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We present a theoretical framework to analyze the dynamics of gene expression with stochastic bursts.
Beginning with an individual-based model which fully accounts for the messenger RNA (mRNA) and protein
populations, we propose an expansion of the master equation for the joint process. The resulting coarse-grained
model reduces the dimensionality of the system, describing only the protein population while fully accounting for
the effects of discrete and fluctuating mRNA population. Closed form expressions for the stationary distribution
of the protein population and mean first-passage times of the coarse-grained model are derived and large-scale
Monte Carlo simulations show that the analysis accurately describes the individual-based process accounting for
mRNA population, in contrast to the failure of commonly proposed diffusion-type models.
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I. INTRODUCTION

Intrinsic noise originating from the discreteness of inter-
acting particles plays an important role in genetic expression:
It diversifies the distribution of protein population, promotes
a transition between different cellular phenotypes on a pop-
ulation level, and in turn enhances the organisms’ ability to
adapt to changing environments without the need for genetic
mutation [1]. There are several sources of intrinsic noise in the
context of gene expression: transcriptional bursting noise from
the stochastic transition between active and repressed states
of DNA transcription, translational bursting noise from the
relatively fast action of mRNA to produce the proteins [1,2],
and, finally, the demographic noise from the finite and discrete
nature of the protein molecules. Bursts of protein production
are experimentally observed to be the predominant form of
intrinsic noise in gene expression dynamics [3,4]. While
many stochastic models have been proposed to model gene
circuits [5–14], only a few studies quantitatively account for
the effects of bursting noise [11,12,15,16] at a mesoscopic
level. To our knowledge, current theoretical investigation of
the dynamical properties of such bursting processes is limited
to stationary properties of the protein distribution on the
population level [15,16].

Our aim of this work is to construct a systematic scheme to
expanding the master equations of the individual-based model
while retaining the signature of the bursting noise. Starting
from an individual-based model including both mRNA and
protein populations, we construct a coarse-grained process
describing only the protein population dynamics that fully
accounts for the discreteness effects and fluctuations in the
mRNA population. When the mRNA degrades at a much
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shorter time scale, our proposed method nicely bridges
the existing bursting models [15,16] and the individual-
based models [7,11], and mathematically identifies that the
translational bursting noise originates from the demographic
stochasticity of the mRNA population dynamics. The resulting
process from our proposed expanding scheme allows a
straightforward formulation of computations of the mean
first-passage statistics [17] which quantifies the time scale
of the gene regulatory network. We present analytic solu-
tions along with computational verification from large-scale
Monte Carlo simulations of the individual-based model, our
proposed approximating model, and the diffusion approxima-
tions [9,10,13,14] of the dynamics. The key conclusion is
that the conventional diffusion approximation of the master
equation, while vastly adopted because of its well-studied
mathematical properties, fails to accurately estimate the
time scales of the individual-based model. Alternatively,
our proposed approximating process faithfully captures the
signature of the bursting dynamics and serves as a candidate
of coarse-grained models.

II. INDIVIDUAL-BASED MODEL

A simple individual-based model of autoregulated gene
expression including both the mRNA and protein populations
contains four reaction steps [2,15] as summarized in Fig. 1(a):

∅
H̃ (NP)−−−→ mRNA (transcription), (1a)

mRNA
γB−→ mRNA + Protein (translation), (1b)

mRNA
γ−→ ∅ (degradation of mRNA), (1c)

Protein
γ0−→ ∅ (degradation of proteins). (1d)

We use ∅ to denote the empty set. In the first reaction, each
mRNA with a transcribed genetic sequence from the DNA

2470-0045/2016/93(2)/022409(10) 022409-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.022409


YEN TING LIN AND CHARLES R. DOERING PHYSICAL REVIEW E 93, 022409 (2016)

FIG. 1. (a) Schematic diagram of the individual-based model.
(b) Hill functions with Hill coefficients n = 1,2,4. (c) The piecewise
deterministic Markov process Eq. (4).

is produced with a rate H̃ . The mRNA is then translated to
produce proteins with a rate γB. mRNA and proteins degrade
with constant rates γ and γ0, respectively. In this autoregulated
genetic circuit, proteins plays the role of transcription factors
and self-regulate the transcription rate, so H̃ is a function
of the random population of proteins NP. Specifically, we
use a Hill function H̃ (X) := r0 + r1X

n/(Kn + Xn) to model
the transcription rate, where n is the Hill coefficient, which
quantifies the effect of cooperative binding of the transcription
factors to the DNA [2]. To illustrate the qualitative behavior
of H̃ (X), we plot Hill functions with n = 1,2,4 in Fig. 1(b).
Finally, we remark that the implementation of the Hill function
H̃ results from an adiabatic approximation when the gene
switches between the on and off states on a much shorter time
scale; interested readers are referred to Ref. [2] and references
therein.

