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Mean-field models of the brain approximate spiking dynamics by assuming that each neuron responds to its
neighbors via a naive spatial average that neglects local fluctuations and correlations in firing activity. In this paper
we address this issue by introducing a rigorous formalism to enable spatial coarse-graining of spiking dynamics,
scaling from the microscopic level of a single type 1 (integrator) neuron to a macroscopic assembly of spiking
neurons that are interconnected by chemical synapses and nearest-neighbor gap junctions. Spiking behavior at
the single-neuron scale � ≈ 10 μm is described by Wilson’s two-variable conductance-based equations [H. R.
Wilson, J. Theor. Biol. 200, 375 (1999)], driven by fields of incoming neural activity from neighboring neurons.
We map these equations to a coarser spatial resolution of grid length B�, with B � 1 being the blocking ratio
linking micro and macro scales. Our method systematically eliminates high-frequency (short-wavelength) spatial
modes �q in favor of low-frequency spatial modes �Q using an adiabatic elimination procedure that has been
shown to be equivalent to the path-integral coarse graining applied to renormalization group theory of critical
phenomena. This bottom-up neural regridding allows us to track the percolation of synaptic and ion-channel noise
from the single neuron up to the scale of macroscopic population-average variables. Anticipated applications
of neural regridding include extraction of the current-to-firing-rate transfer function, investigation of fluctuation
criticality near phase-transition tipping points, determination of spatial scaling laws for avalanche events, and
prediction of the spatial extent of self-organized macrocolumnar structures. As a first-order exemplar of the
method, we recover nonlinear corrections for a coarse-grained Wilson spiking neuron embedded in a network
of identical diffusively coupled neurons whose chemical synapses have been disabled. Intriguingly, we find that
reblocking transforms the original type 1 Wilson integrator into a type 2 resonator whose spike-rate transfer
function exhibits abrupt spiking onset with near-vertical takeoff and chaotic dynamics just above threshold.
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I. INTRODUCTION

Effective modeling of brain dynamics requires assimilation
of activity over multiple scales. At the cellular level, a
resting neuron emits an action potential, or “spike,” when
its membrane voltage exceeds a threshold of about −60 mV.
The process of spike generation is governed by voltage-
dependent changes in Na+ and K+ ion-channel conductances
that shape the growth, deceleration, and subsequent recovery
of the membrane voltage. Hodgkin and Huxley [1] provided
the foundation description for spiking dynamics, and many
simplified variants of these deterministic equations (e.g.,
[2–5]) have been studied. Synaptic and ion-channel noise
can have a significant impact on neuron dynamics, and this
has stimulated investigation of stochastic adaptations of these
model equations using both additive noise and Markov-chain
approaches [6–11].

Information processing in the brain is presumed to involve
the collective and coordinated activity of large groups of
neurons [12]. For example, in the visual cortex, cortical
columns containing 100 to 100 000 neurons respond to specific
orientations of bar-shaped visual stimuli [13]. Similarly, the
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electrical signal recorded from a ∼1 cm2 electroencephalo-
gram (EEG) electrode represents the summed activity of many
thousands of neurons. This motivates a pair of questions.
How does one develop a model that encapsulates the summed
network activity of large populations of spiking neurons? Also,
how does noise—both synaptic and ion-channel—percolate up
from the micro scale of the single neuron to the macro scale
of the network?

One approach is to construct hierarchical networks of
individually coupled spiking neurons. The Human Brain
Project is attempting to scale up such networks to realistic
neuron counts, but this is a massive and complex computational
task requiring supercomputing facilities [14,15].

At the other complexity extreme is the top-down mean-field
approach that replaces individual neurons with a spatially
averaged neural continuum which describes population ac-
tivity in terms of spike rates, making no attempt to follow
the detailed submillisecond dynamics of spike generation
and propagation. In this approach, pioneered by Wilson and
Cowan [16], the input to each neuron in the network is
the weighted sum of input from excitatory and inhibitory
neural populations whose activity is set by a sigmoidal
function mapping population-average membrane voltage to
firing rate. Mean-field models provide a useful depiction of
bulk properties of large aggregates of neurons; however, their
rate-based foundation imposes an ad hoc spatial and temporal
averaging that neglects fluctuations and cannot track the
percolation of channel and synaptic noise from the individual
neuron up to the population. Despite these limitations, the
mean-field formalism has been adopted by many authors to

2470-0045/2016/93(2)/022402(25) 022402-1 Published by the American Physical Society

http://dx.doi.org/10.1006/jtbi.1999.1002
http://dx.doi.org/10.1006/jtbi.1999.1002
http://dx.doi.org/10.1006/jtbi.1999.1002
http://dx.doi.org/10.1006/jtbi.1999.1002
http://dx.doi.org/10.1103/PhysRevE.93.022402
http://creativecommons.org/licenses/by/3.0/


MOIRA L. STEYN-ROSS AND D. A. STEYN-ROSS PHYSICAL REVIEW E 93, 022402 (2016)

describe a range of brain rhythms and state transitions and
remains a very active area of cortical modeling [17–22].

Recently, there has been significant interest in moving
beyond mean-field theory to provide a more accurate map-
ping from single spiking neurons to populations [12,13,23],
with several authors adopting a master equation formulation
[24–28]. The master equation has a rich history in the depiction
of jump processes associated with chemical reactions and
other birth-death interactions [29]. In simple terms, the master
equation follows the time development of the conditional
probability distribution function P {A(t)|A′(t − �t)}, where
A(t) is the population activity at time t , and A′(t − �t) is
population activity at a slightly earlier time. Using a Markovian
approximation, and assuming the system is quasistationary
during small time interval �t , the probability per unit time
that a neuron will spike is governed by a transition operator,
W {A(t)|A′(t)}, whose spatial average yields a sigmoidal
firing-rate transfer function for the neural population [26].
The master equation is then solved by deriving a set of moment
hierarchy equations that are contingent on the properties of the
transfer function. The fact that this method relies on a rather
ad hoc spatial averaging means that it is not all clear how noise
contributions from ion-channel and synaptic sources are to be
aggregated all the way up to the scale of the population.

To address these issues, we present a scheme to scale
systematically the dynamics of a single spiking neuron to
the bulk environment of an assembly of such neurons. We
proceed by regridding the cortical system using a spatial
blocking (coarse-graining) technique similar to that employed
in K. Wilson’s renormalization group theory for critical
phenomena [30]. In this landmark paper, Wilson transformed
the S4 model (a representation of the Ising ferromagnet)
to momentum space and integrated over high-wave-number
(small-spatial-scale) modes using generalized path integrals.
The blocking formalism we adopt here utilizes the adiabatic
elimination of spatial scales developed by Gardiner [29,31,32]
and by Steyn-Ross and Gardiner [33]. In particular, Ref. [33]
shows that by projecting out the stochastic variables associated
with short wavelengths, one can reproduce Wilson’s path-
integral blocking equations for the S4 ferromagnet. Our
rescaling is expressed in a Fokker-Planck framework, making
use of boson annihilation-creation operators drawn from
quantum mechanics. This methodology provides a transparent
formalism which not only describe the aggregation of neuronal
noise to the level of the population, but also elucidates how
nonlinear interactions at the micro scale feed into the rescaled
population equations.

We start with a two-dimensional (2D) patch of cortical
tissue partitioned into a network of (2n + 1)2 unit cells,
each cell of area �2 (� ≈ 10 μm) and containing a pair of
excitatory (e) and inhibitory (i) neurons; neurons are coupled
via both chemical and electrical (i-i and e-e gap-junction)
synapses, and are assumed to be perturbed by synaptic and
ion-channel white noises. We adopt the spiking-neuron model
of H. R. Wilson [4,5], an elegant encapsulation of the essential
dynamics of the standard conductance-based Hodgkin-Huxley
(HH) equations. The compelling advantage of the H. R.
Wilson model is its ability to reproduce biophysically plausible
spiking wave forms for both type 1 (integrator) and type
2 (resonator) excitable tissue using only polynomial (rather

than transcendental) nonlinearities in the voltage and recovery
differential equations; this reduced model has been used by
numerous authors [8,23,34,35].

The 2D patch of cortex is then mapped to a coarser-grained
network of (2N + 1)2 compartments of side length L =
B� with L ≈ 1 mm and where B = (2n + 1)/(2N + 1) � 1
defines our blocking ratio (see Fig. 4). Each of these larger
compartments represents a neural macrocolumn, containing
an interconnected population of ∼105 neurons. In this way,
we map the H. R. Wilson single-neuron equations to the areal
extent of a macrocolumn, with rescaled equations describing
stochastic variables that have been spatially averaged over the
coarser grid. Extracting the correct coarse-grained scaling is
the essential goal of mean-field neural theory.

As is the case for K. Wilson’s path-integral approach, our
method is inherently perturbative; in our case we require
at least a minimal level of gap-junction diffusivity. This
requirement is discussed further in Sec. IV and Appendix F.

In summary, this paper shows how spiking activity and
neuronal noise can be systematically reblocked from single-
neuron level to neural population. We anticipate that these
reblocked equations could be used to (i) derive transfer func-
tions relating membrane voltage to the averaged firing rate of
the macrocolumn taking nonlinear neuron-neuron interactions
into account; (ii) investigate changes in fluctuation spectra
during approach to critical points; (iii) establish scaling laws
relating blocking ratio to the temporal and spatial statistics of
avalanches in neural activity; (iv) predict the spatial extent of
emergent cortical-column structures.

The paper is structured as follows. In Sec. II we describe the
embedding of the spiking-neuron model within a continuum
neural field of spiking neurons. We detail the properties of the
spiking neuron and the nature of the synaptic and diffusive
inputs that drive its voltage and recovery system variables. We
transform the equations of motion to stochastic differential
form by introducing additive white noises representing synap-
tic and ion-channel stochastic perturbations. We map these
Langevin equations to a Fokker-Planck formulation on a fine-
grained (micro-scale) cortical grid, then apply a systematic and
rigorous adiabatic elimination of short-wavelength (high-�q)
spatial modes to reach our end goal: a rescaled Fokker-Planck
equation describing spiking dynamics on a coarse-grained
(macro-scale) cortical continuum.

As a preliminary demonstration of our rescaling approach,
in Sec. III we investigate the small-noise deterministic limit
of a coarse-grained spiking neuron embedded in a network of
diffusively coupled neurons whose chemical synapses have
been disabled. We conclude in Sec. IV with a discussion
of the method, implications, and possible applications. The
six appendixes provide technical details describing reblocking
corrections, creation and annihilation operators, evaluation of
expectation values, Fourier inversion of drift and diffusion
terms, wave-number integral definitions, and gap-junction
connectivity.

II. METHODS

In broad outline, we start with a spiking-neuron model
embedded within a continuum field of identical spiking
neurons, then develop a systematic mechanism for aggregating
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FIG. 1. Mapping of cortical field equations to a coarser spatial
scale. (a) Continuum field equations for excitable cortical tissue are
discretized to a fine-grained micro-scale lattice of spiking neurons
(b) [see Fig. 4(a)], then reblocked onto a coarser spatial grid (c)
[Fig. 4(b)] before inversion back to continuum form (d). The result
is a set of spiking-neuron field equations describing spatiotemporal
dynamics at the coarser spatial scale.

the nonlinear dynamics of a spiking neuron up to a spatial scale
encompassing a large population of ∼104 to 105 such neurons
coupled via chemical and electrical (gap-junction) synapses.

The major steps are diagramed in Fig. 1.
Itemizing the structure of this Methods section, we con-

struct, then consolidate, the spiking-neuron and field equations
in Secs. II A and II B; introduce noise and Langevin
forms (Sec. II C); and transform these to a Fokker-Planck
description for a fine-grained (micro-scale) lattice of unit cells
(Sec. II D). We outline the projector-operator formalism used
to eliminate high-wave-number (short-wavelength) spatial
modes (Sec. II E); and detail the construction of a rescaled
Fokker-Planck equation in which the short-wavelength �q
modes are eliminated in favor of long-wavelength �Q-modes
on the coarse-grained (macro-scale) lattice (Sec. II F). This
generates a set of rescaled Langevin equations describing
spatially averaged spiking dynamics for a macrocolumn
(Sec. II G).

A. Model

1. Selection of spiking-neuron model

We seek a simplified spiking-neuron model that is both
physiologically meaningful and mathematically tractable.
Following Hodgkin and Huxley [1], we ignore the spatially
extended dendritic and axonal compartments of a real bio-
physical neuron and assume that the neuron can be collapsed
to an isopotential point. Despite this vast simplification, the

HH equations are still too complicated for our purpose since
they are defined in terms of transcendental (exponential and
sigmoidal) voltage dependencies in the gating variables and
their time constants, so they cannot be analyzed readily in a
perturbative expansion. At the opposite extreme of mathemat-
ical complexity is the integrate-and-fire neuron [36], but this
model cannot generate action potentials; instead the spike is
manually “pasted in” when the membrane voltage crosses an
externally specified threshold. Although the popular quadratic
integrate-and-fire models, such as those due to Izhikevich [37],
can spontaneously fire a spike via a regenerative feedback
mechanism, they require a manual reset after firing; thus, their
defining equations are inherently nonanalytic and cannot be
used here.

For the present work we elect to use the H. R. Wilson two-
variable spiking-neuron model [4,5]. Based on the Rinzel [38]
simplification of the HH neuron, the Wilson model replaces
transcendental nonlinearities with algebraic polynomial ap-
proximations to reproduce the essential action-potential dy-
namics. Like the FitzHugh-Nagumo (FHN) neuron, the Wilson
equations are based on a cubic voltage nonlinearity, but, unlike
FHN, emphasize biophysical relevance by retaining explicit
reference to Na+ and K+ reversal potentials. The Wilson
model is a reduction of the HH conductance-based model to a
minimal form required for spike generation with fast positive
feedback from Na+ influx and slower negative feedback from
K+ outflux. The Wilson equations [5] are expressed in terms
of membrane voltage V and a dimensionless recovery variable
R representing the rate of K+ channel activation,

C
dV

dt
= −m∞(V )(V − ENa) − gKR(V − EK) + I ext, (1)

τ
dR

dt
= −R + R∞(V ). (2)

The first equation describes changes in membrane potential V

in terms of membrane specific capacitance C, ionic currents
due to sodium (first term) and potassium (second term),
and external stimulating current I ext. ENa and EK are the
equilibrium potentials for Na+ and K+, respectively; m∞(V )
is the activation function defining Na+ conductance, while the
product gKR represents the recovery-dependent modulation of
K+ conductance gK. In the second equation, the rate change
of recovery R depends on its voltage-dependent steady state
R∞(V ) and time constant τ .

