaluation method was utilized in
which γ (n) was determined from the local slope more directly
without any assumption about the kinetic prefactor (for details
see [30,55] and Appendix C). For PS90 and the mixture the
original nucleation data were re-evaluated using B = 4kBT

to return slightly altered IFEs and a significantly increased
dependence on �μ.

In Fig. 1 we replot the data reported for PnBAPS68,
PnBAPS70, Si77, and PS100B together with the corrected
data for PS90 and the 1:1 mixture of PS90 and PS100B in
terms of their reduced values σ = γ (�μ)dNN

2. The data sets
show different uncertainties. In particular for Si77, graphical
evaluation led to an enlarged statistical uncertainty in σ .
Furthermore, estimating �μ following Aastuen and neglecting
the density dependence of the interaction potential results in
an enhanced systematic uncertainty in �μ for PS90 and the
mixture. Note that this will influence only the slope but not the
intercept of any linear fit since the freezing point with �μ = 0
is accurately known. For the other samples, γ was determined
from fits of classical nucleation theory expressions [55] and
�μ was determined from growth experiments following [62].
There, the uncertainties are mainly statistical and remain on
the order of a few percent.
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10

15 PS90/PS100B
PS90
PS100B
PnBAPS68
PnBAPS70
Si77

γn
-2

/3
/k

B
T

Δµ / kBT

FIG. 1. Dependence of the reduced interfacial free energies on
metastability �μ for the indicated species. Interfacial free energies
γ (in J/m2) were normalized by n−2/3 and plotted in units of kBT as
quoted from the original literature or re-evaluated from the original
data using a corrected value for �μ. Solid lines are least-square
fits of σ = σ0 + m�μ. Note that here and throughout, we adopt the
convention to consider the crystal as educt and the melt as product,
as to obtain positive values for �μ, �Hf , and �Sf .
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FIG. 2. Extrapolation scheme based on Turnbull’s rule:
σ0 = CT �Hf /NA = CT TM�Sf /NA.

III. DATA ANALYSIS AND RESULTS

A. Equilibrium IFEs and their dependencies
on system parameters

Figure 1 reveals that, within experimental error, the reduced
nonequilibrium IFEs of all charged sphere samples show
a strictly linear increase for increasing metastability. This
suggests the use of the scheme sketched in Fig. 2 and we simply
extrapolate the data to zero �μ without making any further
assumptions. We obtain the extrapolated equilibrium IFE and
the slope by performing least-square fits of σ = σ0 + m�μ.
The results for σ0 and m are displayed in Table II.

Note that the obtained σ0 range between 1.13kBT and
4.23kBT , i.e., a large spread of values, is obtained for the
different samples. With a thorough system characterization
at hand, we check correlations of the obtained σ0 to other
quantities. In Figs. 3(a)–3(e) we plot the data versus (a) the ef-
fective charges Zeff,G, obtained from elasticity measurements
for the crystal phase over the range of interest; (b) the number-
averaged mean particle diameter 2a; (c) the dimensionless
effective surface potential �eff ; (d) the effective temperature,
Teff = kBT /V (dNN ), as calculated using T = 298 K and the
effective interaction strength at the nearest neighbor site [cf.
Eqs. (B1) and (B2)] for the conditions encountered at melting;
and (e) the value of the coupling parameter λ = κdNN at
melting. No clear correlation is observable in any of these
cases.

Next we plot σ0 versus the polydispersity index, PI,
in Fig. 4. Here, a clear decrease of σ0 with increasing
polydispersity is observed. Further, PS90 and PS100 show
σ0 of (4.28 ± 0.43)kBT and (2.75 ± 0.11)kBT , respectively.
If mixed 1:1 by number, σ0 of the PS90-PS100B mixture drops
to (2.26 ± 0.16)kBT which is significantly lower than the value
observed for either pure system. Figure 4 thus shows that the
equilibrium values of the reduced IFE as extrapolated from the

CNT-based effective nonequilibrium IFEs are anticorrelated to
the polydispersity of the investigated systems. This is a central
result of the present paper.

As shown in Appendix A, the slope m behaves differently
and shows neither a correlation to any of the interaction
parameters nor to the polydispersity index.

B. Estimates for CT,bcc, �H f , and �S f

Our scheme can also be used to extract estimates of further
important quantities by making additional assumptions. First,
we assume that the molar entropy of freezing does not change
with increasing metastability, i.e., with increasing particle
number density. This has been shown to apply for HSs [53]
and further has been observed for many metal systems [43].
Both are systems where the hard-core repulsion creates an
excluded volume which is dominating the behavior of the
condensed phase. In the present systems with their electrostatic
interaction, the interaction is much softer, but still the repulsive
part dominates the observed ordering processes. Second, we
assume that Turnbull’s rule which was found for metals also
applies in the colloidal case: σ = CT �Hf /NA, where NA

is Avogadro’s number. With these assumptions made, we
further note that at �μ = 0, �Hf /NA = TM�Sf /NA. With
�Sf /NA = const and σ = CT �Hf /NA this implies that at
σ = 0, �Hf /NA = 0 and �μ = −TM�Sf /NA, where the
melting temperature in our systems is identified with the
ambient temperature TM = 298 K. Therefore, extrapolating
the data to the intercept with the �μ axis yields an estimate of
the entropy of fusion and the enthalpy of fusion at equilibrium.
Finally, the slope of the curve m = σ0/(TM�Sf /NA) can be
identified to Turnbull’s coefficient m = CT . This latter identifi-
cation was suggested by P. Wette, in his Ph.D. thesis [122] and
was later used in [11,33]. Values for m = CT,bcc are shown in
Table II. They range between 0.235 and 0.405, each with small
statistical uncertainties reflecting the good linear correlation of
σ and �μ. The spread of values is smaller that that observed
for σ0 and no clear correlation between σ0 and CT,bcc is found
[see Fig. 7(a) in Appendix A]. Moreover, none of the tests
for correlations of CT,bcc to particle or system quantities gave
any significant results [see Figs. 8(a)–8(f) in Appendix A]. In
particular CT,bcc is observed to be uncorrelated to the PI.

The values of molar �Sf and �Hf are also compiled in
Table II. Those for �Sf range between 1.5 and 4.6 J mol−1 K−1

and those for �Hf range between 0.45 and 1.36 kJ mol−1.
Correlation checks show that, like σ , T �Sf (respectively
�Hf ) is not correlated to Zeff , 2a, �eff , Teff , or κdNN . By
contrast, an anticorrelation is observed to the PI. Like σ0,
TM�Sf shows a clear trend to decreases with increasing

TABLE II. Results for a fit of σ = σ0 + m�μ to the data shown in Fig. 1. We obtain the intercept, i.e., equilibrium reduced IFE, σ0, and
the slope m, i.e., the Turnbull coefficient CT,bcc. Further, we show estimates of the the molar entropy of fusion �Sf and the molar enthalpy of
fusion �Hf .