We refer to the process in Fig. 1(a) as the individual-based
(IB) model. Although the IB model provides a detail descrip-
tion of both the mRNA and protein populations, it is generally
difficult to analyze theoretically except for linear cases [18,19].
Single-species models describing only the protein populations
are often adopted, especially for more complicated genetic
circuits [9,10,13,14]. However, fluctuations in the mRNA
population are an important dynamical factor [11,12], and our
objective is to construct a coarse-grained model describing
only the protein population accounting for contributions from
fluctuations in the mRNA population.

Generally, mRNA degrades much faster than proteins. In
the model organism Escherichia coli, for example, the mean
lifetime of the mRNA is about 2 min while protein lifetimes
are 45–60 min [15]. As a consequence, a large number of
proteins is produced in a relatively short period of time—a
phenomenon termed translational bursting. In addition, due
to a small system size (the volume of E. coli are ∼10−18 m3),
the onset of the transcription and the lifetime of the synthesized
mRNA are observed to be stochastic [20].

III. CONSTRUCTION OF A COARSE-GRAINED MODEL

Motivated by the observation of translational bursting, we
propose an expansion to approximate the master equation
of the IB process in Fig. 1(a). First, we notice that in the
IB model, for any given mRNA number m, the protein
population NP(t) is a birth-death processes with constant birth
rate mγB and constant per capita death rate γ0. Therefore,
it is convenient to expand the process describing the protein
dynamics conditioning on the mRNA population: Each “state”
of the system is labeled by the mRNA number m. The

transition rate from state m to m + 1 mRNA molecules is
the autoregulated transcription rate H̃ (NP), and the transition
rate from state m + 1 to m mRNA molecules is the mRNA
degradation rate γ . Within each state of the system we perform
a Kramers-Moyal expansion of the birth-death process [17,21]
with respect to the system size K � 1. In the lowest-order
approximation only the advection terms describing the mean-
field dynamics are retained [22]. Formally letting the protein
concentration be x := NP/K � 0 and the number of mRNA
molecules be m ∈ {0,1,2, . . .}, in each state the protein density
evolves according to the deterministic equation

ẋ(t) = mγ
B

K
− γ0x, (2)

with transition rates between different states

m
H (x)−−→ m + 1 and m

γm−→ m − 1, (3)

where H (x) := H̃ (Kx) is the scaled Hill function.
Next, we note that the mean lifetime of the mRNA is

O(1/γ ), and in the fast-degrading mRNA limit γ � 1, most
of the time the system has either m = 0 or m = 1. We therefore
neglect states m � 2 and formulate a closed forward equation
for pm(x,t), the joint probability density that the system
presents m ∈ {0,1} mRNA molecules and protein density x

at time t ,

∂

∂t

[
p1(x,t)
p0(x,t)

]
= L†

[
p1(x,t)
p0(x,t)

]
, (4)

where the forward operator [23] is defined to be

L† :=
[−γ − ∂x(γ b − γ0x) H (x)

γ −H (x) + ∂xf (x)

]
, (5)

where we have defined b := B/K to be a dimensionless
parameter characterizing the strength of the bursts, and
f (x) := γ0x. A more rigorous derivation of the model (4)
can be found in Appendix A. We shall refer to (4) as
the piecewise deterministic Markov process [PDMP [24,25];
schematic diagram Fig. 1(c)] and remark that the process in x

alone is non-Markovian [25].

IV. STATIONARY DISTRIBUTION OF THE
COARSE-GRAINED MODEL

To proceed with our analytic investigation, an infinitely
fast-degrading mRNA limit γ → ∞ is taken. Although in such
a limit the mean duration when the system stays in the m = 1
state is 1/γ → 0, the protein concentration in the m = 1
state increases with a rate bγ → ∞, preserving exponentially
distributed random bursts with an average burst strength b. In
this limit the process stays in the m = 0 state almost surely [i.e.,
p1(x,t) → 0 ∀t], and the probability distribution p0 satisfies
a closed and second-order differential equation

(1 + b∂x)∂tp0 = −∂x[−x + bH (x) − b∂xf (x)]p0. (6)

The stationary probability distribution is obtained by direct
integration,

pstat(x) = N
f (x)

exp

{−x

b
+

∫ x H (ξ )dξ

f (ξ )

}
, (7)
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where N is the normalization factor. Substituting the explicit
form of the Hill function, we find the analytic expression for
the stationary distribution

pstat(x) = N
γ0

e− x
b x

r0
γ0

−1(xn + 1n)
r1
nγ0 . (8)

We remark that in the limit γ → ∞, the PDMP model reduces
to the bursting model described by a continuous master
equation (presented in Appendixes B and C), and that this
result confirms Ref. [16].

V. MEAN FIRST-PASSAGE TIME

At this stage, the PDMP formulation provides a mathemat-
ical relation bridging the previously bursting models [15,16]
and the individual-based model [7,11]: The mesoscopic burst-
ing models are the “continuum limit” of the individual-based
models, assuming that (a) the system size of the protein
population is infinite K → ∞ and (b) the lifetime of the
mRNA is random and infinitely fast and consequently the
proteins are synthesized in a stochastic and bursting fashion.

