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Superradiance at the localization-delocalization crossover in tubular chlorosomes
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We study the effect of disorder on spectral properties of tubular chlorosomes in green sulfur bacteria Cf.
aurantiacus. Employing a Frenkel-exciton Hamiltonian with diagonal and off-diagonal disorder consistent with
spectral and structural studies, we analyze excitonic localization and spectral statistics of the chlorosomes. A
size-dependent localization-delocalization crossover is found to occur as a function of the excitonic energy. The
crossover energy region coincides with the more optically active states with maximized superradiance and is,
consequently, more conducive for energy transfer.
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I. INTRODUCTION

Chlorosomes are the main light-harvesting structures of
green sulfur bacteria, some green filamentous anoxygenic pho-
totrophs [1], and the recently discovered aerobic anoxygenic
phototroph Candidatus Chloroacidobacterium thermophilum
[2]. The chlorosomes are self-assembled structures of hun-
dreds of thousands bacteriochlorophyll (BChl) molecules.
They differ from other light-harvesting complexes by the
absence of a protein matrix, which supports the photosynthetic
pigments and their very large size with lengths up to 200 nm
[3]. Chlorosomes usually function in extremely low-light
conditions and are thus probably the most efficient light-
harvesting antenna complexes in nature [4]. These special
properties make the chlorosome a potential candidate for
use in biomimetic light-harvesting devices [5,6]. Due to
the heterogeneity of chlorosomes their structure cannot be
determined by crystallographic methods and structural in-
formation is scarce. However, thanks to recent advances in
different areas, a structural model has been put forward for
cholorosomes of the green sulfur bacterium Chlorobaculum
tepidum [7]. This model is based on a syn-anti array of BChl
c pigments in tubular shape. One of the methods that were
used to determine the structure of the chlorosome was to
study mutant bacteria with three genes whose expression was
suppressed. The mutant bacteria have a more ordered structure
of BChls, which allowed x-ray crystallographic studies and
showed the presence of an helical structure. Interestingly
enough, the mutant bacteria growth was much slower than the
wild-type bacteria. This observation together with the fact that
the function of three genes was suppressed in order to make the
structure less disordered hints to the possibility that disorder
plays a biological function in chlorosomes and a disordered
structure is favored by evolution. The obvious role for disorder
is the broadening of the optical spectra that would be otherwise
too narrow in an ordered structure as observed in similar
artificial supramolecular structures [7].

However, these results are paradoxical since disorder is
also expected to localize the excitonic wave functions and
inhibit energy diffusion according to the theory of Anderson
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localization. Since the seminal paper of Anderson on the
absence of diffusion for disordered quantum lattices [8], wave
localization due to interference has been a central theme in
condensed matter physics. One of the main tools for studying
localization phenomena and, in general, disordered quantum
systems has been random matrix theory (RMT) [9]. The
RMT approach has also been applied to probe thermodynamic
properties of closed systems as well as transport properties
of open systems. One of the important results in the field
is the statistical relationship between the spectral repulsion
parameter β and the wave-function localization. The β

parameter can be used to locate the metal-insulator transition
in three dimensions [10], and it has been shown that there
are specific scaling laws between localization and the repul-
sion parameter in finite, disordered one-dimensional systems
[11–14]. Localization in systems with dipolar interactions
such as the natural light-harvesting complexes have been
shown to be much weaker than that in the Anderson model
with only nearest-neighbor coupling [15]. Quantum trans-
port in disordered networks has been extensively studied in
connection with its relevance for efficient energy transfer in
light-harvesting systems. Centrosymmetry and a dominant
doublet spectral structure has been established as a general
mechanism for highly efficient quantum transport even in the
presence of disorder, and the natural implementation of this
mechanism in the Fenna-Matthews-Olson (FMO) complex of
green sulfur bacteria has also been explored [16].