The m∞(V ) and R∞(Vb) are quadratic functions of mem-
brane voltage defined by

m∞(V )/C = a0 + a1V + a2V
2, (3)

R∞(V ) = b0 + b1V + b2V
2. (4)

There is no explicit representation of the chloride leakage
current in Eq. (1). This is because the leakage current has
been absorbed into the linear terms of the m∞(V ) and R∞(V )
polynomials [5]. Table I lists the coefficient values; note
that we follow the SI-units conventions adopted by M. T.
Wilson et al. [23] in their implementation of the H. R. Wilson
neuron [5].
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TABLE I. Model constants for Wilson spiking neuron.

Symbol Value Unit

C 0.010 F m−2

τb 5.6 × 10−3 s
gR,b 26 × 103 s−1

ENa 48 × 10−3 V
EK −95 × 10−3 V
a0 17.81 × 103 s−1

a1 475.8 × 103 s−1V−1

a2 3.380 × 106 s−1V−2

b0 1.266 52 –
b1 37.98 V−1

b2 330 V−2

2. Wilson spiking neuron with diffusion

For notational convenience, we divide the displacement
current density equation (1) by specific capacitance C to give
a voltage-update equation, with each term now carrying units
of volts per second,

dVb

dt
= −g(Vb)(Vb − ENa) − gR,bRb(Vb − EK) + I ext

b /C,

(5)

where we have introduced subscript b ∈ {e,i} to label the
neuron as either excitatory (e) or inhibitory (i). Here g(Vb) ≡
m∞(Vb)/C and gR,b ≡ gK/C are the scaled conductances
carrying units of inverse seconds (Table I).

We assume that neurons are coupled both diffusively
(via direct gap-junction connections) and synaptically (via
chemical synapses). Thus, the I ext

b externally sourced current
density (amperes per square meter) in Eq. (5) is the sum of
incoming diffusive and synaptic currents from other neurons,
plus any experimentally imposed control current,

I ext
b /C = (I diff

b + I
syn
b + I dc

b

)
/C, (6)

which can be expressed as rates of voltage perturbation from
diffusive, synaptic, and control sources,

V̇b
ext = V̇ diff

b + V̇
syn
b + 1

C
I dc
b . (7)

Diffusion effects also enter the recovery equation (2) as an
additive perturbation Rdiff

b (dimensionless),

τb

dRb

dt
= −[Rb − R∞(Vb)] + Rdiff

b , (8)

caused by gap-junction mediated changes in intracellular K+
concentration; we discuss the form and construction of this
term in Sec. IIA5.

We now describe separately the synaptic and diffusive input
terms.

3. Synaptic input

The chemical synapses of neuron b (which can be either
excitatory or inhibitory) receive an intermittent flux of pulsatile
input from action potentials generated by synaptically coupled
upstream neuron a (also either excitatory or inhibitory). As
illustrated in Fig. 2, we model the transformation from spike
activity in presynaptic neuron a to voltage response in the

Va V̇ syn
b

φab Φab

upstream
spiking

synapse downstream
voltage

perturbation

presynaptic
flux

postsynaptic
flux

FIG. 2. Spiking activity in upstream neuron a leads to perturba-
tion in the soma voltage of downstream neuron b. The flow of activity
is mediated by presynaptic flux φab which transforms to postsynaptic
flux �ab on crossing the synaptic interface between transmitting axon
and receiving dendrite.

soma of postsynaptic neuron b as a three-step process that we
summarize as follows.

(1) Voltage spikes generated by source neuron a are
conducted along its axon to the synaptic junction with neuron
b via a wave equation in φab(�r,t), the spike flux from a to b; �r
is the 2D position vector for neuron b.

(2) Each spike arriving at neuron b elicits a temporally
smoothed and broadened dendritic response �ab(�r,t) that we
model here as biexponential with rise rate β and decay rate
α; the magnitude of the dendritic response is controlled by
the deviation of the moving-average soma voltage Vb from a
synaptic reversal potential.

(3) The resulting rate of voltage perturbation at neuron
b from chemical-synaptic input is obtained by scaling the
dendritic response �ab by the synaptic gain ρab (with units
volts per spike): V̇

syn
b (�r,t) = ρab �ab(�r,t).

We now elucidate these three stages in more detail.
(i) To represent the axonal propagation of spiking activity

φab across a 2D cortical continuum of gray matter, we adopt
the wave equation of Robinson et al. [18], which describes
damped waves propagating with phase velocity v,[(

∂

∂t
+ v�ab

)2

− (v �∇)2

]
φab(�r,t)

= (v�ab)2 Sa

[
Va(�r,t) − V rest

a

]
. (9)

As shown in [18], this equation owns a Macdonald
(modified Bessel) connectivity kernel that decays smoothly
from a logarithmic singularity at the origin to an asymptotically
exponential decay at larger ranges. Thus, the synaptic con-
nectivity pattern is radially symmetric with an approximately
exponential axonal length scale of 1/�ab. While we expect that
reblocking will tend to filter out intensely local connectivity ef-
fects in favor of medium-range—but still local—connections,
we make no attempt here to include the nonlocal point-to-point
white-matter connections from, e.g., corpus callosum or other
cortical structures.

In Eq. (9) we have followed Robinson and Kim [35] and
Wilson et al. [23] by introducing a spike normalization Sa

equal to the inverse area of a prototypical action potential
generated by the H. R. Wilson neuron of Eqs (1) and (2),

S−1
a =

∫
spike

[
Va(t) − V rest

a

]
dt, (10)
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with V rest
a being the resting neuron voltage in the absence

of external current, I ext
a = 0. The source term (Va − V rest

a ) in
Eq. (9) is only significant while the neuron is spiking.

(ii) The incoming spike flux φab impinges on neuron b to
generate a broadened postsynaptic flux �ab that obeys the
differential equation(

d

dt
+ αab

)(
d

dt
+ βab

)
�ab(�r,t)

= αab βab ψab(Vb) Nab φab(�r,t), (11)

where we have introduced Nab, the mean number of synaptic
connections from neurons of population a onto each neuron of
population b, since multiple neurons of population a contribute
the field φab [35]. Thus, we may now treat the labels {a,b} ∈
{e,i} as identifying excitatory (e) or inhibitory (i) populations
of neurons rather than identifying individual neurons.

The biexponential response implied by Eq. (11) approx-
imates the lumped effect of slow ion-channel kinetics for
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) or GABA (γ -aminobutyric acid) receptors at the postsy-
naptic membrane [39], and ignores potential saturation effects
at high flux rates.

The total incoming flux Nabφab is modulated by ψab, the
postsynaptic reversal-potential function,

ψab(V b) ≡ V rev
a − V b(t)

V rev
a − V rest

b

, (12)

which is normalized to unity when the average membrane
voltage V b matches the zero-current resting voltage [40].
The bar denotes an exponential moving average over a
characteristic time scale T that is long compared to the duration
of a single spike,

V b(t) = − 1

T

∫ t

0
e−(t−t ′)/T Vb(t ′)dt ′, (13)

which is equivalent to the differential form [35],

dV b(t)

dt
= − 1

T
[ V b(t) − Vb(t)]. (14)

We choose to work with the differential form in our model.
(iii) Incoming postsynaptic fluxes �eb,�ib from Eq. (11)

induce voltage perturbations per unit time in population b at
position �r and time t given by

V̇
syn
b (�r,t) = ρeb�eb(�r,t) + ρib�ib(�r,t), b ∈ {e,i}, (15)

where ρeb,ρib are the synaptic gains with ρeb > 0 (excita-
tion) and ρib < 0 (inhibition). The voltage perturbation in
downstream population b (which can be either excitatory or
inhibitory) is determined by the signed summation of the
incoming flux from upstream pools of (excitatory or inhibitory)
neurons.

In summary, the firing activity in presynaptic neural
population a produces a downstream voltage perturbation in
postsynaptic population b via pre- and postsynaptic flux fields
φab and �ab. This is represented in the flux flow diagram of
Fig. 2.

I2

I3

I4

I diff
ggap

I1

(x,y)

x − Δx

x

x + Δx
y + Δy

y

y − Δy

b

FIG. 3. Cytoplasmic potassium-ion currents flow between cell
interiors via open gap-junction connections whose conductance is
ggap. K+ will accumulate at the bth neuron at (x,y) if the incoming
ionic flux (I1 + I3) exceeds the outgoing flux (I2 + I4), leading to a
local increase in potassium concentration, boosting recovery Rb by
raising transmembrane K+-channel conductance and hence K+ efflux
into the extracellular space during spiking. Spatial variability in I diff

b

will drive diffusion in the recovery variable, i.e., Rdiff
b ∼ ∇2I diff

b .

4. Diffusive input for membrane voltage

In addition to pulsatile synaptic flux entering the right-hand
side of the Vb voltage equation (1), there is also a continuous
diffusive current exchange with gap-junction-connected near-
est neighbors resulting in perturbation V̇ diff

b in the rate change
of Vb soma voltage, and a corresponding perturbation Rdiff

b in
the recovery equation (2). (The latter is discussed in the next
section.)

The presence of such diffusive terms in the voltage and
recovery variables is essential for the spatial coarse-graining
procedure we adopt in this paper. This is because, as shown
in Sec. II E, we eliminate the short-wavelength (large wave
number �q) modes using a perturbative method based on
projection operators which can only converge with appropriate
choices for the spatial dependence of the system variables.

Following Steyn-Ross et al. [41], we represent the diffu-
sively coupled network of neurons as a 2D square lattice
of cells, each cell joined to its four nearest neighbors via a
gap-junction areal conductance ggap (Fig. 3). The membrane
voltage at node (x,y) is Vx,y . The total diffusive current per
unit area entering the neuron at the (x,y) node is given by
summing the x- and y-branch residuals, I diff = �Ix + �Iy ,
and applying Ohm’s law I = gV ,

�Ix = I1 − I2 = ggap([Vx+�x,y − Vx,y] − [Vx,y − Vx−�x,y]),

giving

�Ix = ggap(�x)2

[
Vx+�x,y − 2Vx,y + Vx−�x,y

(�x)2

]
≈ ggap(�x)2 ∂2V

∂x2
. (16a)

Similarly, the y-branch residual current into node (x,y) is

�Iy = I3 − I4

= ggap(�y)2

[
Vx,y+�y − 2Vx,y + Vx,y−�y

(�y)2

]
≈ ggap(�y)2 ∂2V

∂y2
. (16b)
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Summing Eqs (16a) and (16b) gives the total mesh current
density entering neuron b at (x,y),

I diff ≈ ggap�2

[
∂2V

∂x2
+ ∂2V

∂y2

]
≡ ggap�2∇2V, (17)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in two-
dimensional Cartesian space and where we have written
(�x)2 = (�y)2 = �2, the area of a square lattice cell of side
length �. Dividing through by the areal capacitance C, and
assigning label b and position �r gives us an expression for the
diffusion-induced voltage perturbation per unit time,

V̇ diff
b (�r,t) = ggap�2

C
∇2Vb(�r,t) = Db∇2Vb(�r,t), (18)

which defines the voltage-diffusion coefficient Db with SI units
m2 s−1. This is the companion equation to (15) and completes
the definitions of the synaptic and diffusive terms on the right-
hand side (RHS) of (5).

5. Diffusive input for recovery

We now invoke a plausibility argument to establish the form
of the Rdiff

b recovery-diffusion term on the RHS of Eq. (2).
The recovery variable Rb encapsulates the dynamics as-

sociated with delayed opening of potassium ion channels
(and inactivation of sodium ion channels) during the middle
phases of action-potential generation. The net effect of K+
release (and Na+ restriction) is to limit, and then terminate,
the action-potential spike [4,38]. We focus exclusively on the
potassium contribution to the recovery dynamics, since the
strongly dominant intracellular ionic species within biological
cells is K+ (being an order of magnitude more abundant than
Na+ for mammalian neurons; e.g., see Table 2.4 of [42]); thus,
intracellular ionic flows are principally composed of K+ ions.

Patch-clamp electrophysiological studies have demon-
strated that the single-channel conductance of—and con-
sequent outward current flow through—potassium-ion
channels increases with increasing concentrations of intracel-
lular K+ [43,44]. Very recently, Andreucci et al. [45] were able
to reproduce the current-voltage curves for the K+ channel
using a theoretical diffusive lattice model, confirming that the
level of intracellular K+ plays a crucial role in controlling
outward current in the K+ channel.

Referring to Fig. 3, suppose that for neuron b, the gap-
junction mediated influx of K+ (from neighboring neurons) ex-
ceeds the diffusive outflux (to neighboring neurons), resulting
in a net inward diffusion I diff

b . This will raise the intracellular
K+ concentration at neuron b, enhancing the intensity of the
subsequent recovery (voltage-triggered K+ release) during
the late stages of the next spike event. We argue that Rdiff

b , the
diffusive-recovery component of Eq. (2), will be proportional
to the two-dimensional spatial variability of I diff

b , i.e.,

Rdiff
b ∝ ∇2I diff

b ,

which, from Eq. (17), implies a biharmonic (Laplacian-
squared) dependence on membrane voltage,

Rdiff
b ∝ ∇2(∇2Vb),

leading to our final form for the diffusive-recovery term as

Rdiff
b = DR∇4Vb, (19)

where we have introduced a recovery diffusion coefficient DR

with SI units m4 V−1.