In some parameter regimes the stationary distribution (8)
exhibits bistability [26] and can be adopted to model a
biological switch [11,16]. Our formulation (4) can be used
to derive the mean switching time (MST) between two modes
of gene expression in a straightforward way [27]. We begin
by deriving the mean first-exit time to leave a domain (x1,x2)
where 0 < x1 < x2 < ∞.

If the initial protein concentration is x ∈ (x1,x2) and the
initial number of mRNA is m, then the mean time to exit the
domain Tm(x) satisfies the inhomogeneous equation [17]

−
[

1
1

]
= L

[
T1(x,t)
T0(x,t)

]
, (9)

where the generator L is the adjoint of the forward operator in
Eq. (5),

L =
[−γ + [γ b − f (x)]∂x γ

H (x) −H (x) − f (x)∂x

]
, (10)

with boundary conditions

T1(x2) = 0, T0(x1) = 0. (11)

The physical meaning of the boundary conditions is clear:
When the system starts with the state m = 1—a state with a fast
production of proteins—at the upper boundary x2, and when
the state m = 0—a state with only degrading proteins—at the
lower boundary x1, the flow immediately leaves the domain
(x1,x2).

Taking the limit γ → ∞, we deduce a closed second-order
differential equation for T0,

−T ′′
0 −

[
H

f
− 1

b
+ H

x

(
x

H

)′]
T ′

0 = 1

bf
+ H ′

f H
, (12)

where the primes denote a derivative with respect to x. The
boundary conditions for (12) follow from (11):

T0(x1) = 0, 1 = H (x2)T0(x2) + γ0x2T
′

0(x2). (13)

We remark that while formally deriving the backward equa-
tions of the bursting models [15,16] considering only the pro-

tein concentration is possible, imposing the correct boundary
conditions (13) is not trivial.

The solution (derived in Appendix E) is

T0(x) = C

∫ x

x1

e−M(y)dy +
∫ x

x1

e−M(y)V (y)dy, (14)

where the auxiliary functions M(x),V (x), and the constant C

using f (x) = γ0x are

M(x) :=
∫ x

[
H (y)

γ0y
− 1

b
+ d

dy

(
ln

y

H (y)

)]
dy, (15)

V (x) :=
∫ x

[ −1

bγ0y
+ −1

γ0yH (y)

dH (y)

dy

]
eM(y)dy, (16)

C ≡
[
−V (x2)e−M(x2)γ0x2 − H (x2)

∫ x2

x1

V (y)e−M(y)dy + 1

]

×
[
γ0x2e

−M(x2) + H (x2)
∫ x2

x1

e−M(y)dy

]−1

. (17)

This solution is a generalization of results in Refs. [28,29].
The exact solution (14) resembles the form of the mean

first-passage times of widely studied diffusion-type pro-
cesses [17,30]. For the diffusion approximation, the integrand
of M(x) would be simply replaced by the drift divided by the
(possibly multiplicative) diffusion—a measure of the relative
strength of the “dissipation” to “fluctuations,” and the function
M(x) is often implicitly interpreted as a “potential” of the
process.

When the system exhibits bimodality, the mean switching
times between two modes of the protein expression can be
obtained by taking appropriate limits of (14). First, we define
a critical density xc separating the low- and high-protein-
abundance modes, then take x1 → 0 and x2 → xc for the
low mode, and x1 → xc and x2 → ∞ for the high mode.
Careful analysis is needed because (12) is singular at x = 0
and x → ∞ (and is presented in Appendixes E 1 and E 2). The
analytic expressions for the mean switching times (MSTs) are

Tlow→high ≡
∫ x

0
e−M(y)V (y)dy + C2, (18)

Thigh→low ≡
∫ x

xc

e−M(y)[V (y) − V (∞)]dy, (19)

where the constant C2 is

C2 := 1 − xcV (xc)e−M(xc)

H (xc)
−

∫ xc

0
e−M(y)V (y)dy. (20)

VI. COMPARISON TO THE DIFFUSION APPROXIMATION

We now turn to the diffusion approximation (DA) of the IB
process. To our knowledge, there is no standard way to derive
DA models for general bursting kernels. In Appendix D, we
present the straightforward Kramers-Moyal expansion [17,21]
of the master equation of the IB process in the limit γ → ∞
and B � 1 yielding the Itō stochastic differential equation

dXt = [bH (Xt ) − γ0Xt ]dt +
√

�b2H (x) dWt, (21)
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FIG. 2. Sample paths of the models. The dotted green line denotes
165 molecules which separate the low- and high-protein-abundance
modes.

where Xt is the random population density of the proteins,
Wt is the standard Wiener process, and the scaling factor
� = 2. An alternative and phenomenological construction of
the diffusion approximation is to insert the mean and variance
of the bursting kernel in the individual-based process (see
Appendix D), which yields (21) with the scaling factor � = 1.
To avoid leaking probabilities to negative densities, we put a
reflective boundary at the origin x = 0. Analytic expressions
for the stationary distribution and the mean switching times of
the diffusion equation are derived by standard analysis [17].