The extraordinary energy transfer properties of chloro-
somes are attributed to cooperative phenomena in the BChl
aggregates, which are known otherwise as superradiance and
supertransfer. Superradiance occurs when a group of emitters,
situated at a distance from each other shorter than the wave
length of the light, emits coherently with a very high intensity,
and was discovered by Dicke in the context of radiating atoms
[17]. It has been studied for supramolecular complexes and
in the light-harvesting apparatus of bacterial photosynthesis
[18,19]. In the presence of disorder, static or dynamic, superra-
diance is quenched, although in a tight-binding model in a ring
superradiance persists for disorder strengths below a critical
value even in a regime with strong coupling to the external
environment [20]. The optical properties of one-dimensional
disordered excitonic systems have been studied extensively,
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especially in the context of applications to J-aggregates
[21,22]. The localization length of the system has been shown
to limit the number of monomers contributing to the superra-
diance [23]. These results should also apply to supertransfer,
a coined term describing nonradiative excitonic transfer of a
superradiant patch [24–26]. Supertransfer has been ascribed
to play a crucial role in the efficiency enhancement of
light-harvesting systems, and in the chlorosome in particular
[27,28]. Photosynthetic systems are arranged in hierarchical
structures where energy funnelling from the chlorosome
antenna toward the reaction center proceeds throughout a net-
work of superradiant units. Supertransfer refers to the excita-
tion energy transfer (EET) between these superradiant patches.
The properties of cylindrical chlorosomes have been studied
before in the homogeneous case [29] and in the disordered case
[30]. Attempts have also been made at describing the excitonic
dynamics in the presence of a bath using a high-temperature,
stochastic treatment attributed to Haken and Strobl [31–33].
In a recent paper, the transport of excitons through networks
of chromophores was studied using genetically modified
viruses as tunable scaffolds. The weakly coupled network
presented slow Förster energy transfer while the strongly
coupled network presented enhanced super-Förster transfer
increasing significantly the corresponding diffusion rates [34].

In this paper, we study the effects of disorder on localization
properties, spectral statistics, and optical properties, in particu-
lar, superradiance, of chlorosomes. We try to give an answer to
the previously mentioned paradox. The long-range properties
of the dipolar interactions between chromophores make the
excitonic wave functions more robust against localization.
However, for realistic values of disorder and size, there appears
a localization-delocalization crossover as a function of the
excitonic energy as monitored by the inverse participation
ratio and the spectral statistics. Precisely in the low-energy
region where there appears more collectiveness in the optical
behavior of the states for the pristine system, the exciton is
more localized when disorder is included. In the presence
of static disorder, there is thus a compromise between the
collective but localized low-energy states (with less nodes in
the wave function) and delocalization, which happens at high
energy. We find that the maximum of superradiance appears
at the localization-delocalization crossover and moves to the
high-energy side of the spectrum as disorder increases. An
optimal value of disorder depending on the environmental
conditions exists between sufficient superradiance and a wide
spectrum that could help explain the energy transfer properties
of chlorosomes. The paper is organized as follows: we present
the realistic model for a single rod in Sec. II; the results for
the spectral statistics, wave function localization, and optical
properties are shown in Sec. III; and finally, conclusions are
drawn in Sec. IV with some comments on the possibility of
probing experimentally these theoretical results.

II. MODEL FOR A SINGLE ROD

We make use of a single-rod aggregate structure consisting
of a series of L concentric rings in conformance with the model
introduced in Refs. [35,36], as shown in Fig. 1. The distance
between consecutive rings is 6.25 Å. The structure has 18
different stacks. A stack is defined as a vertical group of sites

FIG. 1. Sketch of the arrangement of pigments in the chlorosome
complex of Cf. aurantiacus. The structure is formed by a series of L

concentric rings separated by 6.25 Å. A stack is defined as a vertical
group of sites, which share the same dipole orientation. The structure
has 18 stacks so the total number of sites in the full structure is
N = 18L. Additionally, there is a vertical shift of 2.08 Å in between
adjacent stacks, inducing helicoidal pathways in the structure. Each
BChl c presents a transition dipole moment (green arrows), which
approximately connects two nitrogens (red dots) situated diagonally
to the magnesium atom (blue dots) of the chromophore at the center
of the pigment.

sharing the same dipole orientation, or equally, the number of
sites in one ring. Each ring contains, therefore, 18 sites and the
total number of molecules of the full structure is N = 18L.
For a certain pigment, the neighboring sites in the same ring
belonging to neighboring stacks present relative heights of
−2.08 Å and 2.08 Å with respect to the cylinder symmetry
axis. Every pigment in the same stack has the same dipole
orientation, forming an angle of 100◦ with the radius vector
connecting the magnesium atom and the symmetry axis and an
angle of 36.5◦ with this axis. Regarding the dipole moments of
the pigments belonging to the same ring, neighboring dipole
moments are rotated by 20◦ along the symmetry axis. The
radius of the cylinder is 21.13 Å (the distance from the
magnesium atoms to the symmetry axis). This structure results
in helical pathways of the excitons for energy transfer from
the center of the structure to the top or bottom [7,37,38].