PnBAPS68 PNBAPS70 Si77 PS90 PS100B PS90/PS100

σ0/kBT 1.51 ± 0.04 1.62 ± 0.07 1.13 ± 0.16 4.28 ± 0.43 2.75 ± 0.11 2.26 ± 0.16
m = CT,bcc 0.274 ± 0.003 0.364 ± 0.018 0.254 ± 0.008 0.316 ± 0.005 0.235 ± 0.005 0.405 ± 0.011

�Sf /J mol−1 K−1 1.85 ± 0.1 1.51 ± 0.13 1.58 ± 0.17 4.56 ± 0.47 3.93 ± 0.27 0.57 ± 0.05
�Hf /kJ mol−1 0.55 ± 0.3 0.45 ± 0.4 1.36 ± 0.14 1.17 ± 0.8 1.17 ± 0.8 0.57 ± 0.05
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FIG. 3. Correlations between the extrapolated reduced equilibrium IFEs and various particle characteristics. (a) Effective charges Zeff,G; (b)
the number averaged mean particle diameter 2a; (c) effective surface potential �eff ; (d) effective temperature, Teff = kBT /V (dNN ), at melting;
(e) coupling strength at melting. No clear correlation of σ0 to any of these interaction parameters is obtained.

PI and again the value for the mixture is well below that
of the pure components [see Fig. 7(b) in Appendix A]. To
highlight this finding, we plot in Fig. 5 the correlation of
σ0 to TM�Sf = �Hf and observe a clear linear correlation
with slope b = 2.76 ± 0.19 and a correlation coefficient of
r = 0.988.

To summarize the results of our extended analysis of CNT-
based reduced nonequilibrium effective IFEs, we find that
deionized charged sphere suspensions of different charge, size,
and polydispersity show extrapolated equilibrium reduced
IFEs which are (i) in the range of a few kBT , (ii) systematically
increasing with increased metastability expressed as �μ, (iii)
not correlated to any of the interaction parameters, but (iv)

linearly correlated with the entropy of fusion, and (v) as the
latter, decreasing with increasing polydispersity.

IV. DISCUSSION

The above results call for further discussion of a number of
points. We first discuss the observed values and their spread,
then turn to the observed anticorrelation of σ0 to the PI, and
finally comment on the observed Turnbull coefficients for bcc-
crystallizing systems.

The magnitude of the observed equilibrium reduced
IFEs may appear unexpectedly large. Values range between
1.25kBT and 4.4kBT . In Fig. 4, we compare it to values
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samples. The case of the mixture is denoted by the horizontal bar. Its
length and position denote the range of PIs covered by the involved
single component samples. Note that its position does not correspond
to the effective PI of the bimodal size distribution of the mixture.
This quantity would be much larger, but cannot be obtained from the
equation for monomodal PIs: PI = sa/ā. Note further that its value
lies significantly below those of the corresponding single component
species. For comparison, we also show values for the equilibrium
IFE as obtained from simulations of macroscopic flat fluid-crystal
interfaces of monodisperse HSs (solid horizontal line with thickness
corresponding to the spread of published data) and a point Yukawa
system (dashed line). (For further details, see text.)

observed for other systems. The lowest values reported so
far were obtained for the point-Yukawa system by Heinonen
et al. [84] as σ0,bcc,Yukawa = (0.12 ± 0.02)kBT (dashed line
in Fig. 4). These authors further mention unpublished work,
where they obtained σ0,f cc,Yukawa = 0.4kBT (Ref. [46] in [84]),
whereas their value obtained using the same methods for
HSs was σ0,f cc,HS = 0.65kBT . Auer and Frenkel have given
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FIG. 5. Correlation between the extrapolated equilibrium re-
duced IFE and the enthalpy of fusion equaling the entropy of fusion
times the melting temperature. A good linear correlation (correlation
coefficient r = 0.988) is observed as expected from Turnbull’s rule
and its interpretation by Laird [41,53].

CNT-based estimates of nonequilibrium IFEs from their
Monte Carlo simulations of slightly charged hard spheres
modelled by a repulsive hard-core potential [65,90] which are
γ (2a)2 = 0.45kBT in the case of fcc and γ (2a)2 = 0.38kBT

in the case of bcc crystals. Normalization with d2
NN would

have resulted in somewhat larger values for the reduced
nonequilibrium IFEs. However, given the experimentally
observed dependence of σ on metastability, one would expect
the equilibrium values to be much smaller than the reported
nonequilibrium values, possibly close to those found by [84].
In any case, these values are considerably smaller than values
reported for HS and the extrapolated IFEs reported here.

In Fig. 4, we also display the range of values reported for the
HS reference system, σ0,f cc,HS = 0.56–0.68kBT (thick hori-
zontal line). We note that CNT-based effective IFEs [24,29,34–
36,63,90] and equilibrium IFEs [64,66,68–73,82,83] do not
show significant differences and are all significantly below the
values observed here for the case of CS.

Metals on the other hand show values of 20–400 mJ/m2

at their nucleation temperature. When scaled to TM and the
area taken by a single atom in the interface, this results in
values of several to some tens of kBT for σ0,f cc,metal [41,43–
46,52,85]. Of particular interest is the recent comparison of
nucleation barriers of Ni derived via CNT from nucleation
experiments to those derived from state of the art Monte Carlo
simulations on the nucleating system [91] which quantitatively
coincide in the case of sufficiently large simulated systems.
Further, a mere 10% discrepancy is observed between the
derived nonequilibrium IFEs scaled to the melting temperature
and the equilibrium values derived from simulations of the
equilibrated interface [86].

A good agreement is thus observed between CNT-based
effective IFEs and the more directly measured equilibrium
IFEs for HS and metals, while the present CNT-based effective
IFEs of polydisperse CS differ from the equilibrium IFEs
obtained for Yukawa and hard-core Yukawa systems. Thus
either CNT is not very reliable in our case or mean field
descriptions are not suitable to predict IFEs for the systems
used in our experiments, even though Yukawa and hard-
core Yukawa potentials quantitatively capture the interaction
strength and range.

Our comparison reveals a pronounced sorting in groups
of different interaction type. In principle, also the significant
spread within the group of charged colloids (and that of
metals) can be due to differences in interaction type, strength,
and/or range. However, as seen in Figs. 3(a)–3(e), there
is no significant correlation between σ0 and any of the
interaction parameters. On the other hand, we observed a
clear anticorrelation between σ0 and the PI in Fig. 4 and
a linear correlation of σ0 to TM�Sf in Fig. 5. It should
be noted that already in his seminal paper [52], Turnbull
observed σ0 to be correlated to the melting temperature TM

of the investigated elements. However, due to the rather large
overall scatter of these data, this observation was discarded as
a basis to formulate an empirical relation. Rather, the clearer
correlation to �Hf /NA was used. Later, Laird theoretically
investigated the IFE of hard-core systems to observe a clear
scaling of the metal σ0 with TM [53]. This correlation is also
present in the much larger data compilation published by [43].
Laird pointed out that this scaling is a direct consequence of
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the purely entropic determination of the phase behavior of
HSs and the presence of a hard-core-like repulsion in metals.
Earlier, Saepen and co-worker [92,93] similarly argued that
given a structure specific but otherwise constant entropy of
fusion, the IFE should vary linearly with temperature upon
undercooling a melt. This is also seen for the present systems,
where σ0 varies linearly with �μ which may be regarded as
the colloid analog of undercooling. Therefore, we believe that
the presently observed large values for σ0 are caused by a large
entropy difference between melt and crystal and furthermore,
that the spread is caused by a polydispersity-induced variation
of this difference.