We performed numerical simulations to measure the sta-
tionary distributions and the mean switching times (MSTs)
in all three models to verify the theoretical analysis. For
the IB model, exact sample paths are generated by standard
continuous time Markov chain simulations [31]. For the PDMP
model, kinetic Monte Carlo simulations can be constructed by
generating exact random waiting times to the next transition
events [32]. In the limit γ → ∞, we adopted a previously
proposed algorithm [33]. For the diffusion approximations we
construct a standard Euler-Maruyama integrator of (21). One
sample path of each of the models are presented in Fig. 2.

The parameters were chosen to be in a biologically relevant
regime [15,16,34], K = 200, n = 4, B = 40, r0 = 2, r1 = 10,
γ = 30, while γ0 := 1 is chosen to normalize the unit of the
time by a natural cell cycle.

FIG. 3. (a) Drift of the mean-field dynamics ẋ = bH (x) − γ0x

showing a single fixed point. (b) Stationary probability distributions of
the individual-based model, piecewise deterministic Markov process
(PDMP), and the diffusion approximations (DAs). Solid lines are
analytic solutions. Discrete markers represent numerically measured
probability distributions from Monte Carlo simulations.

FIG. 4. Mean switching times (MSTs) of the individual-based
model, piecewise deterministic Markov process (PDMP), and the
diffusion approximations (DAs). Solid lines are analytic predictions,
and discrete markers are measured from Monte Carlo simulations.
(a) Tlow→high; (b) Thigh→low. xc := 165/K .

Figure 3 presents the stationary probability distributions of
the IB, PDMP, and DA models. Note that the low mode is
noise induced and does not exist in the mean-field dynamics
(top panel of Fig. 3). While the PDMP model captures the
stationary distribution of the IB model extremely well, directly
expanding the IB stochastic bursting model by Kramers-
Moyal expansion (DA with � = 2) qualitatively captures the
stationary distribution, and the phenomenological DA model
with � = 1 failed to capture the stability of the low mode.

Figure 4 presents the MST between low- and high-protein-
abundance modes in all three models. Again, the PDMP
model well estimates the mean switching times of the IB
model, and both the DA models fail by a large amount.
When the state is initially below xc, both the DA models
underestimate the transition time because the bursting kernels
of the DA model have a thinner (Gaussian) tail compared to
the geometric bursting kernel of the IB model. When the initial
state is above xc, the DA model with � = 1 overestimates the
MST because the approximation does not capture the high
probabilities of low-density bursts, and the DA model with
� = 2 underestimates the MST because the approximation
fails to capture that the bursting kernel is always positive.
Due to the nontrivial boundary conditions (13), as x ↗ xc,
Tlow→high(x) does not converge to 0, as do the solutions of
the Markovian diffusion-type models. We highlight that the
non-Markovian PDMP formulation faithfully captures this
feature of the IB model.

VII. DISCUSSION AND OUTLOOK

The PDMP approximation works well even for models with
a strong noise strength. In our example, the low mode is of
an order of 100 protein molecules, and the noise strength
(per each burst) is of an order of 40 protein molecules. In
addition, the PDMP approximation performs well, even though
an infinitely fast-degrading mRNA limit γ → ∞ is taken,
and consequently almost surely there is no mRNA presented
in the system. Meanwhile, for a finite γ = 30, we observe
an average 0.3188 mRNA in the stationary state of the IB
model. Fixing other parameters, we observe that the bursting
PDMP (i.e., γ → ∞) provides relatively good estimates when
γ � 10, while the diffusion approximations systematically
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fail to capture the stationary distribution and the MST (see
Appendix F).

The PDMP model can be easily generalized. For example,
finite populations and lifetimes of mRNA can be considered
by generalizing (4) to include pm with m ∈ {0,1,2, . . .}.
Models with further downstream protein reactions [8,35]
can be modeled by including more subpopulations of the
proteins. These generalizations merit future investigations.
We remark that an investigation of higher-dimensional ge-
netic circuits along with the sensitivity analysis of the
parameters B and K have been performed and published
separately [36].

We conclude that bursting originating from the discreteness
of the fast-living mRNA molecules and the stochastic tran-
scription events is the dominating noise in an individual-based
autoregulated gene expression model. The key finding in
this study is that while conventional diffusion-type models
qualitatively approximate the stationary distributions of the
individual-based model, they are no longer adequate to analyze
the dynamical properties of bursting systems, while the
expansion described here faithfully captures the dynamical
properties of the individual-based model in a biologically
realistic parameter regime and serves as an analytic tool to
investigate more complex models with bursting noise.
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APPENDIX A: CONSTRUCTION OF THE PDMP

The master equation of process (1) is

Ṗm,n = − [H̃ (n) + γBm + γm + γ0n]Pm,n

+ γ (m + 1)Pm+1,n + H̃ (n)Pm−1,n

+ γ bmPm,n−1 + γ0(n + 1)Pm,n+1. (A1)