The excitonic model we use to treat optical properties
and localization is based on a model of Frenkel excitons
delocalized over a molecular lattice,

H =
∑
n,m

Jnma†
nam, (1)

where Jnm refers to the excitonic coupling among differ-
ent sites via dipole-dipole interactions, being Jnn = εn the
monomer excitation energy of a single site. The operators a

†
n

(an) create (destroy) a molecular excitation at site n. As is
often the case within the literature of photosynthetic excitons,
we will remain in the one-exciton manifold, assuming that at
every time there is only one exciton in the system. Due to
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TABLE I. Parameters for the disorder used in our work, taken
from Ref. [37].

Disorder Value of FWHM

Exciton diagonal energy 210 cm−1

Position along symmetry axis 0.24 Å
Position along x axis 0.3 Å
Position along y axis 0.3 Å
Angle between dipole and symmetry axis 10◦

Angle between dipole and radius-vector 20.6◦

the high density of pigments within the chlorosome complex,
the often-used point-dipole approximation is not valid in
the present regime where the dipole moment lengths are
comparable to the distance between different chromophores.
A better approximation is given by the extended dipole-dipole
interaction [39]. A point dipole is substituted by opposite
charges +δ and −δ at a finite distance l:

Jnm = D2

4πεε0l2

(
1

r++
+ 1

r−−
− 1

r+−
− 1

r−+

)
, (2)

where r±± represent the distance between the positive (neg-
ative) charge of the point dipole associated with the first
molecule to the positive (negative) charge of the point dipole
associated with the second molecule. In the case of BChl
c pigments the dipole length l is taken to be 8 Å and the
squared dipole strength D as 25 Debye2. The values for the
disorder are taken from Ref. [37] and are quoted on Table I.
For understanding how disordered the system really is we
can compare these values to the parameters of the system. The
value for the nearest-neighbor coupling in the system (between
adjacent pigments in the same stack) is −282.39 cm−1, the
FWHM of the diagonal disorder is 210 cm−1 while the FWHM
of the nearest-neighbor coupling induced by the off-diagonal
disorder is 162.22 cm−1. In the case of the Anderson model
with only nearest-neighbor coupling we have verified that the
system is fully localized and superradiance is quenched for
these values of disorder and for the realistic typical sizes of
the chlorosomes. The situation is quite different for the full
dipole-dipole interaction as is presented in the next section.
For the nearest-neighbors model we have retained the coupling
between adjacent sites in the same stack and ring, the latter
being 10 times smaller and of opposite sign than the former,
due to their relative dipole orientation.

III. RESULTS: LOCALIZATION, SPECTRAL STATISTICS
AND OPTICAL PROPERTIES

In the absence of disorder, an infinite, pristine system can be
diagonalized analytically in the momentum representation, and
eigenstates can be labeled with two momenta, the longitudinal
one on the symmetry axis of the cylinder with continuous
values and the transverse one with discrete values that depend
on the number of molecules in each ring. Following Didraga
et al. [29], it is possible to calculate the absorption spectra
from the Bloch states that diagonalize the Hamiltonian in
momentum state. There are two peaks that concentrate all
the oscillator strength. Most of the oscillator strength is

concentrated at the excitonic lower state at energy E0 =
ω0 + �′

nJ (n), where ω0 is the energy of one exciton of an
isolated BChl c molecule and �′

nJ (n) represents the sum of
all the couplings in site space. The wave function of this
state is just a coherent superposition of all dipoles with the
same coefficient, it has zero transverse momentum k⊥ = 0.
The other peak is related to the helical structure of the system,
the corresponding states have transverse momentum k⊥ = ±1.
The amplitude in this state is such that the components
of the dipoles parallel to the z axis interfere destructively
while the ones perpendicular to the z axis add constructively
(the opposite as in the other case). In the case of a finite
system without disorder the helical peak is more fragmented
due to the effect of the ending points of the cylinder. Although
the monomers are placed in a three-dimensional cylindrical
structure wrapped in itself, the properties of the model are more
similar to the properties of a quasi-one-dimensional system
with dipolar interactions [29,30]. It is interesting to notice that
the pristine model of the chlorosome has a centrosymmetric
structure that has been argued to be an important ingredient for
efficient transport in quantum networks [40–42]. A dominant
doublet structure is the other critical ingredient needed for
optimal quantum transport [16]. Although, outside the model
we are using in this work, it is easy to picture a dominant
doublet structure as being also important for the behavior of
chlorosomes once the full modeling of the coupling to the
reaction center is taking into account.