We may rationalize this, considering a monodisperse
system transforming from a melt of short range order to
a crystalline state of long range order. Introducing some
polydispersity will disturb both phases differently. There will
be a structural change (a deviation from the best ordered
low energy or low entropy configuration) which is different
for the polydisperse crystal and for the polydisperse melt.
Loosely speaking, the order of the melt will be disturbed only
over short distances, while the disturbance in the arrangement
of particles in the crystalline state will be long ranged. In
both cases, the entropy of the less well ordered region will
increase, but, due to the rules of combinatorics, the effect of
the larger number of particles involved in the distorted crystal
is far larger. Therefore, in the polydisperse case, the entropy
difference between the two phases will be smaller than in the
monodisperse case. Consequently, also σ0 has to decrease,
and we observe the samples with the largest PI to display the
lowest IFE. We note that the results shown in Figs. 4 and 5 may
be considered as an independent test of Turnbull’s rule using
model systems of different polydispersity yielding an a priori
unknown, but systematic decrease of entropy differences.

We come back to the discrepancies observed in comparing
our IFEs to those of simulated point and hard-core Yukawa
systems. For the presently examined case of experimental
charged spheres with their additional Zeff counterions per
particle, the entropy difference between melt and solid should
be much larger than for any HS, point Yukawa, or hard-core
Yukawa system. In this latter cases, either counterions are
not present or are absorbed in a neutralizing mean field
background. Therefore, any counterion contribution to the
entropy is neglected in these systems. In principle, this hy-
pothesis can be tested by theoretical investigations within the
primitive model that may become feasible with state-of-the-art
algorithms [17]. Moreover, with this data available also a
comparison of the presently derived CNT-based effective IFEs
and more directly measured equilibrium IFEs will become
possible.

Crystallization of colloidal suspensions may involve frac-
tionation processes. The PIs of the present systems (0.025 �
PI � 0.08) are considerably lower than those for which frac-
tionation is expected and/or found in CSs [103,104]. Further,
in none of the experiments were the characteristic broad,
pyramid-shaped Bragg peaks observed [101]. Moreover, in
deionized CS binary mixtures, the size ratios for stabilizing
azeotropic or eutectic phase behavior are shifted to much
smaller values as compared to HSs [123]. Therefore, we
believe that the effective CS polydispersities are considerably
lower than the geometrical ones, and we exclude fractionation

effects for the present systems. However, in accordance
with theoretical expectations [96–99], fractionation has been
observed in strongly polydisperse experimental HS sys-
tems [101,124].

Fractionation has also been observed in the simulations of
Auer and Frenkel [88,90]. They reported an increase of the
nucleation barrier with increasing PI for PI > 0.05 which was
attributed to an increase in IFEs. This seems to be at odds with
the present observation of a clear nonlinear decrease of σ0 with
increasing PI (cf. Fig. 4). However, fractionation affords the
formation of purified phases of much lower entropy than the
melt or the substitutional crystal [100]. For the purely entropic
HS system, this will increase both γ and �μ between the
fractionated crystal nucleus and the remaining melt. Conse-
quently, the nucleation barrier �G∗

CNT = (16πγ 3)/3(n�μ)2

will increase with increasing PI. This effect limits the range of
applicability of our conclusions to nonfractionating systems.
The presently observed decrease of σ0 with PI should be
reversed at the onset of fractionation, and the IFE should
display a minimum as a function of PI. The situation is
further complicated by the fact that fractionation will also
influence the kinetic prefactor. The required sorting processes
decrease the kinetic prefactor, and contribute to the observed
drastic slowing of nucleation [32,100]. The findings by
Schöpe [95] may have been made in a crossover region, where
the decreased kinetic prefactor already caused considerably
stretched induction stages, while the effects on the barrier were
not yet pronounced enough to quench nucleation effectively.
However, the issue of the influence of fractionation is far from
being generally settled. It should be addressed again in both
simulation and experiments on nonfractionating HS systems
as well as fractionating CS systems.

We further compare the values of the other estimated ther-
modynamic quantities to those for other systems. Our absolute
values for molar �Hf range between 0.45 and 1.36 kJ mol−1.
This is just below those of alkaline metals, which range about
2–3 kJ mol−1, but smaller than the values of about 8 kJ mol−1

for alkaline earth metals and 35.2 kJ mol−1 for tungsten [125].
Values for �Sf range between 1.5 and 4.6 J mol−1 K−1 as
compared to a value of about 10 J mol−1 K−1 for metals.
For monodisperse HSs, density functional theory calculations
yield 9.7 J mol−1 K−1 [53]. The values for polydisperse CSs are
thus much smaller than those of monodisperse systems with
shorter-ranged interactions. Therefore, it would be interesting
to pursue this case further in two ways. One way is to
investigate nucleation in charged sphere suspensions at larger
particle and salt concentrations, where the interaction potential
becomes less soft. The second way would be investigations
using CSs with vanishing PI.

Finally, we have used the identification of the fitted slope
m to Turnbull’s coefficient CT,bcc. From this, we obtained
systematic estimates for this quantity for a set of experimental
systems crystallizing into bcc structure. We note that as
expected, the presently observed values are independent of σ0,
of the PI and of the interaction parameters (cf. Appendix A).
In fact, the strictly linear dependence of σ on �μ shows
that the very same Turnbull coefficients also apply in the
metastable state. Up to now, experimental determinations
have only been performed for fcc crystallizing metals,
yielding CT,f cc = 0.43 [46], while simulation results for fcc
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FIG. 6. Turnbull plot of the reduced equilibrium interfacial free
energy vs the equilibrium enthalpy of fusion. Shown are our
data for bcc-crystallizing colloids (circles), simulation data for
bcc-crystallizing metals (up triangles) [85], bcc-crystallizing point
Yukawa systems (down triangles) [84], and fcc crystallizing metals
(diamonds) [85] as well as experimental data for fcc crystallizing
metals (squares) [46]. Lines correspond to the indicated average
values of Turnbull coefficients as quoted from [84,85], and [46]
for simulation and experimental data, respectively. For our data
we find an average value of CT,bcc = 0.31 ± 0.03 (thick solid line)
which appears to be remarkably close to that expected for bcc
metals.

crystallizing metals are better described by CT,f cc = 0.55 [85].
The few simulations available for bcc-crystallizing metals are
best described by CT,bcc = 0.29 [85]. In Fig. 6 we plot the
obtained CT,bcc versus the corresponding reduced equilibrium
IFEs (in eV per atom) against the equilibrium enthalpy of
fusion (in eV per atom). From an error-weighted linear fit to
the data of Fig. 6, we find an averaged Turnbull coefficient of
CT,bcc,expt = 0.31 ± 0.03. Using only the low-uncertainty data
with �μ derived using Würth’s approximation for �μ, we
obtain a slightly lower value of CT,bcc,expt = 0.25 ± 0.02. For
comparison, we also show the currently available data from the
literature. Our values appear to be remarkably close to those
from simulations of bcc metals (open triangles [85]) which
yielded an average CT,bcc,sim = 0.29 (dash-dotted line) but are
much smaller than the values for fcc crystallizing systems. This
further supports the theoretical expectations based on entropic
considerations that predict that CT,bcc should be considerably
smaller than CT,f cc [92–94].