B. Consolidated model equations

For convenient reference we now gather the five differential
equations describing a spiking neuron embedded within its
neural field of diffusive and synaptic input fluxes. Combining
Eqs. (5), (7), (15), and (18) gives the instantaneous membrane
voltage,

∂Vb

∂t
= − g(Vb)(Vb − ENa) − gR,bRb(Vb − EK)

+ Db∇2Vb +
∑

a

ρab�ab + I dc
b /C. (20)

Meanwhile, incorporating the diffusive-recovery term (19)
into recovery equation (2) gives

∂Rb

∂t
= − 1

τb

[Rb − R∞(Vb)] + DR∇4Vb

τb

. (21)

Equation (11) defines the postsynaptic dendritic response �ab

arising from an incoming flux φab of presynaptic spiking
events,( d

dt
+ αab

)( d

dt
+βab

)
�ab = αabβabψab(V b)Nabφab, (22)

where ψab is the synaptic reversal-potential function (12),
operating on V b, the temporally smoothed membrane voltage
from Eq. (14),

dV b(t)

dt
= − 1

T
[V b(t) − Vb(t)], (23)

and where spike flux φab propagates via the damped wave
equation (9),[(

∂

∂t
+ v�ab

)2

− (v �∇)2

]
φab = (v�ab)2Sa

(
Va − V rest

a

)
,

(24)

with spike area normalization Sa defined in Eq. (10).
Equations (20)–(24) summarize our construction of a

continuum of deterministic spiking neurons.

C. Stochastic differential equations

We now introduce low-level white noises
√

�ξ (�r,t) into
the voltage, recovery, and flux equations to approximate
the biological reality of noisiness in membrane voltage,
ion-channel conductance, and synaptic response, respectively.
These spatiotemporal white noises have zero mean, are δ-
correlated in both time and space,

〈ξ (�r,t)〉 = 0,

〈ξ (�r,t)ξ (�r ′,t ′)〉 = δ(�r − �r ′)δ(t − t ′),

and have intensity �.
After inserting noisy perturbations into the (Vb, Rb, �ab,

φab) system variables, the latter two via their ancillaries Zab
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and �ab, the stochastic versions of Eqs. (20)–(24) read as
follows:

∂Vb

∂t
= RHS(20) +

√
�bξb(�r,t), (25)

∂Rb

∂t
= RHS(21) +√�Rb

ξRb
(�r,t), (26)

d�ab

dt
= Zab, (27)

dZab

dt
= −(αab + βab)Zab − αabβab�ab

+ αabβabNabψab(V b)φab +√�Zab
ξZab

(�r,t), (28)

dV b

dt
= RHS(23), (29)

dφab

dt
= �ab, (30)

∂�ab

∂t
= −2v�ab�ab − [(v�ab)2 − (v∇)2]φab

+ (v�ab)2Sa

(
Va − V rest

a

)+√��ab
ξ�ab

(�r,t), (31)

where we have rewritten the second-order post- and presy-
naptic flux equations (22) and (24) as pairs of coupled
first-order differential equations in (�ab,Zab) and (φab,�ab),
respectively. Note that we do not insert any additional noise
into the slow-soma voltage V b, so system equation (29)
remains deterministic.

The ξb(�r,t) additive spatiotemporal white noise in Vb [in
Eq. (25)] will indirectly induce Na+ ion-channel fluctuations
[via conductance gb(Vb)] and gap-junction diffusive fluctua-
tions (via the ∇2Vb Laplacian), while recovery noise ξRb

(�r,t)
in (26) will generate fluctuations in K+ ion-channel currents.
Although ion-channel noise is usually modeled using discrete

Markov-chain state transitions [9], provided the number of ion
channels is sufficiently large, channel-fluctuation statistics can
be accurately simulated using appropriately scaled additive
white noises [11]. The ξZab

(�r,t) and ξ�ab
(�r,t) noises in the

flux (28) and wave (31) equations are a representation of
synaptic noise resulting from the continuous background
bombardment of activity resulting from the random quantal
release of neurotransmitters into the synaptic cleft, evoking
miniature postsynaptic currents in the absence of presynaptic
spikes [46].

We note that because the regridding and elimination of
high-�q modes is done on the time scale of the fast-soma spiking
events, the slow-soma temporal-average voltage V b can be
treated as a constant, so it does not contribute to the dynamics
of the Fokker-Planck equation described below.

D. Fokker-Planck equation: Unit-cell model

We consider a square patch of cortical tissue of area
L0 × L0, with L0 ∼ 1 cm corresponding to the approximate
extent of a scalp electrode. As shown in Fig. 4(a), we divide
the cortical patch into (2n + 1)2 identical square “microcells,”
each of area �2, with � ∼ 10 μm. (These microcells will
subsequently be aggregated into “macrocells” of linear extent
L ∼ 1 mm, corresponding to the approximate scale of a
cortical macrocolumn.)

Each microcell is assumed to contain one excitatory and one
inhibitory neuron. To compensate for the fact that excitatory
neurons are about four times more abundant than inhibitory
neurons, an appropriate downscaling of inhibitory chemical-
synaptic connections would be applied.

This simple linear adjustment is expected to be valid for
low to moderate levels of neural activity, but is likely to fail at
extreme activity levels when nonlinear effects (e.g., saturation,
depolarization block) become significant.

In this cellular formalism, the stochastic DEs (25) to (31)
are equivalent to the Fokker-Planck equation,

∂P

∂t
=
⎡⎣∑

b

⎧⎨⎩−
∑
�j,�k

∂

∂Vb, �j
D

�j �k
b Vb,�k +

∑
�j

∂

∂Vb, �j

[
g(Vb, �j )(Vb, �j − ENa) − I dc

b /C + Rb, �j gR,b(Vb, �j − EK) −
∑

a

ρa�ab, �j

]

+ �b

2�2

∑
�j

∂2

∂V 2
b, �j

⎫⎬⎭+
∑

b

∑
�j

⎧⎨⎩ 1

τb

∂

∂Rb, �j
[Rb, �j − R∞(Vb, �j )] −

∑
�k

∂

∂Rb, �j
D

�j �k
R Vb,�k + �R

2�2

∂2

∂R2
b, �j

⎫⎬⎭
+
∑
a,b

∑
�j

{
− ∂

∂�ab, �j
Zab, �j + ∂

∂Zab, �j

[
(αab + βab)Zab, �j + αabβab�ab, �j − αabβabNabψab, �jφab, �j

]+ �Zab

2�2

∂2

∂Z2
ab, �j

}

+
∑
a,b

∑
�j

⎧⎨⎩− ∂

∂φab, �j
�ab, �j + ∂

∂�ab, �j

[
2v�ab�ab, �j + (v�ab)2φab, �j − (v�ab)2Sa

(
Va, �j − V rest

a

)]
−
∑

�k

∂

∂�ab, �j
D

�j �k
φb

φab,�k + ��ab

2�2

∂2

∂�2
ab, �j

⎫⎬⎭
⎤⎦P, (32)

where P is the probability distribution,

P ≡ P (χ,t), χ ∈ {Vb, �j ,Rb, �j ,�ab, �j ,Zab, �j ,φab, �j ,�ab, �j },
with χ standing for any one of the 20 state variables [12
system variables (Vb, �j ,Rb, �j ,�ab, �j ,φab, �j ) plus eight ancillaries
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(a) (b) (c)

FIG. 4. Spatial and Fourier representations of a gridded cortex. (a) Microcell lattice: A square patch of cortex of dimension L0 × L0, assumed
periodic, is partitioned into a lattice of (2n + 1) × (2n + 1) “microcells,” each of side length � (small red square) such that L0 = (2n + 1)�.
(b) Macrocell lattice: The cortical patch is reblocked into (2N + 1) × (2N + 1) “macrocells,” each of side length L = B� (larger red square)
so that L0 = (2N + 1)L, with B = (2n + 1)/(2N + 1) � 1. (For illustrative purposes, we have set B = 3 in this figure.) (c) Fourier lattice:
In Fourier space, these griddings correspond to wave-number domains |qx |,|qy | � π/� for the finely spaced microgrid, and the much reduced
domain |Qx |,|Qy | � π/L for the coarse macrogrid.

(Zab, �j ,�ab, �j )] whose subscripts {a,b} label neural populations
{e,i}. For example, Vb, �j is the voltage for population b of

grid cell �j , with �j = (jx,jy) being a two-dimensional position
index.

D
�j �k
r is the discretized Laplacian operator given by

D
�j �k
r = Dr

�2

{[
δjx,kx+1 + δjx,kx−1 − 2δjx,kx

]
δjy,ky

+ [δjy,ky+1 + δjy,ky−1 − 2δjy,ky

]
δjx,kx

}
, (33a)

with label r = e and i for e-to-e and i-to-i diffusion via
electrical synapses (gap junctions) and r = φb for diffusion
via wave-equation activity mediated by chemical synapses.

D
�j �k
R is the discretized biharmonic operator,

D
�j �k
R = DR

�4τb

[
D

�j �k
R,x4 + D

�j �k
R,x2y2 + D

�j �k
R,y4

]
, (33b)

where

D
�j �k
R,x4 = [δjx,kx+2 + δjx,kx−2 − 4

(
δjx,kx+1 + δjx,kx−1

)
+ 6δjx,kx

]
δjy,ky

,

D
�j �k
R,x2y2 = 2

[
δjx,kx+1 + δjx,kx−1 − 2δjx,kx

]
× [δjy,ky+1 + δjy,ky−1 − 2δjy,ky

]
,

D
�j �k
R,y4 = [δjy,ky+2 + δjy,ky−2 − 4

(
δjx,ky+1 + δjy,ky−1

)
+ 6δjy,ky

]
δjx,kx

,

with recovery subscript R indexing over both the excitatory
and inhibitory neural populations, R ∈ {Re,Ri}.

Coarse spatial graining is done rigorously by eliminating
the high-wave-number (�q) modes, so the first step is to Fourier
transform Eq. (32) to momentum space. Following Steyn-Ross
and Gardiner [33] (hereafter abbreviated as SR&G), we define
eigenfunctions and eigenvalues of the discretized Laplacian
and biharmonic operators. For the Laplacian, we have∑

�k
D

�j �k
r f�k(�q) = −λr (�q)f �j (�q), (34a)

where the f�k are the eigenfunctions given by

f�k(�q) = 1

(2n + 1)
ei��k·�q, (34b)

with indexing,

kx,ky ∈ {−n, − n + 1, . . . ,n};
discrete wave-number components,

qx,qy ∈ R(n) = 2π

(2n + 1)�
[−n, − n + 1, . . . ,n];

and λr eigenvalues,

λr (�q) = 4Dr

�2
[sin2(qx�/2) + sin2(qy�/2)]. (34c)

For the biharmonic operator we have∑
�k

D
�j �k
R f�k(�q) = λR(�q)f �j (�q), (34d)

where the f�k eigenfunctions are defined in Eq. (34b); the
corresponding eigenvalues are given by

λR(�q) = 16DR

�4τb

[sin2(qx�/2) + sin2(qy�/2)]2. (34e)

The eigenfunctions obey the orthogonality relations∑
�j

f ∗
�j (�q)f �j (�q ′) = δ�q,�q ′ , (35a)

∑
�q

f ∗
�j (�q)f�k(�q) = δ �j,�k, (35b)

with symbol (∗) denoting complex conjugate. We then trans-
form to Fourier (�q) space via the expansions:

χ �j =
∑

�q
f �j (�q)χ (�q), χ (�q) =

∑
�j

f ∗
�j (�q)χ �j . (35c)

The aim of this paper is to eliminate the high spatial
frequency modes; therefore, we separate momentum scales
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explicitly into low-frequency (long-wavelength) �Q modes and
high-frequency (small-wavelength) �q-mode components,∑

�q
χ (�q) −→

∑
�Q∈R(N)

χ ( �Q) +
∑

�q /∈R(N)

χ (�q), (36)

where

Qi ∈ R(N ) = 2π

(2n + 1)�
[−N, − N + 1, . . . ,N].

As illustrated in Figs. 4(b) and 4(c), the blocking procedure re-
grids the L0 × L0 cortical patch into (2N + 1)2 macrocolumn

cells (“macrocells”), each of area L2, where L = B� ∼ 1 mm;
B is the blocking ratio,

B = 2n + 1

2N + 1
� 1. (37)

Using Eqs. (34)–(35), Eq. (32) becomes

∂

∂t
P (χ,t) = (L1 + L2 + L3)P (χ,t), (38)

where the three Lj terms have been chosen to allow implemen-
tation of the elimination procedure, as detailed in the sections
that follow. In particular,

L1 =
∑

b

⎧⎨⎩∑�q

∂

∂Vb(�q)

[
λb(�q)Vb(�q) + a0,bVb(�q) − gR,bEKRb(�q)

]+
∑

�q

∂

∂Rb(�q)

[
−λR(�q)Vb(�q) − b1,b

τb

Vb(�q)

]

+ �b

2�2

∑
�q

∂2

∂Vb(�q)Vb(−�q)

⎫⎬⎭+
∑
a,b

⎧⎨⎩−
∑

�q

∂

∂�ab(�q)
Zab(�q) +

∑
�q

∂

∂Zab(�q)
[(αab + βab)Zab(�q) + αabβab�ab(�q)]

+ �Z

2�2

∑
�q

∂2

∂Zab(�q)Zab(−�q)

⎫⎬⎭+
∑
a,b

⎧⎨⎩−
∑

�q

∂

∂φab(�q)
�ab(�q) +

∑
�q

∂

∂�ab(�q)
[2v�ab�ab(�q)

+ ((v�ab)2 + λφ(�q))φab(�q)] + ��

2�2

∑
�q

∂2

∂�ab(�q)�ab(−�q)

⎫⎬⎭ (39)

has been constructed to define the stationary distribution function as the sum of a set of 2D Ornstein-Uhlenbeck (or Kramer)
solutions; this construction is the cornerstone of the projection operator that eliminates the high-q spatial modes,

L2 =
∑

b

⎧⎨⎩∑
[ �Q,�q]

∂

∂Vb(�q)

⎛⎝−
∑

a

ρa�ab(�q) + a3,b

(2n + 1)
[Vb(�q1)Vb(�q2)δ�q,�q1+�q2 + 2Vb(�q1)Vb( �Q2)δ�q,�q1+ �Q2

+ Vb( �Q1)Vb( �Q2)δ�q, �Q1+ �Q2
] − a1,bENaVb(�q) + a2,b

(2n + 1)2
[Vb(�q1)Vb(�q2)Vb(�q3)δ�q,�q1+�q2+�q3

+ 3Vb(�q1)Vb(�q2)Vb( �Q3)δ�q,�q1+�q2+ �Q3
+ 3Vb(�q1)Vb( �Q2)Vb( �Q3)δ�q,�q1+ �Q2+ �Q3

+ Vb( �Q1)Vb( �Q2)Vb( �Q3)δ�q, �Q1+ �Q2+ �Q3
]

+ gR,b

(2n + 1)
[Rb(�q1)Vb(�q2)δ�q,�q1+�q2 + Rb( �Q1)Vb(�q2)δ�q, �Q1+�q2

+ Rb(�q1)Vb( �Q2)δ�q,�q1+ �Q2
+ Rb( �Q1)Vb( �Q2)δ�q, �Q1+ �Q2

]

⎞⎠
+
∑
[ �Q,�q]

∂

∂Rb(�q)

(
1

τb

Rb(�q) − b2,b

τb(2n + 1)
[Vb(�q1)Vb(�q2)δ�q,�q1+�q2 + 2Vb(�q1)Vb( �Q2)δ�q,�q1+ �Q2

+ Vb( �Q1)Vb( �Q2)δ�q, �Q1+ �Q2
]

)

+ �R

2�2

∑
�q

∂2

∂Rb(�q)∂Rb(−�q)

⎫⎬⎭+
∑
a,b

⎧⎨⎩−
∑

�q

∂

∂�ab(�q)
Sa(v�ab)2Va(�q) +

∑
�q

∂

∂Zab(�q)

(− bab

(
V rev

a − V b

)
φab(�q)

)⎫⎬⎭,

(40)

with constants a3,b and bab defined by

a3,b = a1,b − a2,bENa, (41)

bab = αabβabNab

V rev
a − V rest

b

. (42)

We note that operator L2 has been constructed so that it only contains terms of the form ∂/∂χ (�q); this form is also essential for
the elimination of the high-frequency modes (see Sec. II E).