Didraga and Knoester also studied a case of strong disorder
with σ = 800 cm−1 in addition to a weak-disorder case, where
disorder can be seen as a perturbation mixing helical states with
the low-energy peak and fragmenting slightly the oscillator
strength. They showed that the excitons dominating the optical
properties have anisotropic localization along the helices and
that the localization length increased with energy from the
bottom to the center of the band. In their case, however, the
localization length was always smaller than the typical system
size.

In order to study the localization properties of the excitonic
system we calculate the inverse participation ratio (IPR) [43]
defined by

IPR(Eα) = 1∑
i |
α

i |4 , (3)

where 
α
i is the amplitude of the excitonic eigenstate with

energy Eα on site i. IPR = 1 if the state is localized on only one
site, and IPR = N if the wave function is equally distributed
among all sites in an N site system. Figure 2 displays the IPR as
a function of the normalized state number k/N for cylinders of
different lengths. We notice that for realistic values of disorder
the IPR is independent of the aggregate length at the edges
of the spectrum and, thus, wave functions present a localized
nature. Therefore, the IPR reveals a localized to delocalized
crossover, which is also signalled by the spectrum statistics as
shown below.

The repulsion parameter is defined by the behavior of the
nearest-neighbor spacing distribution near degeneracy: P (s) ∼
sβ (s → 0), where sα = (Eα+1 − Eα). Integrable systems
present a Poissonian profile of the spacing distribution with
β = 0 while chaotic systems show level repulsion, avoiding
degeneracies with β ∼ 1. The origin of level repulsion comes
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FIG. 2. IPR as a function of the normalized state number k/N for
different sizes. The lower panel shows a zoom on the region close to
the ground state. We can see how IPR saturates as a function of size for
the region close to the ground state up to k/N ≈ 0.005. Parameters for
the disorder are quoted in Table I. The FWHM of the diagonal disorder
is 210 cm−1 while the FWHM of the nearest-neighbor coupling
induced by the off-diagonal disorder is 162.22 cm−1.

from the presence of avoided crossings in systems with
symmetry-breaking perturbations. Recently, level repulsion
has been experimentally verified in disordered cyanine-dye-
based molecular nanoaggregates [44]. In order to study the
repulsion parameter β of spectral statistics, we fit the nearest-
neighbor spacing distribution to the phenomenological Brody
distribution [45], which has been used successfully for similar
purposes in many areas related to localization in disordered
systems or quantum chaos [46–50]:

P (s) = A(β + 1)sβ exp(−Asβ+1), A = �

[
β + 2

β + 1

]β + 1

, (4)

where the constant A is needed for proper normalization and
� is the � function. For localized systems, level repulsion is
diminished as neighboring levels tend to localize in nonover-
lapping spatial regions, β = 0, and the nearest-neighbor
spacing distribution is equal to the Poisson distribution P (s) =
exp (−s). In systems of disordered but extended states the form
of P (s) can be obtained from RMT and can be approximated

FIG. 3. Top panel: Fit of the P (s) to the Brody distribution in the
case of L = 40, 80, 150, 300 rings for different values of the central
energy of the level window. Bottom panel: Value of β as a function of
the renormalized state number k/N for different lengths of cylinder.
Parameters for the disorder are the same as described in the caption of
Fig. 2 and are quoted in Table I. The FWHM of the diagonal disorder is
210 cm−1, while the FWHM of the nearest-neighbor coupling induced
by the off-diagonal disorder is 162.22 cm−1.

by the Wigner-Dyson distribution, which is equal to the
Brody distribution with β = 1, P (s) = (π/2) exp (−πs2/4)
[9]. The Brody distribution interpolates smoothly between
these two limits. Previously to the computation of the P (s),
the unfolding of the spectra to unit spacing is needed. The
unfolding procedure filters the smooth part of the spectrum by
performing a local average on the nearest-neighbor distances.
We have used a local unfolding procedure with a window of
5 levels as described in Ref. [51]. This procedure describes
perfectly well the short-range spectral correlations described
by the P (s), although it cannot be used to study long-range
correlations in the spectra [52].