In the fast-degrading mRNA limit (γ /γ0 � 1), the system
presents only 1 or 0 mRNA for a majority of the time.
Our proposed approximation is to consider the process (1)
conditioning on whether or not the system presents an mRNA,
and truncate the probabilities associated with mRNA numbers
greater than 1:

Pm,n = 0, ∀m > 1, (A2a)

Ṗ1,n = −[γB + γ + γ0n]P1,n + H̃ (n)P0,n

+ γBP1,n−1 + γ0(n + 1)P1,n+1, (A2b)

Ṗ0,n = −[H̃ (n) + γ0n]P0,n + γP1,n

+ γ0(n + 1)P1,n+1. (A2c)

Next, for each of the master equations of the protein number
n conditioning on the mRNA number m, we perform the
conventional Kramers-Moyal expansion [17]. Denote a typical
population scale of the protein by N� � 1. Note that in the

autocorrelated circuit, it is convenient to choose N� = K .
In the continuum limit, the population density is defined by
x := n/K , and the mean “burst” size is defined as b := B/N�.
The evolution of the probability distributions p0(x,t) :=
P0,n(t)/K and p1(x,t) := P1,n(t)/K is well approximated
by two coupled Fokker-Planck equations [21], which are
expressed in a compact matrix form

∂t

(
p1

p0

)
= L†

(
p1

p0

)
, (A3)

with

(L†)11 := −γ + ∂x(γ0x − γ b) + 1

2K
∂2
x (γ0x + γ b), (A4a)

(L†)12 := H (x), (A4b)

(L†)21 := γ, (A4c)

(L†)22 := −H (x) + γ0∂xx + γ0

2K
∂2
x x. (A4d)

We again remind the reader that the differential operators
∂x and ∂2

x act on p0,1, too.
It should be clear that the discrete population of the proteins

causes the demographic stochasticity, which is described by
those terms with a prefactor 1/K . We further propose to take
the limit K → ∞ [21] and leave only the advection terms
in Eq. (A4) to consider exclusively the bursting noise, which
is a result of random production and degradation events of
the mRNA. In such a limit, the process becomes a piecewise
deterministic Markov process: In each state of m = 0 or
m = 1, the process is deterministic but the switching between
the states is Markovian. We emphasize that, in such a limit,
the demographic noise which comes from the discreteness
of the protein population does not exist—conditioned on an
m state, the concentration of the protein on its own is always
evolving in a deterministic fashion.

APPENDIX B: INDIVIDUAL-BASED BURSTING MODEL

Back to process (1), when γ � γ0 and H̃ (NProtein), there is
a time-scale separation and the mRNA degrades at a very rapid
rate. As a consequence, when one mRNA is formed, almost
surely the next events that occur before its final degradation
are even more rapid productions of proteins.

Due to the time-scale separation, the production of other
mRNA and the protein degradation are negligible in one
mRNA’s lifetime. In such a limit, the distribution of the total
number of proteins an mRNA could ever synthesize before its
final degradation can be computed. Define the total number
of proteins an mRNA could ever synthesize to be N� , a non-
negative random variable. Because the mRNA has only have
two choices—either to degrade or to produce a protein—at
any time before the final degradation, the probability that the
mRNA produce a protein is B/(1 + B) from reading off the
ratio of the rates in the process (1). Therefore, the distribution
of N� is a geometric distribution,

P{N� = n} ≡
(

B

1 + B

)n( 1

1 + B

)
. (B1)
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As a consequence, process (1) in the limit γ → ∞ can be
reformulated to neglect the mRNA population

∅−→N� × Protein, with a rate H̃ (NP),

Protein−→∅, with a rate γ0, (B2)

N� + 1 ∼ Geom[B/(1 + B)].

We remind the reader that the parameter B is the mean number
of the proteins an mRNA can produce. We shall refer to
model (B3) as the “individual-based bursting model.”

Let Pn be the probability when the system has exactly n

proteins. The master equation of process (B3) can be derived
as

Ṗn = − [H̃ (n) + γ0n]Pn + γ0(n + 1)Pn+1

+
n∑

m=0

H̃ (m)

(
B

1 + B

)n−m 1

1 + B
Pm. (B3)

APPENDIX C: EQUIVALENCE BETWEEN THE PDMP
AND CONTINUOUS STATE BURSTING MODELS

We now apply Kramers-Moyal system-size expansion,
which is performed only to the degradation dynamics in
Eq. (B3). The expansion of (B3) yields

∂tp(x,t) =
[
γ0∂xx + γ0

2K
∂2
x x

]
p(x,t)

+
∫ x

0
W (x − y)H (y)p(y)dy, (C1)

where p(x,t) := Pn(t)/N� is the continuum probability dis-
tribution, x := n/N� is the population density of the protein,
and W (x − y) is a kernel of the bursting process, defined by
approximating the discrete by the trapezoid rule:∫ x

0
W (x − y)f (y)dy

:= −f (x) + 1

2

(
f (0)

1 + bK
+ f (x)

1 + bK

)

+
∫ x

0

1

1/K + b
e
−bN�(x−y) log(1+ 1

bN�
)
f (y)dy. (C2)

In the infinity population limit K → ∞, (C1) reduces to

∂tp(x,t) = ∂x[xp(x,t)]

+
∫ x

0

e− x−y

b

b
H (y)p(y)dy − H (x)p(x), (C3)

which is exactly the continuous master equation in Friedman
et al. [16]. It is straightforward to establish the equivalence
of this model to the piecewise deterministic Markov process:
Applying the operator 1 + b∂x to (C3) and sending K → ∞,
we arrive at the forward equation (6).