L3 is expressed as the sum of a mixed-mode operator L3(�q, �Q) plus a slow-mode operator L3( �Q),

L3 = L3(�q, �Q) + L3( �Q), (43)

022402-9



MOIRA L. STEYN-ROSS AND D. A. STEYN-ROSS PHYSICAL REVIEW E 93, 022402 (2016)

where the slow-mode operator is defined,

L3( �Q) =
∑

b

⎧⎨⎩∑�Q

∂

∂Vb( �Q)
λb( �Q)V ( �Q) +

∑
�Q

∂

∂Vb( �Q)

⎛⎝−a0,bENa(2n + 1)δQ,0 + (a0,b − a1,bENa)Vb( �Q) − (2n + 1)δQ,0I
dc
b /C

− gR,bEKRb( �Q) −
∑

a

ρa�ab( �Q) + a3,b

(2n + 1)
Vb( �Q1)Vb( �Q2)δ �Q, �Q1+ �Q2

+ a2,b

(2n + 1)2
Vb( �Q1)Vb( �Q2)Vb( �Q3)δ �Q, �Q1+ �Q2+ �Q3

+ gR,b

(2n + 1)
Rb( �Q1)Vb( �Q2)δ �Q, �Q1+ �Q2

⎞⎠+ �b

2�2

∑
�Q

∂2

∂Vb( �Q)Vb(− �Q)
+
∑

�Q

∂

∂Rb( �Q)

(
1

τb

Rb( �Q) − b0,b

τb

(2n + 1)δ �Q,0

− b1,b

τb

Vb( �Q) − λR( �Q)Vb( �Q) − b2,b

τb(2n + 1)
Vb( �Q1)Vb( �Q2)δ �Q, �Q1+ �Q2

)
+ �R

2�2

∑
�Q

∂2

∂Rb( �Q)Rb(− �Q)

⎫⎬⎭
+
∑
a,b

⎧⎨⎩−
∑

�Q

∂

∂�ab( �Q)
Zab( �Q) +

∑
�Q

∂

∂Zab( �Q)
((αab + βab)Zab( �Q) + αabβab�ab( �Q) − bab(V rev

a − V b)φab( �Q))

+ �Z

2�2

∑
�Q

∂2

∂Zab( �Q)Zab(− �Q)
−
∑

�Q

∂

∂φab( �Q)
�ab( �Q) +

∑
�Q

∂

∂�ab( �Q)

(
2v�ab�ab( �Q) + (v�ab)2φab( �Q)

− Sa · (v�ab)2
(
Va( �Q) − V rest

a (2n + 1)δ �Q,0

))+
∑

�Q

∂

∂�ab( �Q)
λφ( �Q)φab( �Q) + ��

2�2

∑
�Q

∂2

∂�ab( �Q)�ab(− �Q)

⎫⎬⎭. (44)

Meanwhile, the mixed-mode component of L3 is given by

L3(�q, �Q) =
∑

b

⎧⎨⎩∑
[ �Q,�q]

∂

∂Vb( �Q)

([
Vb(�q1)Vb(�q2)δ �Q,�q1+�q2

+ 2Vb(�q1)Vb( �Q2)δ �Q,�q1+ �Q2

] a3,b

(2n + 1)

+ a2,b

(2n + 1)2

[
Vb(�q1)Vb(�q2)Vb(�q3)δ �Q,�q1+�q2+�q3

+ 3Vb(�q1)Vb(�q2)Vb( �Q3)δ �Q,�q1+�q2+ �Q3

+ 3Vb(�q1)Vb( �Q2)Vb( �Q3)δ �Q,�q1+ �Q2+ �Q3

]+ gR,b

(2n + 1)

[
Rb(�q1)Vb(�q2)δ �Q,�q1+�q2

+ Rb( �Q1)Vb(�q2)δ �Q, �Q1+�q2

+ Rb(�q1)Vb( �Q2)δ �Q,�q1+ �Q2

])
− b2,b

τb(2n + 1)

∑
�Q

∂

∂Rb( �Q)

(
Vb(�q1)Vb(�q2)δ �Q,�q1+�q2

+ 2Vb(�q1)Vb( �Q2)δ �Q,�q1+ �Q2

)⎫⎬⎭. (45)

We note that L3( �Q) is the Fourier representation of the original
FPE on the coarser spatial scale, and L3( �Q) contains all
remaining terms.

E. Adiabatic elimination of high-�q modes

We follow the method of projection-operator elimination
described by Gardiner [32] and SR&G [33]. The method
proceeds by first constructing a projection operator via the
stationary distribution Ps of the variables to be eliminated.
The procedure is summarized here; refer to [33] for details.

We define a projection operator P ,

Pu(�q, �Q) ≡ Ps

∫
u(�q, �Q)dχ (�q), (46)

where u(�q, �Q) is an arbitrary function and Ps is the solution of

L1Ps = 0, (47a)

so that,

L1P = PL1 = 0, (47b)

and also from Eq. (40) we have that

PL2P = 0, PL2 = 0, (47c)

which follows since L2 will produce only boundary terms,
which, by definition, will vanish (see [33]).

We define

v(t) ≡ PP (χ,t), and (48a)

w(t) ≡ (1 − P)P (χ,t); (48b)

then, applying the projection operator P to the full Fokker-
Planck equation (38), we find

P
∂

∂t
P (χ,t) = PL3P (χ,t),

so that

∂

∂t
PP (χ,t) = PL3[w(t) + v(t)],
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which is equivalent to

∂

∂t
v(t) = PL3[w(t) + v(t)]. (49a)

Similarly,

(1 − P)
∂

∂t
P (χ,t)

= (1 − P)(L1P + L2P + L3P )

= L1(w + v) + L2(w + v) + (1 − P)L3(w + v)

= L1w + L2w + (1 − P)L3w + (1 − P)L3v + L2v

(since L1v = L1PP = 0), implying that

∂

∂t
w(t) = [L1 + L2 + (1 − P)L3]w + (1 − P)L3v + L2v.

(49b)

Defining Laplace-transformed variables

v(s) = L̂[v(t)] ≡
∫ ∞

0
e−st v(t)dt

and similarly w(s) = L̂[w(t)], the Laplace transforms of
Eqs (49a) and (49b) give

sv(s) − v(0) = PL3w(s) + PL3v(s) (50a)

sw(s) = [L1 + L2 + (1 − P)L3]w(s)

+ [L2 + (1 − P)L3]v(s), (50b)

where v(0) denotes v(t) at t = 0, and w(0) = 0. Solving
Eq. (50b) for w(s),

w(s) = [s − L1 − L2 − (1 − P)L3]−1

× [L2 + (1 − P)L3]v(s), (50c)

and substituting for w(s) in Eq. (50a),

sv(s) − v(0) = PL3[s − L1 − L2 − (1 − P)L3]−1

× [L2 + (1 − P)L3]v(s) + PL3v(s).

(50d)

Following SR&G [33], we assume that the elementary
cell length � is small, that the blocking ratio B = (2n +
1)/(2N + 1) is large, and that there exists a nonzero diffusive
gap-junction coupling between nearest neighbors. (See Ap-
pendix F for an estimate of the minimum level of gap-junction
connectivity required for validity of the blocking algorithm
assumptions.)

Under these conditions, L1 dominates the denominator of
Eq. (50d), and it simplifies to

sv(s) − v(0) = −PL3L
−1
1 [L2+(1−P)L3]v(s)+PL3v(s),

whose inverse Laplace transform gives the Fokker-Planck
equation on the coarse-grained grid,

∂

∂t
v = −PL3L

−1
1 [L2 + (1 − P)L3]v(t) + PL3v(t).

(51)

F. Rescaled Fokker-Planck equation

Equation (51) is a regridded Fokker-Planck equation de-
scribing a system in which short-wavelength (high-spatial
frequency) q modes have been eliminated in favor of long-
wavelength Q modes. It describes the time evolution of v(t),

v(t) = PP (χ,t)

= Ps

∫
P (χ,t)dχ (�q) = PsP̂ (χ ( �Q,t)), (52)

where P̂ (χ ( �Q,t)) is the �Q-space probability distribution for
the spatially averaged system. We invert v(t) from �Q space
back to �r space by evaluating the RHS of Eq. (51) in terms
of expectation values in the “vacuum” state of the cortex.
This involves a painstaking and rather technical process that
is detailed in the Appendixes. We present a brief overview of
the method here.

We construct the projection operator P of Eq. (46) from
Ps , the stationary solution of the L1 operator of Eq. (39),

L1Ps = 0.

To do this, we write L1 as

L1 = L1(V,R) + L1(Z,�) + L1(�,φ), (53)

so that separation of variables allows us to express the
stationary solution as

Ps = Ps(V,R)Ps(Z,�)Ps(�,φ). (54)

Each term on the RHS of (53) has the form of Kramer’s
equation. This particular two-variable Ornstein-Uhlenbeck
form has been extensively studied [29,47]; it is known that each
of the Ps(·) components on the RHS of (54) can be expressed
as a sum of Hermite polynomials; thus, each of the L1(·)
terms of (53) represents a process formally equivalent to the
harmonic oscillator. This means that we can adopt the elegant
boson-operator algebra used to solve the quantum mechanical
harmonic oscillator, with all variables being expressible in
terms of boson creation and annihilation operators (A†,A); see
Appendix B for details.

Because it can be shown that

APs = 0, (55)

it immediately follows that Ps is precisely equivalent to the
vacuum, or ground state |0〉, defined as

Ps = |0〉
= |0〉V,R|0〉Z,�|0〉�,φ. (56)

Thus, |0〉 can be interpreted as the ground state in a Fock
space equivalent to our cortical system. The terms on the RHS
of Eq. (51) can then be expressed as vacuum-state expectation
values of operators.

We thus arrive at the coarse-grained Fokker-Planck equa-
tion,

∂P̂

∂t
= ∂P̂

∂t

∣∣∣∣
(1)

− ∂P̂

∂t

∣∣∣∣
(2:drift)

− ∂P̂

∂t

∣∣∣∣
(2:diffusion)

, (57)

where the first term on the RHS is the spatially rescaled
version of Eq. (32), and the drift and diffusion terms represent
corrections due to nonlinear interactions between spatial
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modes. The first term on the right of Eq. (57) is given by

∂P̂

∂t

∣∣∣∣
(1)

=
⎡⎣⎧⎨⎩−

∑
�J , �K

∂

∂Ṽb, �J
D

�J �K
b Ṽb, �K +

∑
�J

∂

∂Ṽb, �J

[
g(Ṽb, �J )(Ṽb, �J − ENa) − I dc

b /C + R̃b, �J gR,b(Ṽb, �J − EK) −
∑

a

ρa�̃ab, �J

]

+ �b

2(B�)2

∑
�J

∂2

∂Ṽ 2
b, �j

⎫⎬⎭+
∑

b

∑
�J

⎧⎨⎩ 1

τb

∂

∂R̃b, �J

[
R̃b, �J − R∞(Ṽb, �J )

]−∑
�K

∂

∂R̃b, �J
D

�J �K
R Ṽb, �K + �R

2(B�)2

∂2

∂R̃2
b, �J

⎫⎬⎭
+
∑
a,b

∑
�J

{
− ∂

∂�̃ab, �J
Z̃ab, �J + ∂

∂Z̃ab, �J

[
(αab + βab)Z̃ab, �J + αabβab�̃ab, �J − αabβabNabψ̃ab, �J φ̃ab, �J

]+ �Zab

2(B�)2

∂2

∂Z̃2
ab, �J

}

+
∑
a,b

∑
�J

⎧⎨⎩− ∂

∂φ̃ab, �J
�̃ab, �J + ∂

∂�̃ab, �J

[
2v�ab�̃ab, �J + (v�ab)2φ̃ab, �J − (v�ab)2Sa · (Ṽa, �J − V rest

a

)]
−
∑

�K

∂

∂�̃ab, �J
D

�J �K
φb

φ̃ab, �K + ��ab

2(B�)2

∂2

∂�̃2
ab, �J

⎫⎬⎭
⎤⎦P̂ , (58)

where the tilde variables denote the spatially rescaled system
variables of Eq. (32), i.e.,

[V,R,Z,�,�,φ] −→ [Ṽ ,R̃,Z̃,�̃,�̃,φ̃],

corresponding to an upscaling of the area of the unit cell
from �2 in Eq. (32) to (B�)2 here; recall that B is the
side-length blocking ratio defined in Eq. (37). We note that the
constant-intensity noise contributions from Eq. (32) become
downscaled in Eq. (58) by the area ratio; thus,

�[b,R,Z,�]/�
2 −→ �[b,R,Z,�]/(B�)2.