The results are shown in Fig. 3. We show some examples
of the fit to the Brody distribution. We have analyzed the
data moving a window of 100 levels around some particular
level number and analyzing the results every 10 levels (the
windows are overlapping). In that way, we can study the
repulsion parameter as a function of the exciton energy. The
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quality of the fit is impressive. The parameter β behaves as
a function of the energy in a complementary way to the IPR.
This complementarity is tightly related to the sensitivity of the
β parameter to the ratio between the localization length and
the total length of the system [13,14]. In the localized region,
the IPR saturates for sufficiently large tubes, indicative of the
finite localization length of these states. At higher energies,
far from the ground state, the localization length is much
longer than the realistic system sizes that we have used (300
rings). For this reason the IPR of Fig. 2 increases with larger
aggregates in the delocalized region. In contrast, the repulsion
parameter decreases as a function of the system size in the
localized region, as in that regime β is very sensitive to the
ratio between the localization length (which saturates) and
the total length of the system. In the delocalized region, β

varies very little with the system size although it continues to
decrease, albeit slowly. The fact that the repulsion parameter
decreases (although very slightly in the middle of the band) as
a function of the total length of the chlorosome for all energies
is an indication of the localization of the wave functions
in the thermodynamic limit, as expected from theoretical
considerations [10,15].

In other words, while the localization length increases with
the system size, the ratio (localization length)/(system size)
tends to zero. For the largest aggregate size we have calculated,
the values we find numerically are β � 0.6 in the delocalized
region, β ≈ 0.5 in the crossover region, and β � 0.4 in the
localized region of the spectra. The value β ≈ 0.5 corresponds
to the energy region where the saturation of the IPR with the
system size ceases, giving rise to extended states as shown
in the bottom panel of Fig. 2. Due to the finite nature of
the system, the crossover region is slightly extended around
this value.

In general, the excitonic superradiance depends on a
variety of controlling parameters, such as temperature, inter-
chromophore coupling, static disorder, and various forms of
exciton-phonon interactions. For example, the superradiance
size is quickly reduced to one with rising temperature. It was
also shown that the effect of exciton-phonon coupling on the
superradiance size closely resembles that of the static disorder
[18]. Here, considering only static disorder, the superradiance
size is limited by two factors: (1) it cannot be larger than the
localization length; and (2) it cannot be larger than the typical
size of the nodal structure (the inverse of the absolute value
of the momentum for systems with translational symmetry).
In the pristine system when the states are delocalized over the
entire system, the localization length is not a limiting factor,
and most of the oscillator strength is concentrated in the state
with zero momentum. In the disordered case as the localization
length increases with energy while the nodal size decreases
with energy there will be a maximum of superradiance when
the localization length is approximately equal to the nodal size
and there is a state with coherence along the whole localization
region. As disorder is increased the region with maximum
superradiant size moves to higher values of energy up to the
point where disorder is so large that superradiance is destroyed
and the oscillator strength becomes uniform in energy. In order
to study superradiance we concentrate on the linear absorption
spectrum that can be computed in the dipolar approximation

FIG. 4. Stick spectrum for the absorption (normalized to the
maximum peak in each case) for four different values of disorder
W , a factor multiplying the disorder parameters of Table I (From top
to bottom, W = 0, W = 1, W = 4, and W = 8). The maximum of
the spectrum is moving right with increasing disorder. In the case of
W = 8, superradiance has been destroyed and the oscillator strength
is distributed along all the spectrum; in this particular realization,
the maximum happens to be by chance closer to the top end of the
spectrum. The FWHM of the diagonal disorder is 0 cm−1 (W = 0),
210 cm−1 (W = 1), 840 cm−1 (W = 4), and 1680 cm−1 (W = 8),
while the FWHM of the nearest-neighbor coupling induced by the
off-diagonal disorder is 162 cm−1 (W = 1), 272 cm−1 (W = 4), and
359 cm−1 (W = 8). Note that the parameter W multiplies the values
of the FWHM for the geometric parameters of the model, which
does not translate directly in the same scaling of the FWHM of the
nearest-neighbor coupling.

through

A(ω) =
∑

k

dkδ(ω − Ek), (5)

dk =
∣∣∣∣∣
∑

n

〈n|ψk〉μn

∣∣∣∣∣
2

=
∑
n,m

(
ck
n

)∗
ck
mμn · μm, (6)

where dk is the oscillator strength of excitonic state k, ψk

is the k-th excitonic wave function, Ek is the corresponding
energy, |n〉 represents a local excitation at site n, ck

n is the nth
component of the k-th excitonic wave function, and μn is the
dipole vector corresponding to the n molecular dipole in the
structure. We assume an isotropic distribution of chlorosomes
and average over the direction of the polarization vector. We
show some examples of the linear absorption stick spectrum
as a function of the level number for typical realizations with
different disorder strengths in Fig. 4.