V. CONCLUSIONS

We have analyzed data available from the literature on five
pure species and one mixture of charged colloidal spheres
obtained from crystallization experiments under deionized
conditions. We have devised a simple extrapolation scheme
to obtain estimates for the reduced equilibrium IFE from the
reduced nonequilibrium CNT-based effective IFEs. Under the
additional assumptions of a system specific entropy of fusion
which, however, is independent of system density and the
validity of Turnbull’s rule, we further used this scheme to
extract the enthalpy and entropy of fusion, �Hf and �Sf ,
as well as the Turnbull coefficient CT,bcc. The latter data

complement existing experimental and theoretical data on
fcc crystallizing systems. The experimental CT,bcc was found
to be remarkably close to expectations from simulations on
bcc-crystallizing metals. This strongly supports the results
of computer simulation and theoretical models predicting a
substantial difference in CT for differing crystal structures.

Incidentally, all analyzed experimental samples showed
different degrees of polydispersity. This allowed a discussion
of the influence of the PI on both the interfacial free energy
and the entropy of freezing. We observed that both quantities
show a similar clear trend to decrease with increasing PI and
that both quantities are linearly correlated to each other. From
this, we conclude that an increase in polydispersity lowers
the crystal-melt entropy difference and—consequently—the
IFE. Thus, we believe that the thermodynamics of freezing in
charged sphere suspensions are dominated by entropic rather
than enthalpic effects. At least for the present system, we
suggest to reformulate Turnbull’s rule in terms of the melting
temperature times the gram-atomic entropy of fusion.

The values of the extrapolated IFEs range between those
of metal systems and of hard spheres. They show a clear
tend to increase with decreasing PI. A PI-dependent IFE
has interesting possible consequences for the kinetics of
nucleation. If the increase in σ0 continued for still lower
PI, one would expect the nucleation barriers to become very
large in the limit of monodisperse charged sphere systems.
Then crystallization might become suppressed in favor of a
Wigner glass [126]. On the other hand, it may be beneficial
to carefully re-investigate the influence of a small geometric
polydispersity (for example PI � 0.03) on the nucleation
barrier of HS systems. There, state-of-the-art simulations
on monodisperse systems in the coexistence region yield
nucleation rate densities which consistently are several orders
of magnitude lower than those observed in polydisperse ex-
perimental systems [36]. If HSs showed a similar dependence
of σ0 on PI as charged spheres, one would expect a small
polydispersity to considerably accelerate nucleation.

In most previous work on experimental and computer hard
spheres as well as on metals, a near quantitative agreement
between CNT-based effective IFEs and those measured more
directly on equilibrated interfaces was obtained. Therefore,
the observed disagreement between the presently derived
results for the CNT-based effective equilibrium IFE and
the equilibrium IFE obtained for point Yukawa systems in
simulations calls for further attention. Typically, both point
Yukawa and hard-core Yukawa based simulations yield good
results in predicting charged sphere suspension properties
including phase behavior, elasticity, and electrokinetic behav-
ior. A hard-core Yukawa potential has also been employed
in the evaluation of the crystallization kinetic data used for
the present analysis. Therefore, the reason for the observed
discrepancy remains unclear. It may be that the parametrization
of measured nucleation rate densities using CNT is not
appropriate for the case of CS. However, in view of our main
finding that the IFE is mainly an entropic effect, we are tempted
to ascribe the discrepancy to the use of Yukawa-type mean field
pair potentials in the simulations made. Hence, it will be very
interesting to compare our data to future simulations within the
primitive model with explicit counterions which may better
capture the entropic contributions of the microions.
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APPENDIX A: ADDITIONAL CORRELATION CHECKS

Because the data were available, we performed a number
of additional checks for correlations between the obtained key
parameters of crystallization and the experimental and system
specific boundary conditions.

Figure 7(a) shows that the equilibrium reduced IFE is
not correlated to the slope m. This is expected, since also
in Fig. 6 and the Turnbull plots found in the literature,
CT is constant irrespective of the measured or calculated
σ0 [41,43,46,52,53,85]. Figure 7(b) shows the correlation
between the entropy of freezing and the polydispersity index.
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FIG. 7. (a) Equilibrium reduced IFEs σ0 vs m. No correlation
between these two quantities is observed. (b) Plot of TM�Sf = �Hf

vs the polydispersity index PI. A clear decrease is observed. In
addition, note the strong decrease also for the value of the mixture
(horizontal bar), as compared to those of the two pure components
(leftmost circles).

Also here we observe a clear decrease with increasing PI. Note,
however, the larger error bars for the cases where �μ was
obtained using the approximation of Aastuen. Its uncertainty
translates to an uncertainty in slope and thus in T �Sf .

We also checked for any correlations of m to the strength
and range of interaction in Figs. 8(a)–8(f). Again the result
is negative, possibly with the exception of the weak trend
of a decreasing m with increasing coupling parameter κdNN

(correlation coefficient r = 0.53).

APPENDIX B: CHARACTERIZATION OF PARTICLE
INTERACTIONS UNDER DEIONIZED CONDITIONS

Supplied suspensions were first diluted and stored over
mixed bed ion exchange resin (Amberlite, Rohm & Haas,
France), for a few weeks under occasional gentle stirring. They
were then filtered to remove dust, resin debris, and coagulate,
regularly occurring upon first contact with the exchange resin.
The procedure was repeated using fresh resins. All further
conditioning was performed in a closed Teflon(R) tubing
system containing a column filled with mixed bed ion exchange
resin, a reservoir under inert gas atmosphere, to add particles,
water, or electrolyte, a cell for static light scattering to control
the particle number density n, a cell for in situ conductivity
measurements to control the electrolyte concentration, and
the actual measuring cell for the crystallization experiments.
This procedure allows for a fast and effective deionization
and homogenization of the samples. Furthermore it leaves
crystallizing suspensions in shear-molten state, from which
they readily nucleate and grow crystals, after the shear is
stopped. Also the silica species Si77 was first thoroughly
deionized, then filled into the circuit and diluted to the desired
concentration. NaOH was added up to the equivalence point
to obtain maximum charge [11,33].

Under such low salt conditions, van der Waals attraction can
be neglected and the pair interaction relevant during solidifica-
tion experiments is assumed to be a purely repulsive hard-core
Yukawa (HCY) potential [127]. Effective electrokinetic charge
numbers Zeff,σ were determined from the linear particle
number density dependence of the conductivity interpreted
in terms of a Drude type model [128,129]. These agree
well with the charge numbers derived from electrophoresis
experiments and charge numbers obtained from the fit of
a screened Coulomb potential to the numerical solution of
the nonlinearized Poisson-Boltzmann equation within a cell
model [110]. The reduction of the effective conductivity
charge compared to the bare charge is a consequence of
the so-called counterion condensation and in fact gives a
measure of the number of freely moving counterions [109].
Furthermore, effective elasticity charges Zeff,G were derived
from shear modulus measurements on polycrystalline samples
using torsional resonance spectroscopy and interpreting the
obtained data in terms of an effective HCY pair potential [118].
In addition to the effects of counterion condensation, this
effective charge also accounts for many-body terms in the po-
tential of mean force, the so-called macro-ion shielding [130].
The latter effect is not present for isolated pairs but starts as
soon as a third particle is present [131,132]. We note that
both effects are due to the overlap of particle electric double
layers and that they tend to be fully developed in the case of

022601-11



THOMAS PALBERG, PATRICK WETTE, AND DIETER M. HERLACH PHYSICAL REVIEW E 93, 022601 (2016)

240 260 280 300 320 340
0.1

0.2

0.3

0.4

0.5

m

Zeff

(a)

60 65 70 75 80 85 90 95 100 105
0.1

0.2

0.3

0.4

0.5

m

2a (nm)