The nonlinear drift corrections of ∂P̂ /∂t in Eq. (57) are
given by,

∂P̂

∂t

∣∣∣∣
(2:drift)

=
∑
b, �J

{
∂

∂Ṽb, �J

[
d0 + d1Ṽb, �J + d2Ṽ

2
b, �J + d3Ṽ

3
b, �J

+ d4Ṽ
4
b, �J + d5Ṽb, �J R̃b, �J + d6Ṽ

2
b, �J R̃b, �J + d7R̃b, �J

]
+ ∂

∂R̃b, �J

[
d8 + d9R̃b, �J + d10Ṽb, �J

+ d11Ṽ
2
b, �J + d12Ṽ

3
b, �J
]}

P̂

≡
∑
b, �J

{
∂

∂Ṽb, �J
G1 + ∂

∂R̃b, �J
G2

}
P̂ , (59)

where the G1, G2 encapsulate their respective square-
bracketed antecedents. The d0, . . . ,d12 drift coefficients [along
with their SI units] are listed below,

d0 = �b

2(2π )2

[
− a3,bc0 + a1,ba3,bc1ENa

− a2,ba3,b�b

(
c2

[(2n + 1)�]2
+ c3

2(2π )2

)

+ a2,b�b

2(2π )2

(
−
√

gR,b

|EK|c6a + b2,bc6b

√
gR,b|EK|

τb

)
− a3,bc7

τb

+ a3,bc8gR,b|EK|�R

�b

−
√

gR,b

|EK|
c9

τb

+
√

g3
R,b|EK|c10�R

�b

− 3a2,ba3,bc11�b

2(B�)2

] [
V
s

]
,

d1 = �b

2(2π )2

[
− 3a2,bc0 − (2a2

3,b − 3a1,ba2,bENa
)
c1

− 3a2
2,b�b

(
c2

[(2n + 1)�]2
+ c3

2(2π )2

)
− 3a2,bc7

τb

+ 3a2,bc8gR,b|EK|�R

�b

− 9a2
2,bc11�b

2(B�)2

]
+ S2

1�b

2(B�)2|EK|2 [s−1],

d2 = 3a2,b�b

2(2π )2

[
− 3a3,bc1

+ (B�)2

(2π )2|EK|
(

− c15S2 + c16S1(B�)2

2π

)] [
1

Vs

]
,

d3 = a3,bS
2
1

|EK| − 9a2
2,bc1�b

2(2π )2

+
[

2a3,bc4 − c5

|EK|
]
b2,bS1(B�)4

(2π )4τb

[
1

V2s

]
,

d4 = a2,bS2

[
S1

|EK| + 3b2,bc4(B�)4

(2π )4τb

] [
1

V3 s

]
,

d5 = −3a2,bc1gR,b�b

2(2π )2 [s−1],

d6 = gR,bS1

[
S1

|EK| + b2,bc4(B�)4

(2π )4τb

] [
1

Vs

]
,
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d7 = gR,b�b

2(2π )2

[
− a3,bc1 + c15S1(B�)2

(2π )2|EK|
] [

V
s

]
,

d8 = b2,b�b

2(2π )2τb

[
c0 − a1,bc1ENa + a2,bc2�b

[(2n + 1)�]2

+ c7

τb

− c8gR,b|EK|�R

�b

]
[s−1],

d9 = b2,bc1gR,b�b

2(2π )2τb
[s−1],

d10 = b2,b�b

(2π )2τb

[
a3,bc1 + c15S1(B�)2

(2π )2|EK|
] [

1
Vs

]
,

d11 = 3a2,bb2,bc1�b

2(2π )2τb

[
1

V2 s

]
,

d12 = −2b2
2,bc4S1(B�)4

(2π )4τ 2
b

[
1

V3 s

]
,

where S1, S2 are dimensionless fractions given in Appendix C
and the ci symbols denote particular wave-number integrals
defined in Appendix E.

Finally, the nonlinear diffusion corrections for the spatially
rescaled Fokker-Planck equation (57) are defined by

∂P̂

∂t

∣∣∣∣
(2:diffusion)

=
∑
b, �J

{
∂2

∂Ṽ 2
b, �J

[g0 + g1Ṽb, �J + g2Ṽ
2
b, �J + g3Ṽ

3
b, �J

+ g4Ṽb, �J R̃b, �J ] + ∂2

∂R̃2
b, �J

g5

+ ∂2

∂Ṽb, �J ∂R̃b, �J
[g6 + g7Ṽb, �J ]

}
P̂

≡
∑
b, �J

{
∂2

∂Ṽ 2
b, �J

G3 + ∂2

∂R̃2
b, �J

g5 + ∂2

∂Ṽb, �J ∂R̃b, �J
G4

}
P̂ , (60)

with the seven gi coefficients [and SI units] listed below:

g0 = �2
b

4(2π )2(B�)2

[
a2

3,bc11 + 1
2a2

2,bc12�b

]
[V2 s−1],

g1 = 3a2,ba3,bc11�
2
b

2(2π )2(B�)2
[V s−1],

g2 = �b

2(B�)2

[
9a2

2,bc11�b

2(2π )2
− S2

1

|EK|2
]

[s−1],

g3 = 3a2,b(B�)2�b

2(2π )4|EK|
[
c15S2 − c16(B�)2S1

(2π )2

]
[V−1 s−1],

g4 = c15gR,b(B�)2�bS1

2(2π )4|EK| [V s−1],

g5 = b2
2,bc11�

2
b

4(2π )2(B�)2τ 2
b

[s−1],

g6 = −a3,bb2,bc11�
2
b

2(2π )2(B�)2τb

[V s−1],

g7 = −3a2,bb2,bc11�
2
b

2(2π )2(B�)2τb

[s−1].

In Eqs. (57)–(60), P̂ is the probability distribution function
for the macroscopic state variables,

χ̃ �J ∈ {Ṽb, �J ,R̃b, �J ,Z̃b, �J ,�̃b, �J ,�̃b, �J ,φ̃b, �J },
where, for example,

Ṽb, �J = 2N + 1

2n + 1
Vb, �J = B−1Vb, �J (61)

gives the voltage for macroscopic cell �J (whose side length is
L) corresponding to Vb, �j , the voltage for microscopic cell �j
(side length �). See Appendices C and D for further details.

In the rescaled system, D
�J �K
b and D

�J �K
R represent the

discrete Laplacian and biharmonic operators defined on the
macroscopic grid in terms of low-frequency spatial modes �Q,∑

�K
D

�J �K
b f̃ �K ( �Q) = −λb( �Q)f̃ �J ( �Q), (62a)

∑
�K

D
�J �K
R f̃ �K ( �Q) = λR( �Q)f̃ �J ( �Q), (62b)

with eigenfunctions

f̃ �K ( �Q) = (2N + 1)−1 exp(iL �K · �Q) (62c)

for �Q ∈ R(N ), and L = B�. We also note the Fourier
mappings,

χ �J =
∑

�Q
f̃ �J ( �Q)χ ( �Q), (62d)

χ ( �Q) =
∑

�J
f̃ ∗

�J ( �Q)χ �J . (62e)

Equation (57) encapsulates the essential dynamics of a
neural system that has been rescaled from the microscopic
level of single spiking neurons to the macroscopic continuum
of populations of such neurons. In particular, this formulation
demonstrates how intrinsic synaptic and ion-channel noise
feeds back into deterministic and stochastic terms at the
macroscopic scale.

G. Rescaled stochastic differential equations

As a final step, we extract the family of macro-scale
stochastic DEs (SDEs) implicit in the rescaled Fokker-Planck
Eq. (57). These new SDEs are the coarse-scale companions
of the fine-scale Langevin equations (25)–(31) listed earlier
and are directly applicable to simulation studies of the H. R.
Wilson mammalian neuron aggregated to the macro scale.

To establish our indexing convention, we define the spa-
tially rescaled neural state as the 20-element column vector

�̃χ = [Ṽe,Ṽi ,R̃e,R̃i ,�̃ee,Z̃ee,�̃ei ,Z̃ei ,�̃ie,Z̃ie,�̃ii ,Z̃ii ,

φ̃ee,�̃ee,φ̃ei ,�̃ei ,φ̃ie,�̃ie,φ̃ii ,�̃ii

]T
.
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The reblocked Langevin equations take the general form

∂χ̃j

∂t
= Aj +

20∑
k=1

Cjkξk(�r,t), (63)

where Aj is the deterministic part and Cjk denotes the (j,k)th
element of a 20 × 20 noise-amplitude matrix C obeying
CCT = B. The ξk (with k = 1:4, 6:2:20) are 12 independent
white-noise sources that are δ-correlated in time and 2D space.
The nonzero elements of the noise-intensity matrix B are given
by

B11 = −2(B�)2G3,e + �e, B22 = −2(B�)2G3,i + �i,

B33 = −2(B�)2g5,e + �Re
, B44 = −2(B�)2g5,i + �Ri

,

B13 = B31 = −(B�)2G4,e, B24 = B42 = −(B�)2G4,i ,

B66 = �Zee
, B88 = �Zei

,

B10,10 = �Zie
, B12,12 = �Zii

,

B14,14 = ��ee
, B16,16 = ��ei

,

B18,18 = ��ie
, B20,20 = ��ii

,

where B (italic, no subscripts) is the geometric blocking ratio
of Eq. (37), while subscripted Bjk denotes the (j,k)th element
of intensity matrix B.

Thus, the coarse-grained SDEs can be written

∂χ̃1

∂t
≡ ∂Ṽe

∂t
= R̃HS(20)e + G1,e +

20∑
k=1

C1kξk, (64)

∂χ̃2

∂t
≡ ∂Ṽi

∂t
= R̃HS(20)i + G1,i +

∑
k

C2kξk, (65)

∂χ̃3

∂t
≡ ∂R̃e

∂t
= R̃HS(21)e + G2,e +

∑
k

C3kξk, (66)

∂χ̃4

∂t
≡ ∂R̃i

∂t
= R̃HS(21)i + G2,i +

∑
k

C4kξk, (67)

∂

∂t
χ̃j ≡ d�̃ab

dt
= Z̃ab, (68)

∂

∂t
χ̃j+1 ≡ dZ̃ab

dt

= − (αab + βab)Z̃ab − αabβab�̃ab

+ αabβabNabψab(Ṽ b)φ̃ab +
∑

k

Cj+1,kξk, (69)

∂

∂t
χ̃j+8 ≡ dφ̃ab

dt
= �̃ab, (70)

∂

∂t
χ̃j+9 ≡ ∂�̃ab

∂t

= − 2v�ab�̃ab − [(v�ab)2 − (v �∇)2
]
φ̃ab

+ (v�ab)2Sa

(
Ṽa − V rest

a

)+
∑

k

Cj+9,kξk, (71)

where label ab cycles through {ee,ei,ie,ii} as index j steps
through {5,7,9,11} in Eqs (68)–(71).

The slow-soma voltage Ṽ b appearing in Eq. (69) is
computed from the moving-average differential equation (23),

but expressed at the reblocked scale,

dṼ b

dt
= − 1

T
[Ṽ b(t) − Ṽb(t)]. (72)

III. DEMONSTRATION OF METHOD: REBLOCKED
WILSON SPIKING NEURON

Although the major aim of this paper is to introduce a sys-
tematic algorithm for spatial rescaling for a cortical network, as
a first-order demonstration of the method it is useful to examine
the spiking properties of the reblocked H. R. Wilson neuron for
the highly simplified limiting case of negligible noise and fully
suppressed chemical synapses. In this deterministic limit, the
neuron is embedded in a network of identical spiking neurons
that are coupled by gap junctions only.

For this simplified test case, the 20 stochastic partial
DEs (64)–(71) reduce to a single pair of deterministic partial
DEs for (Ṽb,R̃b) → (Ṽ ,R̃), the reblocked voltage and recovery
variables within a single population: Dropping the noise terms
in Eqs (64) and (66) and setting �ab = 0 (i.e., no synaptic
inputs) in Eq. (20) gives

∂Ṽ

∂t
= −g(Ṽ )(Ṽ − ENa) − gRR̃ · (Ṽ − EK) + I dc/C

+ Db∇2Ṽ + G1(Ṽ ,R̃), (73)

∂R̃

∂t
= − 1

τb

[R̃ − R∞(Ṽ )] + DR∇4Ṽ

τb

+ G2(Ṽ ,R̃), (74)

where G1, G2 are the reblocking nonlinear drift corrections
from Eq. (59) defined in terms of its 12 dj coefficients. Since
we are considering the small-noise limit (i.e., �b = �R ≈ 0),
most of these coefficients become zero, and the G1, G2

corrections reduce to

G1 = d3Ṽ
3 + d4Ṽ

4 + d6Ṽ
2R̃,

G2 = d12Ṽ
3,

with

d3 = a3S
2
1

|EK| +
[

2a3c4 − c5

|EK|
]
b2S1(B�)4

(2π )4τb

,

d4 = a2S2

[
S1

|EK| + 3b2c4(B�)4

(2π )4τb

]
,

d6 = gRS1

[
S1

|EK| + b2c4(B�)4

(2π )4τb

]
,

d12 = −2b2
2c4S1(B�)4

(2π )4τ 2
b

.