We have examined how absorption spectra of the system
and spectral statistics are related to superradiance and localiza-
tion of the wave function. As a measure of the superradiance
length as a function of disorder, we have calculated the
oscillator strength of the highest peak. In order to measure the
fragmentation, we have also calculated the minimum number
of states that have a combined oscillator strength equal to
90% of the sum rule (we first order the states in augmenting
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FIG. 5. Oscillator strength of the highest peak in the stick
absorption spectrum in units of the sum rule and number of states with
a combined oscillator strength of 90% in units of the total number of
states as a function of disorder (defined as in the previous figure) for
the case of L = 150 rings. The result shown is the ensemble average
with 1000 realizations of the disorder.

oscillator strength and sum up to the 90% of the sum rule).
In Fig. 5 we show both these measures as a function of the
strength of disorder W in units of the parameters of Table I.
The FWHM of diagonal disorder is then 210W cm−1 while the
behavior of the off-diagonal disorder is more complicated, as
the FWHM of the geometric parameters of the model does not
translate directly into a FWHM of the off-diagonal couplings,
which depend on this geometry (see caption of Fig. 4). We can
see that superradiance is important up to a disorder strength of
W ∼ 4 corresponding to a FWHM of the diagonal disorder of
840 cm−1 and to a FWHM of the nearest-neighbor coupling
of 272 cm−1. Although we have examined only a single-rod
model for numerical convenience, we expect the results to hold
for realistic cholorosomes with many concentric rods.

IV. CONCLUSIONS

Superradiance and supertransfer are two sides of the
same coin and key to understand the fast energy transfer in
chlorosomes of green sulfur bacteria. We have studied the
effect of disorder in superradiance of chlorosomes of Cf.
aurantiacus using the excitonic model developed recently
by Ganapathy et al. [7]. The dipolar long-range interaction
makes disorder not very effective for localizing the excitonic
states for cylindrical chlorosomes. However, using tools of
Anderson localization theory and spectral statistics such as the
IPR and the repulsion parameter β we have shown that there is
a localization-delocalization crossover as a function of the ex-
citonic energy that is seen both in the wave-function statistics

and in the spectral statistics. This kind of supramolecular
aggregates concentrate the optical active energy region at low
energies were the collective effects of the coupled molecular
dipoles are most important. There is, then, a competition
between localization and collectiveness (or state coherence)
and the more optical active region where superradiance occurs
coincides with the crossover region between localization
and delocalization. The results found in this work should
be applicable to other different supramolecular aggregates
[53,54]. These states where the absorption is largest are also the
ones expected to dominate the energy transfer. The collective
supertransfer effect is still important in spite of disorder
and should increase dramatically the single dipole transfer
rates. There has been experiments that have shown level
repulsion via analysis of the fluoresence spectra in J-aggregates
[44,55]. Similar experiments as a function of the size could be
performed for chlorosomes to probe the level repulsion in the
optically active region and as a consequence the localization
of the wave functions with respect to the total size of the
chloromeses. The results should be different in the wild-type
case, more disordered, than for less-disordered mutants.

It would also be very interesting to extend the results
obtained to the case of coupling to a thermal environment.
Studying the transport and absorption properties of the one-
dimensional Anderson model coupled to a bath, it has been
shown that the maximal diffusion rate occurs at intermediate
coupling strength [33]. These results are reminiscent of our
results as a function of the energy. Experimental results
using chromophore networks in a genetically engineered virus
scaffold point in the same direction [34]. Besides the role of
dephasing in the destruction of destructive interference leading
to Anderson localization, these observations have been linked
to the phenomena of environment-assisted quantum transport
[56] and of momentum rejuvenation [57]. The momentum
rejuvenation occurs when classical noise counteracts the
depletion of high-momentum components of the wave-packet
sustaining a broad momentum distribution. Realistic models,
such as the one explored in this work, in the presence of a
thermal bath should be explored in order to understand better
the role of these general design principles [16] in the actual
behavior of chlorosomes as light-harvesting complexes.
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[52] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa,

Phys. Rev. E 66, 036209 (2002).
[53] Y. Zhao, G. Chen, and L. Yu, J. Chem. Phys. 113, 6502

(2000).
[54] L. Hu, Y. Zhao, F. Wang, G. Chen, C. Ma, W. Kwok, and D.