(b)

5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

m

Ψeff

(c)

0.06 0.07 0.08 0.09
0.1

0.2

0.3

0.4

0.5

m

kBT/V(dNN)

(d)

1.8 2.0 2.2 2.4 2.6
0.1

0.2

0.3

0.4

0.5

m

κdNN

(e)

0.00 0.02 0.04 0.06 0.08 0.10
0.1

0.2

0.3

0.4

0.5

m

PI

(f)

FIG. 8. Correlations between the fitted slope m and various particle characteristics. (a) Effective charges eff.G; (b) the number averaged
mean particle diameter 2a; (c) effective surface potential �eff ; (d) effective temperature, Teff = kBT /V (dNN ), at melting; (e) coupling strength
at melting, κdNN ; and (f) polydispersity index PI. Only in (e), a weak correlation is observed with a slightly negative slope and a correlation
coefficient of r = 0.53. Note that in (f), m does not vary with PI.

counterion dominated screening. For highly charged particles,
as used here, counterion dominated screening already develops
for densities well below the freezing density and therefore
is the case in all crystallization measurements. It is worth
mentioning that this condition also ensures that slight errors
in the deionization control will have only a marginal effect on
the pair interaction, because the counterions provided by the
particles themselves by far outnumber any residual electrolyte
ions [cf. Eq. (B2)].

In general, the two effective charges, Zeff,σ and Zeff,G,
differ by some 40% [118]. Further, the charges are close to
the theoretically expected saturation limit Zeff,i = �eff,ia/λB

with λ=0.72 nm being the Bjerrum length, and �eff,i being
the slightly surface chemistry dependent effective surface
potential measured by different techniques i [108]. We found,
that utilizing Zeff,G to localize the observed melting line in
the effective temperature-coupling parameter plane of the

phase diagram regularly yielded a good agreement of our
results with the theoretical predicted location of the melting
line [133–139]. By contrast, no agreement was observed
when Zeff,σ was used [115,119,120,123], i.e., when neglecting
many-body effects on the effective charge. We therefore use
Zeff,G, the particle number density n, and the microion number
density ns as input for calculating the hard-core Yukawa pair
interaction energy in the present study:

V (r) = Z2
eff,Ge2

4πε

(
exp(κa)

1 + κa

)2 exp(κr)

r
, (B1)

with the elementary charge e, the solvent dielectric permittivity
ε = ε0εr , and the screening parameter

κ = e2

εkBT

√
nZeff,Gz2 + nsz2, (B2)
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where z = 1 is the microion valency. The microion number
density ns is calculated accounting for ions stemming from
added electrolyte (as measured from conductivity) and dis-
solved CO2 (using temperature dependent solubilities [140])
as well as ions from the self-dissociation of the solvent (c =
2 × 10−7 mol l−1 at pH 7). Note that for the analyzed data, the
counterion density which is explicitly accounted for through
the nZeff term in all cases contributes the overwhelming
majority of screening ions.

APPENDIX C: DETERMINATION OF CNT-BASED
EFFECTIVE NONEQUILIBRIUM IFES FROM

NUCLEATION AND GROWTH MEASUREMENTS

To apply CNT for obtaining estimates of the effective
nonequilibrium IFEs one needs nucleation rates measured
at known metastability. The procedures involved to obtain
both rates and the corresponding �μ values from optical
experiments have already been described in the literature
([34,36] and references therein). We here outline both. We
start with the growth measurements used to determine �μ and
continue with the nucleation experiments to obtain J . We the
proceed with a comparison of CNT-based evaluation schemes
to obtain estimates of γ and σ (�μ).

Growth measurements employ microscopy to obtain the
growth velocity of crystals. Most suitable contrast variants are
Bragg microscopy [62] or polarization microscopy [141]. Both
allow direct determination of the crystal extension from the
microscopy images. Rectangular flow through cells are used
for microscopic investigation. Charged spheres crystallize with
bcc structure at low salt and particle concentrations with a
narrow coexistence region separating freezing and melting line
in a particle number density versus salt concentration phase
diagram [34]. Using the conditioning system described above,
the suspension is kept in a shear molten state. The flat cell wall
acts as the nucleus for a wall crystal which starts growing in
the [110] direction immediately after cessation of shear [142].
Just above melting, growth in the [110] direction is slower
than the average radial growth, but this difference vanishes
for larger metastability [62]. Experiments are best performed
at conditions just above melting. Across the coexistence
region, a sublinear growth is observed, due to the parallel
establishment of the difference in density between both phases.
Far above melting, growth occurs over very short times only,
as it gets very fast and is quickly stopped upon intersection
with bulk nucleated crystals. Just above melting, linear wall
crystal growth is observed over sufficiently extended times
and lengths. Figure 9 shows typical growth curves. Growth
velocities above coexistence (at coexistence) are inferred from
the slope (the limiting slope for t = 0) of the curves. They
first increase with increased metastability but then level off
at a plateau. Such behavior is typical for reaction controlled
growth and well described by a Wilson-Frenkel growth law:

v(�μ) = v∞[1 − exp(−�μ/kBT )] (C1)

with the limiting velocity v∞. The crucial point is the
use of a suitable approximation for �μ, the chemical
potential difference between the two phases. In principle,
this quantity depends on the independently measurable in-
teraction parameters effective charge Zeff (from elasticity
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FIG. 9. Typical wall crystal growth curves obtained for different
particle volume fractions as indicated.

measurements [118]), particle number density n (from static
light scattering [34,143]), and salt concentration c (from
conductivity [118,128,129]). In his seminal work, Aastuen
et al. suggested to use the approximation

�μ � B
n − nF

nF

, (C2)

where F denotes freezing and B is a proportionality constant
used as second fit parameter. This approximation neglects any
influence of the charge and the salt concentration and any
change of the interaction with n. Würth et al. [62] therefore
suggested using a reduced density difference

�μ � B�∗ = B
� − �F

�F

(C3)

with � = αnV (dNN ), V (dNN ) denoting the pair interaction
potential at the nearest neighbor distance and α being a
coordination number [62]. Since the latter may differ within
different phases, one compares the values for the melt to those
of the fluid phase at freezing. This exploits that close to a phase
transition the Gibbs free energy difference is approximately
linear for any pair of phases. Würth’s approximations have
been thoroughly tested and curves of v versus �∗ measured
varying different interaction parameters collapse to a single
master curve [34] which is well described by Eq. (C1). It
thus accounts for changes in any of the interaction parameters
and allows, for instance, measurements in dependence on the
salt concentration at fixed n. Typical fit parameter values
are B = 1.5–15 and v∞ = 2–20 μm/s. Limiting velocities
show some scaling with the particle size [34], but there are
indications that in addition the thickness of the interfacial
region may be of some importance [144].