For our demonstration, we set the microcell dimension at
� = 10 μm and the blocking ratio at B = 100. The c4 and c5

elements appearing in the four d coefficients above are the
small- �Q wave-number integrals (see Appendix E)

c4 =
∫∫

d �Q1d �Q2

�R( �Q1 + �Q2)
,

c5 =
∫∫

�b( �Q1 + �Q2)d �Q1d �Q2

�R( �Q1 + �Q2)
,
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which are to be evaluated subject to the restriction ( �Q1 +
�Q2) = �q. The required �b and �R definitions are given

in (B2b) and (B2c), respectively,

�b(�q) = λb(�q) + a0, �R(�q) = λR(�q) + b1/τb, (75)

with eigenvalues λb(�q), λR(�q) defined previously in Eqs. (34),

λb(�q) = 4Db

�2
[sin2(qx�/2) + sin2(qy�/2)], (76a)

λR(�q) = 16DR

�4τb

[sin2(qx�/2) + sin2(qy�/2)]2. (76b)

While the voltage-diffusion coefficient Db can be estimated
from the measured properties and abundance of electrical gap
junctions [see Eq. (18)], the value of the diffusive-recovery
coefficient DR is much more uncertain. However, by requiring
that the projection operators of Appendix B (specifically the
auxiliary operators b1+ , b1− , b2+ , b2− ) remain purely real, we
can write down an expression for the upper bound on DR .
Examining (B11b) and (B2a), in order for δ(�q) to be real we
require

�2
b(�q) � 4gR|EK|�R(�q).

Substituting Eqs. (75) and (76) and isolating DR leads to the
inequality

DR � �4τb

64 sin4(q�/2)

{
[(8Db/�

2) sin2(q�/2)+a0]2

4gR|EK| −b1/τb

}
,

(77)

where we have set qx = qy = q.
Defining Dmax

R to be the upper bound of inequality (77), we
plot Dmax

R as a function of gap-junction diffusivity Db in Fig. 5.
The dashed and solid curves plotted there correspond to the
two alternative DR upper bounds implied by the inner (small
wave number) and outer (large wave number) Fourier limits

log10[Db / (m2 s−1)]
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FIG. 5. Upper limits for recovery diffusivity DR as a function
of voltage diffusion coefficient Db. The dashed curve corresponds to
the small wave-number limit q = Qmax = π/(B�), where B = 100 is
the blocking ratio, while the solid line applies the more conservative
limit q = qmax = π/�. The circled point shows the selected operating
point Db = 6.60 × 10−4 m2/s, DR = 2.47 × 10−13 m4/V.

in Fig. 4(c): the inner boundary at q = Qmax = π/L and the
outer boundary at q = qmax = π/�. The latter sets the more
conservative (lower) limit on Dmax

R since it ensures that the
auxiliary operators remain real over the entire wave-number
domain of interest. In order to constrain the model (and in the
absence of any experimental knowledge of DR), we estimate
Db, then set the recovery diffusivity at its maximum allowable
value DR = Dmax

R as determined from the solid curve in Fig. 5.
We estimate voltage diffusivity Db by linking the present

spiking model with an earlier mean-field cortical model for
gap-junction connectivity [41]. Working from measurements
by Fukuda et al. [48] of gap-junction connectivity for in-
hibitory neurons in cat visual cortex, Steyn-Ross et al. [41]
established a gap-junction coupling strength D2 defined as the
areal region of influence of a so-called “Fukuda cell”; values
for D2 fell in the range 0.1 � D2 � 0.6 cm2. The ratio D2/T ,
where T = 40 ms is the soma time constant, defined a mean-
field coefficient of voltage diffusion which covers the range

2.5 × 10−4 � D2/T � 15 × 10−4 m2/s.

We set Db = 6.60 × 10−4 m2/s (towards the bottom end of the
D2/T range), and DR = 2.47 × 10−13 m4/V [corresponding
to the Dmax

R upper bound from inequality (77); see circled
point in Fig. 5], having established (via numerical simulations,
not shown here) that lower (Db,DR) diffusivity values do not
support spiking dynamics in the reblocked Wilson neuron.

From the Eq. (18) definition of voltage diffusivity, the
assumed value for Db implies an effective gap-junction
(GJ) conductance of ggap = DbC/�2 = 6.60 × 104 S/m2. This
value is comparable with—albeit larger than—quoted values
in the GJ literature. In their numerical modeling studies, Hand
and Griffith [49] take normal GJ conductance of cardiac tissue
to be 6660 S/m2; meanwhile, Martinez-Wittinghan et al. [50]
measured the connexon-50 (Cx50) GJ conductance of healthy
lens tissue to be of order 104 S/m2. We consider that using
a somewhat higher value for neuron-to-neuron conductance
here is not unreasonable given the expected boost from parallel
conductance paths via the surrounding neuroglial scaffolding
that contacts and services the neurons [51].

Having set the (Db,DR) diffusivities, we evaluate the c4

and c5 wave-number integrals using Monte Carlo integration
(2.5 × 106 samples), obtaining

c4 = (6.337 ± 0.003) × 1010 V s/m4,

c5 = (1.916 ± 0.001) × 1015 V/m4,

and finally compute the G1, G2 blocking correction terms
of Eqs. (73) and (74). We then locate the steady states, and
their linear stability, for the homogeneous reblocked Wilson
neuron, and track how stability changes as a function of I dc

current drive. Onset of spiking is predicted at the point at
which the dominant eigenvalue has a real part that changes
sign from negative (stable steady state) to positive (unstable).
For the original H. R. Wilson neuron, this bifurcation occurs
via a saddle-node annihilation (dominant eigenvalue is real),
but for the reblocked neuron, we find that the dominant
eigenvalue is complex, with loss of stability occurring via
a Hopf transition. Unexpectedly, the blocking procedure has
transformed a type 1 integrator neuron into type 2 resonator
whose firing-rate curve shows an abrupt (“discontinuous”)
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FIG. 6. Current-to-firing rate transfer functions for (a) standard
Wilson integrator neuron [Eqs. (1, 2)] (small black circles) and (b)
reblocked diffusive Wilson neuron [Eqs. (73) and (74)] (red asterisks).
The transfer function for the standard neuron increases smoothly
from zero, whereas the reblocked neuron shows a discontinuity
with near-vertical takeoff above threshold. The threshold currents
are I crit

dc /(A m−2) ≈ 0.214 75 and 0.346 52 for the standard and re-
blocked neurons, respectively. The large blue circles mark the Idc

drive-current values selected for the six time series displayed in Fig. 7.

spiking onset. The comparison between the standard and
reblocked transfer functions is illustrated in Fig. 6.

The firing patterns just above threshold shown in Fig. 7
clearly show the change in dynamics wrought by the reblock-
ing: Whereas the standard neuron can fire arbitrarily slowly, the

diffusive neuron has a preferred firing rate, but just the above
critical current, the firings are chaotic and intermittent, being
interspersed with variable intervals of subthreshold ringing.
We emphasize that this intermittency is entirely deterministic:
No noise has been included in the simulations.

IV. DISCUSSION

In this paper we have addressed a long-standing unresolved
issue in mean-field modeling of the cortex: How does one
construct a spatial mapping that permits a consistent scaling
from micro-level single-neuron dynamics to a macro-level
description for a neural population? We have presented a
stringent coarse-graining algorithm that derives equations for
“specific” neural activity, that is, the behavior of a neuron sam-
pled at random from the population, yet subject to noisy neural
inputs from other members of that population. This regridding
approach stands in marked contrast to standard mean-field
averages which necessarily neglect correlations in neuronal
fluctuations. We believe that our coarse-grained equations are
a closer depiction of the actual population-level “true field.”

The coarse-graining procedure applies an adiabatic elim-
ination of short-wavelength spatial scales [29,31,32], which
was shown by SR&G [33] to be equivalent to the generalized
path (functional) integration performed by K. Wilson in his
renormalization group solution to the Ising ferromagnet [30].
This equivalence gives us confidence that the coarse-graining
formalism provides a mathematically systematic algorithm for
the spatial regridding of the cortex.
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FIG. 7. Comparison between firing patterns for (a) standard Wilson integrator neuron (left-hand panels) and (b) reblocked diffusive Wilson
neuron (right-hand panels) for three settings of Idc drive current just above threshold: Idc = I crit

dc + δI . For the reblocked neuron in (b), firing
onset is abrupt and chaotic, and exhibits damped nonlinear oscillations between firing events, whereas for the the standard integrator, firing
onset is smooth and graduated. Evidently, reblocking has transformed the type 1 integrator into a type 2 resonator neuron.
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However, we need to acknowledge a significant sim-
plification we have made in our cortical model: We have
assumed that all synaptic interactions—both GJ mediated
and chemical—are purely local. This is manifestly not the
case in a real cortex with its millions of long-range white-
matter anatomical connections joining distant cortical areas.
Despite this limitation, the reblocking technique provides a
way forward for deriving coarse-grained approximations of
neuronal dynamics on a structureless homogeneous cortex.

Our spiking-neuron model is based on H. R Wilson’s
two-variable (V,R) voltage-recovery reduction of the standard
four-variable HH equations [4,5]. An enhancement to this
model is the introduction of an explicit biharmonic spatial
dependence for the recovery variable R. This step was central
to our method for both biophysical and technical reasons.

(i) R is a key component of the spiking model since it
represents the activation of K+ outflow (and simultaneous
inactivation of Na+ inflow), leading to the quelling of the
action-potential spike and subsequent recovery of membrane
voltage towards its resting value. Since R can be regarded
as a proxy for the probability of K-channel opening, the
spatial dependence of this “probability” variable is likely
to be important, but its spatial characteristics have yet to
be established. Nevertheless, in Sec. II A we developed a
plausibility argument justifying our inclusion of a ∇4Vb term
in the ∂R/∂t equation of motion.

(ii) The elimination of short-wavelength (high-�q) modes
can only succeed if the perturbative expansion of Sec. II E
converges. This mandates a careful choice for the L1 projection
operator. We are motivated to choose an L1 ansatz which is
based on the classic Ornstein-Uhlenbeck (OU) form since this
is arguably the most thoroughly studied stochastic system,
it has a well-known stationary solution, and was used by
SR&G [33] in their adiabatic treatment of the Landau-
Ginzburg model.

Here we need to consider the coupling between variables
V and R, so we adopt the two-variable OU form, referred to as
Kramer’s equation. After careful consideration we determined
that the biharmonic form for R is the simplest representation
that provides adiabatic closure within the context of the
Kramer ansatz.

The elimination procedure generates a multiplicity of
technically challenging calculations. To systematize the calcu-
lations, we made extensive use of boson creation-annihilation
operators. This mathematical convenience is permitted be-
cause of a formal equivalence between the solutions of
Kramer’s equation and the solutions of the harmonic oscillator.
In Appendix B we demonstrate that this allows us to identify
a “vacuum state” for the cortex, but the potential biophysical
significance of such a ground state is unclear.

As was the case with K. Wilson’s treatment of the Ising
ferromagnet, our method is predicated on the convergence
of a perturbative expansion via nearest-neighbor diffusive
coupling.

In our case, this requires a sufficient GJ diffusion Db > 0
such that the Laplacian terms of L1 dominate the denominator
of Eq. (50d). In Appendix F, we demonstrate that L1 domi-
nance can be achieved provided that the voltage-ratio coupling
coefficient between GJ coupled pairs of neurons exceeds ∼1%.
While GJ connections between excitatory neurons seem to be

very rare, electrical connections between pairs of inhibitory
neurons are ubiquitous throughout the cortex [52,53], yet their
coupling tends to be rather weak. Wang et al. [53] report
coupling coefficients for inhibitory-inhibitory pairings ranging
from 6% to 17%, well above the 1% minimum we require for
convergence of our perturbative theory for spatial reblocking.

Gap-junction diffusion might provide a natural mechanism
for the formation of “cortical columns.” First proposed by
Mountcastle [54] as “an elementary unit of organization in
the somatic cortex,” neurons within these functional units are
activated by the same stimulus and express the same collective
firing properties. The existence of such columns has been
supported by many [55–57]; however, their purpose has also
been questioned [58] because of the high level of variability
of these clusters within the same species. We hypothesize that
within the constraints imposed by the limits of convergence for
spatial coarse graining, “columns” of functionally connected
neurons could emerge spontaneously from a homogeneous
grid of spiking neurons devoid of any directed connections.
The adiabatic reblocking approach described in the present
paper might provide a way to test this hypothesis both
analytically and numerically.

The development of the micro-scale model of a diffu-
sively coupled network of spiking neurons—as detailed in
Sec. II A—will trigger a full investigation of the ungridded
fine-grain dynamics to inform future research.

We close by listing some immediate and potential neural-
field applications of the adiabatic H. R. Wilson “true-field”
equations.

(a) In Sec. III we extracted the macrocolumn-scale current-
to-firing-rate transfer function for a population of diffusively
coupled identical type 1 (integrator) cortical neurons in the
rather artificial limit of negligible noise and disabled chemical
synapses. As immediate next steps, we should relax these
restrictions in stages by (i) introducing distinct excitatory
and inhibitory neural types; (ii) enabling synaptic and ion-
channel noises; (iii) enabling the wave-equation fluxes of
spike activity in both deterministic and fully stochastic limits.
In addition, it would be a straightforward to generalize the
true-field approach to populations of diffusively coupled type 2
(resonator) neurons by replacing the quadratic R∞ polynomial
in Eq. (2) (describing a type 1 membrane) with a linear
form [4].

(b) Mean-field models have already been been applied
with some success to a range of neurotransmitter-modulated
phase transitions such as natural sleep [21,22,59–61], anesthe-
sia [19,62–72], and seizure [73–78]; for example, anesthetic
induction is modeled by increasing the area of the inhibitory
postsynaptic potential (PSP) in a drug-dependent manner.
Similar rate-constant modulations of PSP could be applied
to the true-field spiking equations to investigate changes in
spiking rhythms near phase-transition tipping points.