Philips, J. Phys. Chem. B 111, 11812 (2007).
[55] A. V. Malyshev, V. A. Malyshev, and J. Knoester, Phys. Rev.

Lett. 98, 087401 (2007).
[56] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-

Guzik, New J. Phys. 11, 033003 (2009).
[57] Y. Li, F. Carusso, E. Gauger, and S. C. Benjamin, New J. Phys.

17, 013057 (2015).

022414-7

http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1088/0305-4470/22/7/017
http://dx.doi.org/10.1088/0305-4470/22/7/017
http://dx.doi.org/10.1088/0305-4470/22/7/017
http://dx.doi.org/10.1088/0305-4470/22/7/017
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1103/PhysRevE.48.R1613
http://dx.doi.org/10.1103/PhysRevE.48.R1613
http://dx.doi.org/10.1103/PhysRevE.48.R1613
http://dx.doi.org/10.1103/PhysRevE.48.R1613
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1063/1.474746
http://dx.doi.org/10.1063/1.474746
http://dx.doi.org/10.1063/1.474746
http://dx.doi.org/10.1063/1.474746
http://dx.doi.org/10.1021/jp990140z
http://dx.doi.org/10.1021/jp990140z
http://dx.doi.org/10.1021/jp990140z
http://dx.doi.org/10.1021/jp990140z
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1016/S0301-0104(84)85174-5
http://dx.doi.org/10.1016/S0301-0104(84)85174-5
http://dx.doi.org/10.1016/S0301-0104(84)85174-5
http://dx.doi.org/10.1016/S0301-0104(84)85174-5
http://dx.doi.org/10.1063/1.461317
http://dx.doi.org/10.1063/1.461317
http://dx.doi.org/10.1063/1.461317
http://dx.doi.org/10.1063/1.461317
http://dx.doi.org/10.1016/0375-9601(77)90427-3
http://dx.doi.org/10.1016/0375-9601(77)90427-3
http://dx.doi.org/10.1016/0375-9601(77)90427-3
http://dx.doi.org/10.1016/0375-9601(77)90427-3
http://dx.doi.org/10.1088/1367-2630/12/7/075020
http://dx.doi.org/10.1088/1367-2630/12/7/075020
http://dx.doi.org/10.1088/1367-2630/12/7/075020
http://dx.doi.org/10.1088/1367-2630/12/7/075020
http://dx.doi.org/10.1098/rsta.2011.0213
http://dx.doi.org/10.1098/rsta.2011.0213
http://dx.doi.org/10.1098/rsta.2011.0213
http://dx.doi.org/10.1098/rsta.2011.0213
http://dx.doi.org/10.1021/ja412035q
http://dx.doi.org/10.1021/ja412035q
http://dx.doi.org/10.1021/ja412035q
http://dx.doi.org/10.1021/ja412035q
http://dx.doi.org/10.1021/jz301872b
http://dx.doi.org/10.1021/jz301872b
http://dx.doi.org/10.1021/jz301872b
http://dx.doi.org/10.1021/jz301872b
http://dx.doi.org/10.1021/jp026217s
http://dx.doi.org/10.1021/jp026217s
http://dx.doi.org/10.1021/jp026217s
http://dx.doi.org/10.1021/jp026217s
http://dx.doi.org/10.1063/1.1807825
http://dx.doi.org/10.1063/1.1807825
http://dx.doi.org/10.1063/1.1807825
http://dx.doi.org/10.1063/1.1807825
http://dx.doi.org/10.1021/jz3008326
http://dx.doi.org/10.1021/jz3008326
http://dx.doi.org/10.1021/jz3008326
http://dx.doi.org/10.1021/jz3008326
http://dx.doi.org/10.1063/1.4729786
http://dx.doi.org/10.1063/1.4729786
http://dx.doi.org/10.1063/1.4729786
http://dx.doi.org/10.1063/1.4729786
http://dx.doi.org/10.1088/1367-2630/15/8/085010
http://dx.doi.org/10.1088/1367-2630/15/8/085010
http://dx.doi.org/10.1088/1367-2630/15/8/085010
http://dx.doi.org/10.1088/1367-2630/15/8/085010