At the time of the original publication of the nucleation
data of PS90, PS100B, and their mixture, no growth data
were available. Some time later, these were measured and
our results for PS90 are shown in Fig. 10. Note the low
velocities across the coexistence region nF � n � nM with nM

now determined to be nM = 4.6 μm−3. Unfortunately, the salt
concentration was not measured accurately enough in these
experiments and therefore the fit of the WF law could only
be performed using Aastuen’s approximation. It returned a
value of BPS90 = 4 ± 0.6 for the proportionality constant and
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FIG. 10. Growth velocities of PS90 in dependence on the reduced
density. The solid line is a fit using Eq. (C1) with Eq. (C2). The
fit parameters obtained are BPS90 = 4 ± 0.6 for the proportionality
constant and v∞ = 8.4 ± 0.3 μm/s for the limiting velocity.

v∞ = 8.4 ± 0.3 μm/s for the limiting velocity. The growth
data for PS100B were measured by Liu et al. [145] with
simultaneously determined salt concentrations. Evaluation
using Aastuen’s (Würth’s) approximation yielded B = 4.0 ±
0.3 (B = 2.6 ± 0.2). For the present paper, we decided to use
the value from Aastuen’s approximation, which allowed us
to adopt an estimate of B = 4.0 for the mixture as well. The
new values for �μ were used to re-evaluate the nucleation
experiments and obtain estimates for the IFE. The corrected
values of the IFEs differ only slightly from the original ones,
but their increase with increasing �μ was found to be much
stronger due to the use of the smaller proportionality constant.

Measurements of the nucleation rates were performed
by microscopy [54], static light scattering, or time resolved
USAXS measurements [11,30,119]. Direct video microscopy
could be applied at low metastability, where nucleation sites
are sufficiently distant to be resolved and nucleation rates are
small enough to be followed (typically well below 102 s−1).
Rates were divided by a suitable expression for the free
volume. The original Avrami model considers bulk nucleating
crystals only, assuming their sites to be Poisson distributed and
their nucleation rate density being constant in time [57]. It was
extended by Wette et al. [54] to also include competing wall
crystal growth and variable rates. The resulting expression for
the relative free volume at time t reads

F (t) = (V0 − 2Ad0 − 2AvW t)

(V0 − 2Ad0)
exp

(
−4π

3

×
∑

i

mi

V0 − 2Ad0 − 2AvWτi

[R0 + v(t − τi)
3]

)
,

(C4)

where V0 is the total observed volume, A, d0, and vW are,
respectively, the observed area, initial thickness, and growth
velocity of the wall crystal. mi is the number of crystallites
appearing at times τi = i�t with �t typically on the order of
a few tenths of a second. R0 and v are the bulk crystallite radius
at first identification and its growth velocity, respectively.
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FIG. 11. Density dependence of the interfacial free energies γ

of PnBAPS68 obtained from different evaluation schemes. Solid
symbols denote use of CNT with J0 calculated using Eq. (C6) in Eq.
(C5) with A = 1 and Deff = 0.1D0 and different input data: average
nucleation rate density JAV R (squares), maximum nucleation rate
density JMAX (diamonds), or steady state nucleation rate density JSS

(stars); hatched area denotes the maximum systematic change by
setting Deff = D0 (upper bound) or Deff = 10−3D0 (lower bound).
Open symbols denote data from two different experimental runs using
a corrected version graphical evaluation [146]. The solid line gives
a least-square linear fit to these data. The dashed red line gives the
γ (n) values obtained from the fit of Eq. (C8) to the data as shown in
Fig. 12. All curves increase linearly with n for n > nF . Inset: time
dependent nucleation rate densities for three densities n as indicated.
With increased n, transient effects become more pronounced. Solid
lines are the fits of Kashchiev’s theory yielding JSS [60].

An example of resulting nucleation rate densities obtained
for PnBAPS68 is semilogarithmically plotted in the inset of
Fig. 11. After a short induction time, J (t) first increased
sharply, then settled to a plateau, before decreasing again. With
increasing n the plateau extension shrank and the maximum
values increased considerably. Close to the phase boundary,
the nucleation rate density stayed constant over an extended
time and therefore the steady state nucleation rate density JSS ,
required by CNT, was well approximated by the plateau value
JMAX. At larger n data were fitted by Kashchiev’s theory of
transient nucleation [60]. This is also shown in the inset of
Fig. 11. Note the increased value at long times, which is
identified to JSS and becomes larger than JMAX for number
densities n > 1019 m−3 s−1.

At larger rates, postsolidification images of the sample
were taken. The distributions of probability density for the
radially averaged linear dimension of crystallites, L, are
obtained by image analysis. Typical distributions were slightly
skewed to large L values and well described by a log-normal
distribution. With increasing n, the average crystallite size
shifted to smaller values. Since here the wall crystal correction
to F (t) was negligible, the original Avrami formula was
used. It connects the crystallite density and growth velocity
to an average nucleation rate density as JAV R = (1/α)vρ4/3.
Here, 1/α = 1.158 is a geometrical factor. ρ ≡ 〈L〉−3 is the
crystallite density and 〈L〉 is the average linear dimension of
crystallites assumed to be cube shaped.
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At still larger rate densities, the crystallites became too
small to be properly resolved by microscopy. Then scattering
methods were applied. Here, raw data I (q,t) were first de-
smeared [11,30] to isolate the scattering signal from apparative
contributions. For isolating the crystal structure factor in the
time-resolved USAXS measurements, the fluid background
(obtained from the first measurement immediately after shear
melting) was subtracted with a weighting factor β denoting
the fraction of remaining melt. We then divided the signal by
the independently measured form factor P (q). The isolated
crystal structure factor SX(q,t) showed Bragg peaks which
grew and sharpened over time. Further evaluation followed
Harland et al. [29] to obtain (i) the crystallinity (fraction
of crystallized material) X(t) from the integrated intensity
normalized to the long time value after complete solidification,
(ii) the average linear dimension 〈L〉 of crystallites from the
peak width, and (iii) their number density ρ(t) from dividing
X(t) by the average volume of crystals. From the derivatives
of the average linear dimension and the number density
we obtained the growth velocity and the time dependent
nucleation rate density J (t). Like for the microscopy data,
the time dependent nucleation rate densities could be fitted by
Kashchiev’s expression for transient nucleation to return JSS .

In light scattering experiments, no time dependent data were
measured. Rather, a postsolidification analysis was performed,
using the average linear dimension 〈L〉 from the width of
the observed Bragg peaks, the limiting velocity from the
growth experiments and Avrami’s formula to calculate JAV R .
We note that the light scattering data may be biased by the
presence of a finite and presumably skewed crystallite size
distribution. Neglect of this influence in our analysis may,
in principle, lead to inconsistencies between the nucleation
rates determined by this technique and by the direct size
distribution analysis performed at intermediate n. In fact, the
change of slope in Fig. 12 occurs close to the range in which
the data taken by the different techniques overlap. It thus could
indicate such an inconsistency. However, this change of slope
is systematically present also in Fig. 13. There, the data taken
for the other CS samples were taken by light scattering only.
Therefore, the good agreement between the data derived from
different techniques as displayed in Fig. 12 suggests that a
finite crystallite size distribution hardly influences the data
evaluation and even less the conclusions drawn in this paper.

PnBAPS68 has been measured using all outlined optical
techniques, except USAXS [30,54,122]. In [55] we have
compared these to find an excellent agreement between the
nucleation rate densities obtained by the different methods.
This is also seen in Fig. 12 which shows the nucleation
rate densities measured with different methods for n =
18–67 μm−3. The data cover several orders of magnitude in
J without any systematic deviation between the different data
sets. Similar data are displayed for a collection of different
colloidal species also in Fig. 13. Here, we plotted J versus
the volume fraction, � = n(4π/3)a3

V0
, to once more stress the

non-space-filling character of CS crystals in comparison to
HSs, which crystallize above �M = 0.495 [147]. Note the
characteristic shape of all CS curves. The nucleation rate
density increases by several orders of magnitude for small
changes in �. The increase is more pronounced at smaller
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FIG. 12. Nucleation rate densities of PnBAPS68 as measured
by video microscopy (n = 18–19.9 μm−3), postsolidification crystal
size analysis (n = 18–33 μm−3), and static light scattering (n =
25–67 μm−3). Note the excellent agreement between data derived
from different methods. The solid line is a least-square fit of Eq. (C8)
to the data using A, DS

L(n), and γ (n) as free parameters. An excellent
description of the experimental data can be observed. The obtained
γ (n) are shown in Fig. 11 as a dashed red line.