APPENDIX D: DERIVATION OF THE DIFFUSION
APPROXIMATION

Often, in higher-dimensional systems, diffusion processes
are adopted to analyze complex genetic circuits [9,10,13,14].

This Appendix presents the derivation of the diffusion approx-
imation of the process (B3).

In the fast-degrading mRNA limit [i.e., γ → ∞ in Eq. (1)],
the diffusion approximation can be obtained by performing
Kramers-Moyal expansion to (B3). The corresponding Fokker-
Planck approximation reads

∂tpn(x) = − ∂x

[(
H (x)

E[N�]

K
− γ0x

)
pn

]

+ 1

2
∂2
x

[(
H (x)

E
[[

N2
�

]]
K2

+ γ0x

K2

)
pn

]
. (D1)

N� is a geometric distribution, and the exact expressions of
the first two moments are

E[N�] = B, (D2a)

E
[
N2

�

] = B(1 + 2B). (D2b)

When the bursting number is large, B � 1 (a typical biological
value 101–102 in E. coli [15,34]), we arrive at the final diffusion
approximation of (B3):

∂tpn(x) = − ∂x{[bH (x) − γ0x]pn}

+ 1

2
∂2
x

[(
2b2H (x) + γ0x

K

)
pn

]
. (D3)

We finally remark that in the large population limit, b scales
O(K−1). A sensible population scaling suggests that near
the mean-field fixed points, O[bH (x)] = O(γ0x) = O(K0),
which in turn indicates that O[H (x)] = O(K). It is clear
that the diffusion term can then be simplified if we neglect
demographic noise due to the protein degradation, when
B � 1,

∂tpn(x) = −∂x{[bH (x) − γ0x]pn} + ∂2
x {[b2H (x)]pn},

(D4)
or, equivalently, the Itō stochastic differential equation

dXt = [bH (Xt ) − γ0Xt ]dt +
√

2b2H (x)dWt, (D5)

where dWt is the Wiener process.
In the main text, we refer to the diffusion process (D4) as the

diffusion approximation of process (1) in the fast-degrading
mRNA limit (γ → ∞), with a reflective boundary at x = 0.
A more phenomenological way is to assert the drift and
the diffusion terms of the stochastic differential equation
to be the mean (b) and variance (b2) of the exponentially
distributed burst size. It can be shown [36] that this approach
corresponds to a constant-burst model. In this case, the
stochastic differential equation is clearly

dXt = [bH (Xt ) − γ0Xt ]dt +
√

b2H (x)dWt . (D6)

Finally, we remark that (D4) is derived from expanding
the master equation (B3), where the effect is that the bursting
noise only enhances the population of the proteins, and (D5)
clearly overestimates the noise. On the other hand, the
phenomenological approach (D6) clearly underestimates the
low-density bursts of the exponentially distributed kernel.
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APPENDIX E: SOLVING THE BACKWARD EQUATION

On the domain � := {x : 0 < x1 � x � x < ∞}, the backward equation reads

−
(

1
1

)
= L

(
T1(x,t)
T0(x,t)

)
, (E1)

where L is defined in Eq. (A4). In the limit with fast-degrading mRNA γ → ∞, it converges to

−
(

0
1

)
=

(−1 + b∂x 1
H (x) −H (x) − f (x)∂x

)(
T1(x,t)
T0(x,t)

)
, (E2)

where we denote γ0x by f (x). It is elementary to eliminate the variable T1 and obtain

d2T0

dx2
+

[
H

f
− 1

b
+ H

x

d

dx

(
x

H

)]
dT0

dx
= −

(
1

bf
+ 1

f H

dH

dx

)
. (E3)

Define an auxiliary function M(x) and V (x),

M(x) :=
∫ x

[
H (x ′)
f (x ′)

− 1

b
+ H (x ′)

x ′
d

dx ′

(
x ′

H (x ′)

)]
dx ′, (E4)

V (x) := −
∫ x

(
1

bf (x ′)
+ 1

f (x ′)H (x ′)
dH

dx

)
eM(x ′)dx ′. (E5)

With the expression H (x) := r0 + r1x
n/(xn + kn) and f (x) := γ0x, M(x) has a closed form:

M(x) := log

[
e− x

b x
r0
γ0

+1(xn + kn)
r1
nγ0

1

r0 + r1xn

xn+kn

]
. (E6)