(c) Because the true-field equations are explicitly de-
pendent on the blocking ratio B, one could analyze how
fluctuation spectra and spiking avalanche statistics vary with
area scaling. As a final conjecture, we suggest that it might
be possible to establish renormalization-group-like scaling
laws—and their associated critical exponents—for close ap-
proach to cortical transition points separating distinct states of
vigilance.
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APPENDIX A: REBLOCKING CORRECTIONS
EXPRESSED AS VACUUM EXPECTATIONS

Here we show how Eq. (51) can be expressed in terms
of expectation values. Inserting definition L3 = L3(�q, �Q) +
L3( �Q) of Eq. (43) into (51) gives

∂v

∂t
= P[L3 + L3( �Q)]v(t)

− P[L3 + L3( �Q)]L−1
1 {L2 + (1 − P)

× [L3 + L3( �Q)]}v(t). (A1)

Recalling from Eq. (52) that

v(t) = PP (χ,t) = PsP̂ (χ ( �Q,t)),

with projection operator P defined in (46), the first term on
the RHS of (A1) becomes

Ps

∫
[L3 + L3( �Q)]Psdχ (�q)P̂ = Ps[〈L3

〉+ 〈L3( �Q)〉]P̂ ,

(A2)

where 〈·〉 denotes the stationary expectation over �q space; e.g.,
for arbitrary function f [χ (�q)],

〈f [χ (�q)]〉 ≡
∫

f [χ (�q)]Ps(χ (�q))dχ (�q).

In the second term on the RHS of (A1), we note that operator
P commutes with both L3( �Q) and L−1

1 ; thus,

PL3( �Q)L−1
1 {L2 + (1 − P)[L3 + L3( �Q)]}v(t)

= L3( �Q)L−1
1 {PL2 + P(1 − P)[L3 + L3( �Q)]}v(t),

= 0,

which follows because PL2 = 0 [from Eq. (47c)]; and P(1 −
P) = P − P2 = 0 because the P projection operator is
idempotent. Furthermore,

(1 − P)L3( �Q)v(t) = (1 − P)L3( �Q)PP

= (1 − P)PL3( �Q)P

= 0,

so the second term on the RHS of (A1) simplifies to

PL3L
−1
1 [L2 + (1 − P)L3]v(t)

= Ps〈L3L
−1
1 [L2 + (1 − P)L3]〉P̂ .

Thus, (A1) becomes

dv

dt
= Ps

∂P̂

∂t

= Ps

{〈L3〉 + 〈L3( �Q)〉
− 〈L3L

−1
1 [L2 + (1 − P)L3]

〉}
P̂

and we obtain the rescaled Fokker-Planck equation in �Q space,

∂P̂

∂t
= {〈L3( �Q)〉 + 〈L3〉 − 〈L3L

−1
1 L2

〉
− 〈L3L

−1
1 (1 − P)L3

〉}
P̂ . (A3)

The leading 〈L3( �Q)〉 term represents an exact version of the
original Fokker-Planck equation in �Q space. The remaining
terms are corrections arising from nonlinear interactions.
Explicit evaluation of the expectation values in (A3) follows
most directly via the operator formalism described below.

APPENDIX B: OPERATOR FORMALISM

Elimination of high-�q modes proceeds by applying the
projection operator P of Eq. (46) constructed from the
stationary solution of L1,

L1Ps = 0.

Working from Eq. (39), we express L1 as

L1 = L1(V,R) + L1(Z,�) + L1(�,φ),

where

L1(V,R) = ∑
b

∑
�q

{
∂

∂Vb(�q)�b(�q)Vb(�q)+ ∂
∂Vb(�q)g0,RRb(�q)

− ∂
∂Rb(�q)�R(�q)Vb(�q) + �b

2�2
∂2

∂Vb(�q)Vb(−�q)

}
,

(B1)

with

g0,R = gR,b|EK|, (B2a)

�b(�q) = λb(�q) + a0,b, (B2b)

�R(�q) = λR(�q) + b1,b/τb, (B2c)

and

L1(Z,�) =
∑
a,b

∑
�q

{
− ∂

∂�ab(�q)
Zab(�q)

+ ∂

∂Zab(�q)

[
a2Zab(�q) + a3�ab(�q)

]
+ �Z

2�2

∂2

∂Zab(�q)Zab(−�q)

}
, (B3)

with

a2 = αab + βab, a3 = αabβab,

and

L1(�,φ) =
∑
a,b

∑
�q

{
− ∂

∂φab(�q)
�ab(�q)

+ ∂

∂�ab(�q)

[
2v�ab�ab(�q) + a4φab(�q)

]
+ ��

2�2

∂2

∂�ab(�q)�ab(−�q)

}
, (B4)
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with

a4 = +Dφλφ(�q) + (v�ab)2.

When expressed in this form, L1 satisfies

L1Ps = 0, (B5a)

where the stationary probability distribution is expressed as a
product,

Ps = Ps(V,R)Ps(Z,�)Ps(�,φ). (B5b)

We demonstrate assertion (B5) by first considering
L1(V,R). We make the following identifications:

Vb(�q) =
√

�b

�b(�q)

yb(�q)

�
, (B6a)

Rb(�q) =
√

�b�R(�q)

g0,R�b(�q)

xb(�q)

�
, (B6b)

∂

∂Vb(�q)
= �

√
�b(�q)

�b

∂

∂yb(�q)
, (B6c)

∂

∂Rb(�q)
= �

√
g0,R�b(�q)

�b�R(�q)

∂

∂xb(�q)
. (B6d)

Then (B1) can be rewritten as

∑
b

∑
�q

{
�b(�q)

[
∂

∂yb(�q)
yb(�q) + 1

2

∂2

∂yb(�q)yb(−�q)

]

+
√

g0,R�R(�q)
∂

∂yb(�q)
xb(�q)

−
√

g0,R�R(�q)
∂

∂xb(�q)
yb(�q)

}
= L1(V,R). (B7a)

This matches the form of Kramer’s equation, which satisfies

L1(V,R)Ps(V,R) = 0, (B7b)

where

Ps(V,R) = N exp[−2yb(�q)yb(−�q)]

× exp[−2xb(�q)xb(−�q)] ≡ |0〉V,R, (B7c)

with N being an appropriate normalization for the stationary
probability distribution.

The y and ∂
∂y

components of L1(V,R) define a conjugate
pair for membrane voltage V that are analogous to position
and momentum coordinates for a quantum harmonic oscillator;
similarly, x and ∂

∂x
are the corresponding conjugate pair for

membrane recovery R. We now introduce bosonic creation
operators

A
†
b(�q), A

†
R(�q),

and annihilation operators

Ab(�q), AR(�q),

where AR ∈ {ARe
,ARi

}, and

yb(�q) = [A†
b(�q) + Ab(−�q)]/

√
2,

xb(�q) = [A†
R(�q) + AR(−�q)]/

√
2,

∂

∂yb(�q)
= −

√
2A

†
b(−�q),

∂

∂xb(�q)
= −

√
2A

†
R(−�q).

Hence, (B7a) can be re-expressed as

L1(V,R) =
∑

b

∑
�q

{−�b(�q)A†
b(�q)Ab(�q)

+
√

g0,R�R(�q)[A†
R(�q)Ab(�q) − A

†
b(�q)AR(�q)]}.

(B8)
Defining the inverse transformations,

A
†
b(�q) = − 1√

2

∂

∂yb(−�q)
, (B9a)

Ab(�q) = √
2yb(−�q) + 1√

2

∂

∂yb(�q)
, (B9b)

one may show that

[Ai(�q),A†
j (�q ′)] = δi,j δ�q,�q ′ , and (B9c)

Ab(�q)Ps(V,R) = AR(�q)Ps(V,R)

= 0. (B9d)

Equation (B9d) indicates that the Ps steady-state probability
distribution is formally equivalent to the vacuum state |0〉V,R

for these operators. Thus, A
†
b and A

†
R will generate eigen-

functions in the same fashion as for the quantum mechanical
harmonic oscillator [47].

Thus, the expectation values appearing in (A3) will be of
the form〈

f [χ (�q)]
〉 = ∫ A(�q1)A†(�q2)A(�q3)A†(�q4)Psdχ (�q)

= V,R〈0|A(�q1)A†(�q2)A(�q3)A†(�q4)|0〉V,R

and can be routinely calculated. For these calculations it is
convenient to write (B8) in terms of the auxiliary operators

b1+ (�q), b1− (�q), b2+ (�q), b2− (�q),

where, following Risken [47],

b1+ (�q) = δ− 1
2 [
√

λ1(�q)A†
b(�q) −

√
λ2(�q)A†

R(�q)], (B10a)

b1− (�q) = δ− 1
2 [
√

λ1(�q)Ab(�q) +
√

λ2(�q)AR(�q)], (B10b)

b2+ (�q) = δ− 1
2 [−
√

λ2(�q)A†
b(�q) +

√
λ1(�q)A†

R(�q)], (B10c)

b2− (�q) = δ− 1
2 [
√

λ2(�q)Ab(�q) +
√

λ1(�q)AR(�q)], (B10d)

with

λ
1
2

(�q) = [�b(�q) ± δ(�q)]/2, (B11a)

δ(�q) = [�2
b(�q) − 4ω2

0(�q)
] 1

2 , (B11b)

ω2
0(�q) = g0,R�R(�q). (B11c)
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Invoking these auxiliary operators for (B8) gives

L1(V,R) =
∑

�q
[λ1(�q)b1+ (�q)b1− (�q)

− λ2(�q)b2+ (�q)b2− (�q)]. (B12)

L1 acts on the eigenfunction ψ (V,R)
n1,n2

,

L1(V,R)ψ (V,R)
n1,n2

(�q) = −λn1,n2 (�q)ψ (V,R)
n1,n2

(�q), (B13)

where

λn1,n2 (�q) = n1λ1(�q) + n2λ2(�q)

and

ψ (V,R)
n1,n2

(�q) = (n1!n2!)−
1
2 [b1+ (�q)]n1 [b2+ (�q)]n2 |0〉V,R. (B14)

Following a similar procedure, we obtain expressions for
L1(Z,�) and L1(�,φ),

L1(Z,�) =
∑
a,b

∑
�q

{−a2A
†
z(�q)Az(�q)

+
√

a3[A†
p(�q)Az(�q) − A†

z(�q)Ap(�q)]}, (B15)

L1(�,φ) =
∑
a,b

∑
�q

{−2v�abA
†
r (�q)Ar (�q)

+
√

a4[A†
s(�q)Ar (�q) − A†

r (�q)As(�q)]}, (B16)

where [A†
z(�q),A†

p(�q)] are creation operators acting on the
|0〉Z,� vacuum state, while [A†

r (�q),A†
s(�q)] act on the |0〉�,φ

vacuum state. These vacuum or ground states are defined by
their respective stationary probability distributions,

Ps(Z,�) = N exp

[
− 2�2

�Z

a2Zab(�q)Zab(−�q)

]
× exp

[
− 2�2

�Z

a2a3�ab(�q)�ab(−�q)

]
≡ |0〉Z,�,

(B17)

Ps(�,φ) = N exp

[
− 2�2

��

2v�ab�ab(�q)�ab(−�q)

]
× exp

[
−2�2

��

2a4v�abφab(�q)φab(−�q)

]
≡ |0〉�,φ.

(B18)

In summary, the stationary solution of

L1 = L1(V,R) + L1(Z,�) + L1(�,φ)

is

L1Ps = 0, (B19a)

where

Ps = Ps(V,R)Ps(Z,�)Ps(�,φ) (B19b)

is the Fock-space ground state for the complete cortical model,

|0〉 = |0〉V,R|0〉Z,�|0〉�,φ. (B19c)

Finally, we note that the operators defined in (B15)
and (B16) may be recast into forms corresponding to those
given in (B12)–(B14).

APPENDIX C: EVALUATION OF EXPECTATION
〈L3 L−1

1 L2〉
Complete evaluation of the RHS of (A2) involves manipu-

lation of a large number of terms, since each of L2, L3 must be
reexpressed in terms of creation and annihilation operators. To
indicate the essential method to the reader, we focus here on
the evaluation of a single exemplar, namely 〈L3L

−1
1 L2(A†

b)〉.
The rightmost component of the expectation is written as

the sum of the five subcomponents L2,j

L2(A†
b) = L2,1(�q,�q1,�q2)A†

b(−�q)Ab(−�q1)A†
b(�q2)δ�q,�q1+�q2

+ L2,2(�q)A†
b(−�q)δq, �Q1+ �Q2

+ L2,3(�q,�q1,�q2)A†
b(−�q)Ab(−�q1)A†

b(�q2)δ�q,�q1+�q2+ �Q3

+ L2,4(�q)A†
b(−�q)δ�q, �Q1+ �Q2+ �Q3

+ L2,5(�q)A†
b(−�q)δ�q, �Q1+ �Q2

.

Noting that when L2,1 and L2,3 act on the vacuum, they produce

δ−�q1,�q2δ�q,�q1+�q2 = δ�q,0 = 0,

so we need only consider

L2(A†
b)

= {[L2,2 + L2,5]δ�q, �Q1+ �Q2
+ L2,4δ�q, �Q1+ �Q2+ �Q3

}
A

†
b(−�q),

where

L2,2 = a3,b

2n + 1
Cb(�q)Vb( �Q1)Vb( �Q2), (C1a)

L2,4 = a2,b

(2n + 1)2
Cb(�q)Vb( �Q1)Vb( �Q2)Vb( �Q3), (C1b)

L2,5 = gR,b

2n + 1
Cb(�q)Rb( �Q1)Vb( �Q2), (C1c)

with

Cb(�q) = −�

√
2�b(�q)

�b

.

Using (B10), we find

L−1
1 A

†
b|0〉 = −A

†
R(�q)

ω0
|0〉,

with ω2
0 = g0,R�R(�q). Thus, the only term from L3 to

contribute to the 〈·〉 expectation is L3(AR), which, omitting
explicit summations, is

L3(AR) = L3,1( �Q, �Q2,�q1)AR(−�q1)δ �Q,�q1+ �Q2
,

where

L3,1( �Q, �Q2,�q1) = gR,b

(2n + 1)�

√
�b�R(�q1)

2g0,R�b(�q1)

∂Vb( �Q2)

∂Vb( �Q)
.
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Thus,

〈L3L
−1
1 L2(A†

b)〉
= −

∑
[ �Q,�q,b]

L3,1( �Q, �Q2,�q1)

× 〈AR(−�q1)A†
R(�q ′)〉

ω0(�q ′)
{
[L2,2(�q ′) + L2,5(�q ′)]

× δ�q ′, �Q′
1+ �Q′

2
+ L2,4(�q ′)δ�q ′, �Q′

1+ �Q′
2+ �Q′

3

}
δ �Q,�q1+ �Q2

. (C2)

Summing over �q gives

〈·〉 =
∑
[ �Q,b]

gR,b

g0,R

{
1

(2n + 1)2

∂

∂Vb( �Q)
Vb( �Q2)

× [a3,bVb( �Q′
1)Vb( �Q′

2)+gR,bRb( �Q′
1)Vb( �Q′

2)]δ �Q, �Q′
1+�Q′

2+�Q2

+ a2,b

(2n + 1)3

∂

∂Vb( �Q)
Vb( �Q2)Vb( �Q′

1)Vb( �Q′
2)Vb( �Q′

3)

× δ �Q, �Q′
1+ �Q′

2+ �Q′
3+ �Q2

}
, (C3)

where the square-bracketed indexing notation [ �Q,b] signals
that all possible sums (over �Q, �Q′

1, e, i, etc.) are to be
considered.