�. By contrast, the HS data display a maximum, which
is attributed to the vanishing long time self-diffusion upon
approaching the HS glass transition at �G = 0.57–0.59 [34].

While different techniques to obtain nucleation rate den-
sities yield consistent results, systematic differences are
introduced in the next step of evaluation. Several CNT-based
schemes exist. CNT in its simplest form assumes that the
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FIG. 13. Nucleation rate densities of different colloidal species
vs volume fraction. Open symbols denote charged sphere systems
with their diameters indicated. Closed symbols refer to data obtained
for two HS systems (PMMA890: [34]; PMMA402: [29]. Note the
low volume fractions of CS and the steepness of the increase in J
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steady state nucleation rate density is given by

JSS = J0exp(−�G∗/kBT ), (C5)

where for colloidal systems the nucleation barrier
G∗ = 16πγ 3/3(n�μ)2 is determined by the IFE γ , the
difference in chemical potential �μ, between the melt and
the solid phase, and the particle number density n. J0 is a
kinetic prefactor which for colloids with diffusive dynamics
and particle by particle attachment was proposed to be [34,148]

J0 = An
DS

L

�2
(C6)

where DS
L is the long-time self-diffusion coefficient, A is a

dimensionless factor, and � is a characteristic length scale
approximated by � = dNN ≈ n−1/3. In most publications,
the dimensionless factor A has been set to unity as a first
approximation.

Use of Eq. (C6) in Eq. (C5) to calculate γ affords an
additional assumption about the n dependence of DS

L. For
charged spheres showing no glass transition in the range of
investigated n, DS

L is limited as D0 � DS
L � 10−3D0, where

the upper bound is the Stokes-Einstein diffusion coefficient
D0 = kBT /6πηa and the lower bound is estimated from the
results of published diffusion data on charged spheres [149].
For the calculation of the data points in Fig. 11, we used the
approximation DS

L = 0.1D0 which corresponds to applying
Löwen’s dynamical freezing criterion [150] to estimate the
diffusivity at freezing and neglecting the (weak) density
dependence over the volume fraction range investigated. The
hatched area denotes the maximum systematic change by
varying Deff within the mentioned bounds.

Alternatively, a graphical evaluation from a plot of ln(J )
versus 1/(n�μ)2 was performed [55]. The slope of this curve is
m = 16πγ (n)3/kBT . The results of this graphical evaluation
are also shown in Fig. 11. They appear to lie systematically
below the results of other evaluation schemes. Further, the
noise in the J (n) data directly translates into a noticeable
scatter of γ (n). However, the linear increase with increasing
n is clearly seen despite this scatter. Note that the graphical
evaluation does not make any assumptions about the kinetic
prefactor. Thus, the results shown in Fig. 11 demonstrate the
pronounced metastability dependence of γ .

Further, an explicit calculation of the kinetic prefactor
within the framework of CNT following [40] was performed
in [55] to yield

J0,CNT = 12

(
4

3

)2/3

π−1/3n4/3

√
γ

kBT
DS

L. (C7)

In comparison to Eq. (C6), this prefactor has a differ-
ing n dependence and further depends on an n-dependent
nonequilibrium IFE. In [55], this approach was used to obtain
estimates for both the nonequilibrium IFE and the kinetic
prefactor. Interestingly, no acceptable fit could be obtained
using Eq. (C7) directly in Eq. (C5). Therefore the authors
performed a least-square fit to the n-dependent measured
nucleation rate densities using

JSS = An4/3

√
γ

kBT
DS

Lexp

( −16πγ 3

3kBT (n�μ)2

)
. (C8)

Here, a constant A, a variable surface tension γ (n), and a
variable self-diffusion constant DS

L(n) were used as fitting
parameters. As shown in Fig. 12, an excellent fit can be
obtained. Further, the results of this fit can be described in
terms of second order polynomials γ (n) = (b0 + b1n + b2n

2)
and DS

L(n) = (a0 + a1n + a2n
2)D0. The polynomial for γ (n)

is shown in Fig. 11 as a dashed red line lying between the
results of the other two methods of evaluation.

Taking the reduced values and applying our extrapolation
scheme to each, the differently obtained γ (n) in Fig. 11 yield
estimates for the equilibrium IFE differing by less than 5%.
Slopes and thus Turnbull coefficients differ by approximately
10%. Even though these differences are small, the results
from graphical evaluation appear to be at systematically lower
values, while the results from fits of Eqs. (C5) and (C6) using
DS

L = 0.1D0 systematically show larger values than those
obtained via fits of Eq. (C8). Therefore, σ (n) for all latex
spheres compiled in Fig. 1 data were based on γ derived via
fits of Eq. (C8).

An equally satisfying agreement is not observed for the
kinetic prefactors obtained from the three different evaluation
schemes. This was shown in [55], too. Using the graphical
evaluation, the kinetic prefactor J0,graph(n) was obtained
from extrapolating the locally fitted slope to 1/(n�μ)2 = 0
corresponding to infinite metastability. Using Eq. (C5) in Eq.
(C6) with A = 1 results in a prefactor J0,approx(n). Finally,
DS

L(n) and γ (n) from the fit of Eq. (C8) were used in Eq. (C7)
to calculate the n-dependent kinetic preactor J0,CNT (n) in a
point-by-point manner. The results for these prefactors differed
considerably. Compared to the measured J (n), J0,graph(n)
showed a somewhat less pronounced n dependence and up
to two orders of magnitude larger values. The difference was
getting smaller with increasing n. The n dependence of both
other sets of prefactors was by far weaker. I.e., in both curves,
an increase of J0(n) of about one order of magnitude over
the complete investigated range of n was observed. However,
J0,approx(n) was found to be up to seven orders of magnitude
larger than measured J (n) and J0,CNT (n) was found to be up
to 12 orders of magnitude larger than J (n). Thus far, no good
reason has been proposed as to why the kinetic prefactors show
such large discrepancies, while the IFEs appear to be rather
insensitive to the choice of the evaluation scheme.

APPENDIX D: USE OF CNT AND RELATED SCHEMES TO
OBTAIN NONEQUILIBRIUM IFES

CNT provides a simple model for nucleation kinetics in
first order transitions [37–41]. The model is based on the idea
that nucleation is an activated process and hence contains
a Boltzmann factor with an energy barrier �G∗. Further, a
kinetic prefactor limits the reaction rate. Expressions for this
prefactor have been worked out assuming particle-by-particle
attachment. CNT was originally proposed to describe vapor
condensation. Therefore, in most versions of CNT (including
those used for melt crystallization), it is further assumed that
the nuclei are spherical. This, in turn, implies that the barrier
can be written in terms of surface energy loss and volume
energy gain based on a single geometrical parameter only,
the nucleus radius r . CNT is generally believed to capture
the basic physics of homogeneous nucleation. However, the
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justification of many of the made assumptions is still discussed
controversially. Therefore, the desire for a comprehensive
microscopic theory remains urgent.