Now (E3) can be expressed as

d

dx

(
eM (x)

dT0

dx

)
= −

(
1

bγ0x
+ 1

γ0xH (x)

dH

dx

)
eM(x), (E7)

and the formal solution is

T0(x) = C0 + C1

∫ x

x1

e−M(x ′)dx ′ +
∫ x

x1

e−M(x ′)V (x ′)dx ′, (E8)

with two constants of integration C0 and C1.
Since T0(x1) = 0, clearly C0 = 0. The second constant C1 can be determined by the second boundary condition

T1(x2) = 0 ⇐⇒ −1 = −H (x2)T1(x2) − f (x2)
dT1

dx
(x2). (E9)

After some algebra, we arrive at

C1 =
−V (x2)e−M(x2) − 1

f (x2)

[
H (x2)

∫ x2

x1
V (x ′)e−M(x ′)dx ′ − 1

]
e−M(x2) + H (x2)

f (x2)

∫ x2

x1
e−M(x ′)dx ′.

. (E10)

For the mean switching times between the high- and the low-concentration mode, we have to impose either x1 → 0 (for the
initial state in the low mode) or x2 → ∞ (for the initial state in the high mode).

1. Limiting case: x1 → 0

Note that exp[−M(x)] has a singularity at x = 0. However, V (x) is a well-behaved function near x = 0, and we claim∫ x

0
e−M(y)V (y)dx ′ < ∞. (E11)

To show this, first let 0 < ε  1, and∫ x

0
e−M(y)V (y)dy =

∫ ε

0
e−M(y)V (y)dy +

∫ x

ε

e−M(y)V (y)dy. (E12)

The second term is bounded. As for the first term, since y < ε  1, we have

e−M(y) = e
y

b

y
r0
γ0

+1(yn + kn)
r1
nγ0

(
r0 + r1y

n

yn + kn

)
� e

ε
b (r0 + r1)

k
r1
γ0

1

y
r0
γ0

+1
=:

B1

y
r0
γ0

+1
, (E13)
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with a constant B1 < ∞. Similarly,

eM(y) � y
r0
γ0

+1 (εn + kn)
r1
nγ0

r0
=: B2y

r0
γ0

+1
, (E14)

with a constant B2 < ∞. Similarly, V (y) can be bounded,

V (y) ≡
∫ y

(
1

bγ0z
+ 1

γ0zH (z)

dH (z)

dz

)
eM(z)dz � B3

∫ y

z
r0
γ0 dz = B3

r0
γ0

+ 1
y

r0
γ0 , (E15)

with some B3 < ∞. Finally, we have ∫ ε

0
e−M(y)V (y)dy � B1B3

r0
γ0

+ 1

∫ ε

0
dy < ∞, (E16)

which establishes our claim (E11).
Next, we proceed to show the following statements:

lim
x1→0

[∫ x2

x1

e−M(x)dx

]−1

= 0 and lim
x1→0

∫ x2

x1
e−M(x)dx∫ x3

x1
e−M(x)dx

= 1 (E17)

for any x3 < x2. To show this, again we separate the integral,∫ x

x1

e−M(y)dy =
∫ ε

x1

e−M(y)dy +
∫ x

ε

e−M(y)dy. (E18)

The second term is again bounded, and for simplicity we define

B5 :=
∫ x

ε

e−M(y)dy < ∞. (E19)

As for the first term, we begin with the lower bound of the integrand:

e−M(x) � r0

y
r0
γ0

+1(εn + kn)
r1
nγ0

=: B6
1

y
r0
γ0

+1
. (E20)

As a consequence,

∫ ε

x1

e−M(y)dy � B6γ0

r0

⎛
⎝ 1

x

r0
γ0

1

− 1

ε
r0
γ0

⎞
⎠, (E21)

and finally

lim
x1→0

[∫ x2

x1

e−M(y)dy

]−1

� lim
x1→0

r0

B6γ0

x
r0
γ0

x
r0
γ0 + ε

r0
γ0

= 0. (E22)

Similarly, it is straightforward to apply the L’Hôpital’s law to show

lim
x1↓0

∫ x2

x1
e−M(x)dx∫ x3

x1
e−M(x)dx

= 1. (E23)

To sum up, upon taking the limit x1 → 0, the solution (E8)—the mean switching time if the system starts with the low-protein-
abundance mode—can be expressed as

T0(x) ≡ lim
x1→0

T0(x) =
∫ x

0
e−M(x ′)V (x ′)dx ′ + T0(0), (E24)

with

T0(0) = lim
x1→0

C1

∫ x

x1

e−M(x ′)dx ′ = lim
x1→0

−V (x2)e−M(x2) − 1
f (x2)

[
H (x2)

∫ x2

x1
V (x ′)e−M(x ′)dx ′ − 1

]
e−M(x2)+ H (x2)

f (x2)

∫ x2
x1

e−M(x′ )dx ′∫ x

x1
e−M(x′ )dx ′

=
−V (x2)e−M(x2) − 1

f (x2)

[
H (x2)

∫ x2

x1
V (x ′)e−M(x ′)dx ′ − 1

]
H (x2)
f (x2)