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/10.1016/S0006-3495(00)76458-7
http://dx.doi.org/10.1016/S0006-3495(00)76458-7
http://dx.doi.org/10.1016/S0006-3495(00)76458-7
http://dx.doi.org/10.1016/S0006-3495(00)76458-7
http://dx.doi.org/10.1016/S0006-3495(03)74735-3
http://dx.doi.org/10.1016/S0006-3495(03)74735-3
http://dx.doi.org/10.1016/S0006-3495(03)74735-3
http://dx.doi.org/10.1016/S0006-3495(03)74735-3
http://dx.doi.org/10.1007/s11120-010-9533-0
http://dx.doi.org/10.1007/s11120-010-9533-0
http://dx.doi.org/10.1007/s11120-010-9533-0
http://dx.doi.org/10.1007/s11120-010-9533-0
http://dx.doi.org/10.1016/0009-2614(70)80220-2
http://dx.doi.org/10.1016/0009-2614(70)80220-2
http://dx.doi.org/10.1016/0009-2614(70)80220-2
http://dx.doi.org/10.1016/0009-2614(70)80220-2
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1142/S0219477513400075
http://dx.doi.org/10.1142/S0219477513400075
http://dx.doi.org/10.1142/S0219477513400075
http://dx.doi.org/10.1142/S0219477513400075
http://dx.doi.org/10.1039/df9705000055
http://dx.doi.org/10.1039/df9705000055
http://dx.doi.org/10.1039/df9705000055
http://dx.doi.org/10.1039/df9705000055
http://dx.doi.org/10.1021/jz101003j
http://dx.doi.org/10.1021/jz101003j
http://dx.doi.org/10.1021/jz101003j
http://dx.doi.org/10.1021/jz101003j
http://dx.doi.org/10.1007/BF02727859
http://dx.doi.org/10.1007/BF02727859
http://dx.doi.org/10.1007/BF02727859
http://dx.doi.org/10.1007/BF02727859
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1103/PhysRevC.63.014311
http://dx.doi.org/10.1103/PhysRevC.63.014311
http://dx.doi.org/10.1103/PhysRevC.63.014311
http://dx.doi.org/10.1103/PhysRevC.63.014311
http://dx.doi.org/10.1209/0295-5075/101/67002
http://dx.doi.org/10.1209/0295-5075/101/67002
http://dx.doi.org/10.1209/0295-5075/101/67002
http://dx.doi.org/10.1209/0295-5075/101/67002
http://dx.doi.org/10.1038/nature13137
http://dx.doi.org/10.1038/nature13137
http://dx.doi.org/10.1038/nature13137
http://dx.doi.org/10.1038/nature13137
http://dx.doi.org/10.1103/PhysRevE.92.042906
http://dx.doi.org/10.1103/PhysRevE.92.042906
http://dx.doi.org/10.1103/PhysRevE.92.042906
http://dx.doi.org/10.1103/PhysRevE.92.042906
http://dx.doi.org/10.1103/PhysRevE.66.036209
http://dx.doi.org/10.1103/PhysRevE.66.036209
http://dx.doi.org/10.1103/PhysRevE.66.036209
http://dx.doi.org/10.1103/PhysRevE.66.036209
http://dx.doi.org/10.1063/1.1310326
http://dx.doi.org/10.1063/1.1310326
http://dx.doi.org/10.1063/1.1310326
http://dx.doi.org/10.1063/1.1310326
http://dx.doi.org/10.1021/jp070403m
http://dx.doi.org/10.1021/jp070403m
http://dx.doi.org/10.1021/jp070403m
http://dx.doi.org/10.1021/jp070403m
http://dx.doi.org/10.1103/PhysRevLett.98.087401
http://dx.doi.org/10.1103/PhysRevLett.98.087401
http://dx.doi.org/10.1103/PhysRevLett.98.087401
http://dx.doi.org/10.1103/PhysRevLett.98.087401
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1088/1367-2630/17/1/013057
http://dx.doi.org/10.1088/1367-2630/17/1/013057
http://dx.doi.org/10.1088/1367-2630/17/1/013057
http://dx.doi.org/10.1088/1367-2630/17/1/013057