CNT allows simple predictions that only require a few
(measurable) bulk thermodynamic data. Its predictive success,
however, has been shown to be quite limited. Deviations
in estimated and measured nucleation rate densities of up
to 35 orders of magnitude occur for melt crystallization of
metals as well as for vapor condensation and also in colloidal
HS systems [36,63,151–153]. Also other measured quantities
deviate strongly from predictions [154]. This has been blamed
on a number of issues, both conceptually and practically.
Finding workarounds or solutions has become a field of great
interest [151,155].

The most obvious conceptual criticism aims at the use of
a macroscopic concept, the IFE, on the scale of clusters and
the application of equilibrium values of thermodynamic quan-
tities under nonequilibrium conditions. In fact, CNT takes a
macroscopic continuum view and describes clusters of discrete
particles as small, noninteracting chunks of thermodynami-
cally well defined new bulk phases separated from unchanged,
isotropic, and homogeneous background melt. Discreteness
enters only through growth by addition of individual particles.
This view implies a number of consequences. For example,
CNT assumes nuclei with sharp interfaces. As already early
simulation work has revealed [156,157], this capillarity ap-
proximation is hardly ever met on the molecular scale. Like
for equilibrated, flat interfaces, density functional theory and
explicitly microscopic models of the interface have therefore
been used to meet this challenge [92,155]. In addition, in
CNT, nuclei are often assumed to be spherical. Typically,
this is an oversimplification, as both computer studies and
experiments on metals or colloids show [16,27,91]. Based
on Walton’s atomic nucleation theory (ANT) [158] and other
approaches, several variants have been developed to include
nonspherical shapes into the CNT scheme or presenting
corrected CNT formulas [159]. Alternatively, the spherical
shape was kept and a curvature and thus size dependent
IFE was introduced [160,161]. Both attempt to describe the
very small nuclei encountered at large metastability. Under
conditions of large metastability, another issue is encountered,
because due to its construction CNT and extensions do not
allow for a description of spinodal processes [162]. Here, a
workaround may be seen in the kinetic model of Dixit and
Zukoski [163] which in fact yields a good description of the
HS nucleation rates down to volume fractions close to freezing.

Furthermore, there are several practical issues. Again, some
are concerned with the nucleus shape and size. Scattering
experiments typically determine orientationally averaged data
referring to an effective sphere of equivalent size. Microscopy
reveals irregular and nonspherical forms but often lacks the
statistics needed to obtain thermodynamically meaningful
averages. Further, the assumption of spatial and temporal
homogeneity in terms of pressure, temperature, and concen-
tration of monomers may not be met, i.e., in experiments
very often it cannot be assured that conditions stay that way
throughout the complete crystallization process [164]. This
affords additional theoretical efforts [60,165,166]. In addition,
at large metastability, interactions between neighboring nuclei
may occur leading to jamming or coalescence [12] and

two-step nucleation may be an important alternative mecha-
nism [24,167,168]. Finally, issues of constrained volume may
play a role in both experiment and simulations [169].

In view of all these issues, the mediocre performance of
CNT and its derivatives in predicting nucleation rate densities,
critical nucleus sizes, or onset of nucleation with decreasing
temperature or increasing pressure is not very surprising.
As discussed above, this is also observed in the data on
PnBAPS68. Using Eq. (C7) in Eq. (C5) no acceptable two
parameter fit to the nucleation rate densities of PnBAPS68
could be obtained. Further, the prefactors calculated using
Eq. (C7) with the results of the very good fit of Eq. (8) to the
data shown in Fig. 12 appeared to be unreliably large values.

However, in the present paper and the ones providing the
original IFE data, CNT was used differently. In fact, it was
only utilized to parametrize nucleation kinetic data and to
obtain estimates of the nonequilibrium IFE as a function of
system metastability. This use of CNT is much less ambitious
and is by far less challenged by the aforementioned issues.
For instance, the extended experiments on PnBAPS68 using
several different techniques ranging from direct counting to
postsolidification analysis employing Avrami theory yielded
consistent nucleation rate densities with J (n) overlapping
over more than an order of magnitude in J . As seen in
Fig. 13, these data are representative for a large number of
CS systems and covers nucleation rate densities over many
orders of magnitude. Three different CNT-based methods
of extracting IFEs were employed. The graphical evaluation
results are of particular importance. As can be seen in Fig. 11
the effective IFEs assemble within statistical uncertainty on
a straight line which demonstrates the linear dependence of
the nonequilibrium IFE on the degree of metastability. Since
this result was obtained without making any assumption on
the kinetic prefactor it lays the basis for the validity of the
extrapolation procedure employed in the main part of this
paper. The same trend is seen for the data derived using
Eq. (C6) which neglects the γ dependence of the prefactor
altogether and the IFEs derived from the fit by Eq. (C8),
where it was accounted for without explicitly calculating
A. The comparison in Fig. 11 therefore shows that all
three procedures capture the IFE dependence of the barrier
qualitatively correctly. The spread in extrapolated equilibrium
IFEs due to the use of different evaluation procedures amounts
to some five percent which is on the same order as the statistical
uncertainty. The spread in slopes is somewhat larger but still
acceptable.

Two more points deserve further attention. The first is the
low absolute values of the IFE of a few hundred nJ/m−2

as compared to, e.g., metals, where typically values of
about 250 mJ/m−2 are obtained [43,91]. This is due to the
low number density of colloidal suspensions and has the
important consequence that colloidal crystal nuclei have fuzzy
shapes [16,17], while metal crystal nuclei appear to be much
more compact [91]. The reduced values for the CS IFE
compared in Fig. 6, however, are only an order of magnitude
lower than the reduced metal IFEs. Second, The different
treatment of the CNT-predicted γ 1/2 dependence of J0 in
the three evaluation schemes results in systematic quantitative
differences in the derived γ (n). We here opted for using a
fit procedure for all latex systems, because it incorporates
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the full CNT-predicted IFE dependence of J , had the least
statistical and/or systematic uncertainties, and shows values
midway between those resulting from the alternative schemes.
The obtained values are therefore understood as CNT based
effective nonequilibrium estimates of the IFE.

In the main part of the paper we extrapolated these data
to zero metastability. This effort is not backed by CNT itself.
Rather it is suggested by the linear dependence of γ on n,
respectively the linear dependence of σ on �μ up to largest
metastabilities as seen in Fig. 1. We note that for PnBAPS68 the
radius of the critical nucleus varied over the investigated range
between one and several dNN [55]. The other species had been
investigated at even larger metastability. The observed strictly

linear dependence of σ on �μ thus appears to exclude any
dependence of σ on the size of the critical nucleus. A linear
dependence of the nonequilibrium IFE on metastability has
been observed before in many systems and was extensively
discussed, e.g., by Jiang [43]. Moreover, in HSs, the volume
fraction dependent CNT-based estimates of the nonequilibrium
IFE linearly decrease with decreasing volume fraction to meet
the theoretical and experimental values of the equilibrium IFE
at the freezing volume fraction [24]. Our present extrapolation
returned effective equilibrium IFE values between those of
HSs and those of metals. It remains to be seen whether
future simulations or measurements of the macroscopic IFE of
colloidal CS with explicit micro-ions will coincide.
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