= 1

H (x2)
[1 − x2V (x2)e−M(x2)] −

∫ x2

0
e−M(x ′)V (x ′)dx ′. (E25)
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2. Limiting case: x2 → ∞
Note that exp[−M(x)] has a singularity at x → ∞. On the other hand, V (x) is again well behaving. Rewrite

C1 =
−V (x2) − 1

f (x2)e
M(x2)

[
H (x2)

∫ x2

x1
V (x ′)e−M(x ′)dx ′ − 1

]
1 + eM(x2) H (x2)

f (x2)

∫ x2

x1
e−M(x ′)dx ′,

, (E26)

and we aim to show that limx2→∞ C1 = − limx→∞ V (x) < ∞.
First, we show that for a given and strictly positive x1,

lim
x2→∞ eM(x2)

∫ x2

x1

e−M(y)dy = 0. (E27)

Clearly, from the exact expression of M(x2), we have

eM(x2)
∫ x2

x1

e−M(y)dy =
∫ x2

x1

e−(x2−y)

x

r0
γ0

+1

2

(
xn

2 + kn
) r1

nγ0 1

r0+ r1xn
2

xn
2 +kn

y
r0
γ0

+1(yn + kn)
r1
nγ0

1
r0+ r1yn

yn+kn

dy (E28)

�
(

1 + r1

r0

)(
1 + kn

xn
2

) r1
nγ0

∫ x2

x1

ey−x2

(
x

y

) r0
γ0

+ r1
γ0

+1

dy. (E29)

For x2 � x1, it is elementary to show that the integrand has a single maxima at y∗ := r0/γ0 + r1/γ0 + 1 < ∞. As a consequence,

eM(x2)
∫ x2

x1

e−M(y)dy �
(

1 + r1

r0

)(
1 + kn

xn
2

) r1
nγ0

ey∗−x2

(
x2

y∗

) r0
γ0

+ r1
γ0

+1 ∫ x2

x1

dy (E30a)

=
(

1 + r1

r0

)(
1 + kn

xn
2

) r1
nγ0

ey∗−x2

(
x2

y∗

) r0
γ0

+ r1
γ0

+1

(x2 − x1), (E30b)

and apparently,

lim
x2→∞ eM(x2)

∫ x2

x1

e−M(y)dy = 0. (E31)

Note that V (x) is a strictly decreasing and well-behaved
function, so 0 > V (x) > Vmin := limx→∞ V (x) for x1 < x <

∞. As a consequence,

lim
x2→∞

∣∣∣∣eM(x2)
∫ x2

x1

V (y)e−M(y)dy

∣∣∣∣
� |Vmin| lim

x2→∞ eM(x2)
∫ x2

x1

e−M(y)dy = 0. (E32)

The above Eqs. (E31) and (E32) suggest that

lim
x2→∞ C1 → |Vmin|, (E33)

0 400 8000

2

4x 10−3

Number of Proteins

γ=1
γ=5
γ=7
γ=10
γ=30

FIG. 5. Stationary distributions of the individual-based model
(discrete markers), analytic predictions of the piecewise deterministic
Markov process (PDMP, solid blue), and the diffusion approximations
(DAs, solid red line for � = 1 and solid purple line � = 2).

and the final solution of the mean switching time if the system
begins with a high-protein-abundance state is

T0(x) = |Vmin|
∫ x

x1

e−M(x ′)dx ′ +
∫ x

x1

e−M(x ′)V (x ′)dx ′. (E34)

APPENDIX F: CASES WITH FINITE γ

We present a preliminary sensitivity analysis of the pa-
rameter γ which controls the inverse lifetime of the mRNA
molecule. When γ is finite, proteins are no longer produced
in bursts. By observing Figs. 5 and 6, we conclude that when
fixing other parameters and varying the γ value, the bursting

0 100 165
0

5

10

Initial Number of Proteins

M
ST

165 500 800
0

25

50

Initial Number of Proteins

M
ST

γ = 1
γ = 5
γ = 7
γ = 10
γ = 30

)b()a(

165 500 800
0

120

240

Initial Number of Proteins

M
ST

FIG. 6. Mean switching times (MSTs) of the individual-based
model (discrete markers), analytic predictions of the piecewise
deterministic Markov process (PDMP, solid blue), and the diffusion
approximations (DAs, solid red line for � = 1 and solid purple line
� = 2). (a) Tlow→high for finite γ = 1,2,7,10,30, (b) Thigh→low for
γ = 2,7,10,30, and the inset is for γ = 1. xc := 165/K .
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PDMP model provides a reliable estimation (error <30%) of
the stationary distribution and MST when γ � 10. For systems
with smaller γ < 10, the bursting assumption no longer holds
and the model needs to include mRNA with a finite lifetime.
The results suggests that the critical time scale is roughly

the time scale of the transcription events, i.e., ≈H̃ . Further
investigation is needed to verify the relations between these
two time scales. We remark that in any case the diffusion
approximations capture neither the stationary distributions
(γ > 5) nor the MST (∀γ ).
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