Fourier inversion from wave-number space back to physical
space cannot be done using the generic methods outlined in
Appendix D; instead, special handling is required because of
the implicit restrictions on the �Q summations.

We demonstrate with the first term of (C3),∑
[ �Q,b]

a3,bgR,b

g0,R

1

(2n + 1)2

∂

∂Vb( �Q)
Vb( �Q2)Vb( �Q′

1)Vb( �Q′
2)

× δ �Q, �Q′
1+ �Q′

2+ �Q2
. (C4)

From the δ functions embedded in (C2) we know that

�q ′ = �Q′
1 + �Q′

2, �q1 = �Q − �Q2. (C5)

After applying Fourier mappings (62c) and (62e) and summing
over �Q, we find that expression (C4) becomes∑

[ �Q, �J ,b]

a3,bgR,b/g0,R

(2n + 1)2(2N + 1)4

∂

∂Vb, �J

[
Vb, �J2

Vb, �J ′
1
Vb, �J ′

2

]
× ei( �J− �J2)· �Q2L ei( �J− �J ′

1)· �Q′
1L ei( �J− �J ′

2)· �Q′
2L.

We evaluate the sums over �Q as∑
�Q2

ei( �J− �J2)· �Q2L =
[

(2n + 1)�

2π

]2 ∫
ei( �J− �J2)· �Q2Ld �Q2

≈ δ �J , �J2

[
(2n + 1)�

2π

]2 ∫
d �Q2

= S1 · (2N + 1)2δ �J , �J2
,

where S1 ≈ 0.4375 is the dilution factor on
∫

d �Q2 arising from
the second wave-number restriction �q1 = �Q − �Q2 of (C5),
namely that the difference of two vectors in �Q space must lie
in �q space, i.e., must lie outside the �Q-space square.

In view of the first restriction �q ′ = �Q′
1 + �Q′

2 of (C5), the
two remaining �Q′

1 and �Q′
2 summations are paired, giving∑

�Q′
1,

�Q′
2

ei( �J− �J ′
1)· �Q′

1L ei( �J− �J ′
2)· �Q′

2L

≈ δ �J , �J ′
1
δ �J , �J ′

2

[
(2n + 1)�

2π

]4 ∫∫
d �Q′

1d
�Q′

2

= S1(2N + 1)4δ �J , �J ′
1
δ �J , �J ′

2
;

thus, expression (C4) becomes∑
[ �J ,b]

a3,bgR,b

g0,R

S2
1

B2

∂

∂Vb, �J
V 3

b, �J .

Using similar methods, we complete the Fourier inversion
of (C3) to coarse-grained �J space so that 〈L3L

−1
1 L2(A†

b)〉
transforms to∑

[ �J ,b]

∂

∂Ṽb, �J

{
a3,bgR,bS

2
1

g0,R

Ṽ 3
b, �J + g2

R,bS
2
1

g0,R

Ṽ 2
b, �J R̃b, �J

+ a2,bgR,bS1S2

g0,R

Ṽ 4
b, �J

}
, (C6)

where S2 ≈ 0.5555 is the scaling factor arising from an
integration that requires a triple-vector restriction �q = �Q1 +
�Q2 + �Q3.

APPENDIX D: INVERSION OF GENERIC DRIFT
AND DIFFUSION TERMS

We now describe the standard techniques used to invert
so-called “generic” drift and diffusion terms, that is, terms
that do not have any δ-function restrictions in �Q space.

1. Inversion of drift terms

In �Q space, generic drift terms take the form

∑
[ �Q]

∂

∂χ ( �Q)

M∏
j=1

χ ′( �Qj )δ[ �Q,
∑M

j=1
�Qj ], (D1)

with {χ,χ ′} ∈ {V,R,Z,�,�,φ}. Using the inverse transfor-
mations (62c) and (62e), drift expression (D1) becomes

∑
[ �J , �Q]

∂

∂χ �J
f̃ �J ( �Q)

M∏
j=1

{
f̃ ∗

�Jj
( �Qj )χ ′

�Jj

}
δ[ �Q,

∑M
j=1

�Qj ]

= 1

(2N + 1)M+1

∑
[ �J , �Q]

∂

∂χ �J
ei �J · �QLe−i

∑
j

�Jj · �Qj L

×
M∏

j=1

χ ′
�Jj
δ[ �Q,

∑M
j=1

�Qj ]. (D2)

We invoke the δ-function property and note that∑
�Qj

ei( �J− �Jj )· �Qj L = (2N + 1)2δ �J , �Jj
,
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so that (D2) becomes

(2N + 1)2M

(2N + 1)M+1

∑
�J

∂

∂χ �J
[χ ′

�J ]M

= (2N + 1)M−1
∑

�J

∂

∂χ̃ �J
[χ̃ ′

�J ]M, (D3)

where we have mapped {χ,χ ′} → {χ̃ ,χ̃ ′} using the coarse-
grain scaling definition of Eq. (61).

2. Inversion of diffusion terms

In �Q space, the generic diffusion term takes the form

∑
[ �Q]

∂

∂χ ( �Q)

⎧⎨⎩
M∏

j=1

χ ′( �Qj )

⎫⎬⎭ ∂

∂W ( �Q′)

⎧⎨⎩
M ′∏

j ′=1

W ′
j ′ ( �Q′

j )

⎫⎬⎭
× δ[ �Q,

∑M
j=1

�Qj +
∑M′

j ′=1
�Q′

j − �Q′], (D4)

with {χ,χ ′,W,W ′} ∈ {V,R,Z,�}. Following the procedures
outlined above for the (D1) drift, this diffusion maps to coarse-
grained �J space as

(2N + 1)(M+M ′)B(M+M ′−2)
∑

�J

∂

∂χ̃ �J
[χ̃ ′

�J ]M
∂

∂W̃ �J
[W̃ ′

�J ]M
′
,

(D5)

where B = (2n + 1)/(2N + 1) is the blocking ratio linking
the fine and coarse spatial scales.

APPENDIX E: DEFINITIONS FOR WAVE-NUMBER
INTEGRALS

This Appendix itemizes the ci wave-number integrals
referenced in the di drift coefficients of Eq. (59) and gi

diffusion coefficients of Eq. (60). The integrals are evaluated
numerically, taking into account any restrictions on the wave-
number ranges as flagged by labels R0 , R1 and R2 ; these
restrictions are defined below [we list the SI units for each
integral to aid checking of model equations for dimensional
consistency, thus reducing occurrences of typographical and
other errors]:

c0 =
∫

d �q
�b(�q)

[m−2 s],

c1 = −
∫

d �q
2[�b(�q)]2

[m−2 s2],

c2 = −
∫

d �q
2[�b(�q)]3

[m−2 s3],

c3 =
∫∫

g(�q1,�q2)d �q1d �q2

�b(�q1)�b(�q2)
R0 [m−4 s3],

c4 =
∫∫

d �Q1d �Q2

�R( �Q1 + �Q2)
R1 [m−4 Vs],

c5 =
∫∫

�b( �Q1 + �Q2)d �Q1d �Q2

�R( �Q1 + �Q2)
R1 [m−4 V],

c6a =
∫∫

h(�q1,�q2)
√

�R(�q1 + �q2)d �q1d �q2

�b(�q1)�b(�q1 + �q2)
R0

[
s5/2

m4 V1/2

]
,

c6b =
∫∫

h(�q1,�q2)d �q1d �q2

�b(�q1)�b(�q2)
√

�R(�q1 + �q2)
R0

[
V1/2 s7/2

m4

]
,

c7 = c1 [m−2 s2],

c8 = −
∫

d �q
2�b(�q)�R(�q)

[m−2 Vs2],

c9 = c0√
g0,R

[m−2 V−1/2 s3/2],

c10 = 1√
g0,R

∫
d �q

�R(�q)
[m−2 V1/2 s3/2],

c11 = c2 [m−2 s3],

c12 =
∫∫

g(�q1,�q2)d �q1d �q2

�b(�q1)�b(�q2)�b(�q1 + �q2)
R0 [m−4 s4],

c15 =
∫∫

d �Q1d �Q2

�b( �Q1 + �Q2)
R1 [m−4 s],

c16 =
∫∫∫

d �Q1d �Q2d �Q3

�b( �Q1 + �Q2 + �Q3)
R2 [m−6 s],

where the wave-number restrictions are stipulated as

R0: �q1 + �q2 = �q (c3,c6a,c6b,c12),

R1: �Q1 + �Q2 = �q (c4,c5,c15),

R2: �Q1 + �Q2 + �Q3 = �q (c16),

and where the �b and �R definitions are given in (B2b)
and (B2c), respectively. The two-argument functions g(·)
(appearing in the c3 and c12 integrals) and h(·) (in c6a and
c6b) depend on the wave-number sum �q1 + �q2 = �q3 and are
defined as

g(�q1,�q2,�q3) = �2
1

×
{

− L11L12L13

L11 + L12 + L13
+ L11L12L23

L11 + L12 + L23

+ L11L22L13

L11 + L22 + L13
− L11L22L23

L11 + L22 + L23

+ L21L12L13

L21 + L12 + L13
− L21L12L23

L21 + L12 + L23

− L21L22L13

L21 + L22 + L13
+ L21L22L23

L21 + L22 + L23

}
and

h(�q1,�q2,�q3) = �2
1

√
L11L21

×
{

− L12L13

L11 + L12 + L13
+ L12L23

L11 + L12 + L23

+ L22L13

L11 + L22 + L13
− L22L23

L11 + L22 + L23

+ L12L13

L21 + L12 + L13
− L12L23

L21 + L12 + L23

− L22L13

L21 + L22 + L13
+ L22L23

L21 + L22 + L23

}
,

022402-22



FROM INDIVIDUAL SPIKING NEURONS TO POPULATION . . . PHYSICAL REVIEW E 93, 022402 (2016)

where the Lmn represent

Lmn = λm(�qn),

with λm ∈ {λ1,λ2} and �qn ∈ {�q1,�q2,�q3}, and where

�2
1 = 1

δ(�q1)δ(�q2)δ(�q3)
.

We recall that λm(�q) and δ(�q) have been defined in (B11a)
and (B11b) of Appendix B.

APPENDIX F: GAP-JUNCTION COUPLING
AND L1 DOMINANCE

Convergence of our perturbative expansion requires suf-
ficient GJ diffusion Db > 0 such that the Laplacian terms
of L1 dominate the denominator of Eq. (50d). We estimate
the minimum coupling strength required for convergence by
comparing the relative sizes of the Laplacian and Na+-flux
terms in the equation of motion (20) for Vb. The largest possible
wave number supported by the micro-scale cortical grid (and
the first to be eliminated in the reblocking) is �q max whose x

and y components are qx = qy = π/� (see Fig. 4). We impose
a standing wave on the 2D cortical grid,

V (�r) = V0 + V1e
i �q·�r ,

with V0 = −50 mV and V1 = 8 mV which might correspond
to the ∼16-mV peak-to-peak variation between the “up” and
“down” states of slow-wave sleep. For this voltage range,
maximum Na+ flux occurs at V = −42 mV,

−g(V )(V − EK) ≈ 350 V/s,

while the Laplacian term generates a flux

−Db∇2V (�r) = (q2
x + q2

y

)
DbV1e

i �q·�r

of amplitude

2(π/�)2DbV1 ≈ 1.04 × 106 V/m.

Here � = 10 μm and Db = 6.60 × 10−4 m2/s is the (large)
value for GJ diffusivity used earlier in the exemplar of Sec. III.
The Laplacian flux is about 3000 times larger than the maximal
Na+ flux, so we can safely lower Db by three orders of
magnitude to establish a minimum “safe” level for the GJ
coupling coefficient between pairs of electrically connected
neurons. Working with the Ref. [41] analysis of the Fukuda
et al. [48] measurements of interneuronal GJ abundances,

10−3Db = aN

4T

Rm

Rg

⇒ Rm

Rg

= 0.011,

where a = 0.16 mm2 is the area of a diffusive “Fukuda
square,” N = 60 is the average number of GJ connections
per neuron (divided by four to give the number of connections
per side), and T = 40 ms is the neuron time constant. Rg

is the interneuron gap-coupling resistance, and Rm is the
membrane (or input) resistance of the target cell; the ratio
Rm/Rg determines the voltage coupling coefficient c (see
Fig. 2 of Ref. [79]),

c = Rm

Rg + Rm

= Rm/Rg

1 + Rm/Rg

= 0.0109 ≈ 1%.

Wang et al. [53] report coupling coefficients for inhibitory-
inhibitory pairings ranging from 6% to 17%, well above the
1% minimum we require for convergence of our perturbative
theory for spatial reblocking.

Because GJ connections between pairs of excitatory neu-
rons are very sparse, we expect that the dominant terms of
L1 will be determined exclusively by the inhibitory diffusive
contribution alone. The practical outcome of this will be that
the sum over index b in Eq. (B8) will collapse to the single
instance b = i. Note that the blocking procedure will still
be valid, producing the coarse-grained Fokker-Planck (FP)
equation (57) in which the first term contains the spatially
rescaled FP equation. However, the additional correction terms
defined in Eqs (59) for drift and (60) for diffusion will now
only contain inhibitory contributions, so once again the sum
over b will collapse to b = i.

In effect, the presence of ubiquitous inhibitory GJ connec-
tivity supports spatial coarse-graining across both populations.
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