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Complex quantum networks: From universal breakdown to optimal transport
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We study the transport efficiency of excitations on complex quantum networks with loops. For this we consider
sequentially growing networks with different topologies of the sequential subgraphs. This can lead either to a
universal complete breakdown of transport for complete-graph-like sequential subgraphs or to optimal transport
for ringlike sequential subgraphs. The transition to optimal transport can be triggered by systematically reducing
the number of loops of complete-graph-like sequential subgraphs in a small-world procedure. These effects are
explained on the basis of the spectral properties of the network’s Hamiltonian. Our theoretical considerations
are supported by numerical Monte Carlo simulations for complex quantum networks with a scale-free size
distribution of sequential subgraphs and a small-world-type transition to optimal transport.
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I. INTRODUCTION

Complex networks are a beautiful tool to understand the
statistics and dynamics of a huge variety of systems, such
as biological systems, social groups, or the Internet; see, for
instance, [1]. Many of these networks can be grouped into
classes, for instance, scale-free networks [2] or small-world
networks [3], where these intrinsic properties of the link
(bond) distribution between the nodes determine the classical
static [4] as well the classical dynamic features [5]. Only
recently, network theory has been combined with quantum
theory, in order to study, say, the quantum dynamic properties
on complex structures [6–12].

The majority of networks will have (some) loops, which—
for classical networks—influence the dynamics. For instance,
the target search on looped DNA is of superdiffusive type
[13]. In the cell, DNA appears as supercoils (plectonemes),
which also influences the dynamics [14]. It is not clear if or
how the presence of loops influences the quantum dynamics.
For the subclass of quantum networks without loops, we have
recently demonstrated that there are universal features when
the complexity of the network leads to a complete breakdown
of the quantum transport properties [15].

Complex quantum networks appear in quantum information
theory, e.g., in the study of quantum decision trees [16] or
of quantum search engine ranking [8], where loops can be
present. In nature one might encounter such networks, e.g., in
the assemblies of ringlike LH1 and LH2 complexes in bacterial
light-harvesting antennae, where quantum dynamical aspects
(can) play an important role for the efficiency of the process
even at room temperature [17,18]. Recently, coherent energy
transfer at room temperature has also been shown for optimized
architectures of artificial supramolecular nanofibers [19].

Here, we focus on the influence of loops on the dynamics
on sequentially growing complex quantum networks. By
manipulating the structure of the sequential subgraphs (SSGs),
we are able to induce a transition to optimal transport,
characterized by a global time-averaged efficiency measure.

*muelken@physik.uni-freiburg.de

II. QUANTUM TRANSPORT ON NETWORKS

A network (undirected graph) G = G(N,M) is defined
by its N nodes (vertices) and M bonds (edges) [20]. Each
node is represented by a state |j 〉, j = 1, . . . ,N . The quantum
dynamics on such networks is governed by its Hamiltonian
H , which reflects the topological structure of the network, i.e.,
whenever two nodes k and j are connected by a single bond,
one has in the node representation that Hk,j ≡ 〈k|H|j 〉 =
const, which can be chosen to be 1 without loss of generality.
There is some freedom in choosing the diagonal elements Hj,j ;
we assume that these elements are a function of the degree fj of
node j , i.e., Hj,j = H (fj ). This includes the adjacency matrix
A, H (fj ) = 0 for all j , as well as the connectivity matrix
(Laplacian) C, H (fj ) = fj [6]. The time-dependent transition
amplitudes αkj (t) = 〈k| exp(−i H t)|j 〉 and the corresponding
transition probabilities πkj (t) = | αkj (t) |2.

In order to quantify a network’s transport efficiency, we
use the space averaged probability π (t) ≡ ∑

j πjj (t)/N as
a measure. If this quantity is small (large) for almost all
times, the probability to leave any node of the network is—on
average—large (small) rendering transport (in)efficient. By
taking the long-time average of π (t), we arrive at a global
time-independent measure for the transport efficiency [6]:

χ ≡ lim
t→∞

1

t

∫ t

0
dt ′π (t ′). (1)

In the spectral decomposition, π (t) as well as χ depend on the
eigenstates of H , such that we employ the Cauchy-Schwarz
inequality to obtain measures which solely depend on the
spectral density �(E) of H : one has π (t) � | α(t) |2 with
α(t) = ∑

j αj,j (t)/N and [15]

χ � χ ≡ lim
t→∞

1

t

∫ t

0
dt ′

∣∣ ᾱ(t ′)
∣∣2 =

∑
E

�2(E) (2)

� �2(E∗) + 1

N
[1 − �(E∗)] ≡ χ, (3)

where E∗ is, at this point arbitrarily chosen, a single eigenvalue.
Now we are in the position of discussing the quantum transport
efficiency on networks on the basis of the spectral density
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of H . However, the number of highly degenerated eigenvalues
depends on the choice of H . A single highly degenerate
eigenvalue E∗ can be present for one of the SSGs (few, when
there are SSGs of the same size) when H = C or for many of
the SSGs when H = A; see also below.

III. SEQUENTIALLY GROWING NETWORKS

In the following, we will consider sequentially growing
networks of total size N , defined by a probability distribution
p(n) (with n � 2), for the size n of a SSG [21]. Specifically,
we draw a number n1 according to p(n). This determines the
size of the first SSG with a number of loops of the order
n1, but independent of the actual topology of this SSG. We
then randomly pick one of the n1 nodes and attach to this
another SSG (with a similar topology) of size n2 − 1. From
the remaining n1 + n2 − 2 nodes we again pick randomly a
node to which we attach the next SSG of size n3 − 1. In this
way only at most two SSGs are connected at a given node. This
procedure continues until we reach N = ∑g

k=1 nk − (g − 1),
where g is the number of SSGs in the sequence; see also
Fig. 1(a). For finite N , the average number of SSGs, 〈g〉, can
be obtained from p(n) and the average size 〈n〉 of a SSG by
〈g〉 = (N − 1)/(〈n〉 − 1).

The probability distribution can show a parameter depen-
dence, e.g., for scale-free distributions (see below), such that
one can interpolate between (i) a small number of large SSGs,
i.e., large 〈n〉, and (ii) larger numbers of small SSGs, i.e.,
small 〈n〉. In case (i) the topology of the SSGs can lead
to highly degenerate eigenvalues; in particular, it is possible
to find a single highly degenerate eigenvalue E∗. For case
(ii), one can obtain a flat density �(E). Taking the average
size 〈n〉 as a parameter dependent measure, we assume that
�(E∗) = �(E∗,〈n〉), such that

�(E∗,〈n〉) →
{

1 for 〈n〉 → N

1/N for 〈n〉 → 2 , (4)

n1

n −12

n −13
n −16

n −15
n −14

n −17

n −18

underlying treelike network

complete−graph−like

sequential
ringlike

sequential subgraph

subgraph

removing/adding
internal bonds

(a) sequentially growing
network

(b) small−world−type transition

FIG. 1. (a) Sketch of a sequentially growing network with g = 8
SSGs and the treelike backbone. (b) Small-world-type transition in a
SSG, where internal bonds (blue) are randomly added (removed) from
the ringlike (complete-graph-like) SSGs with a certain probability
pint.

where 2 is the lower bound for connected networks. This
will also render χ = χ (〈n〉), from which we will define the
order parameter 1 − χ(〈n〉) [15]. In the N → ∞ limit, this
order parameter, denoted by 1 − χ∞, is 1 for optimal transport
(when 〈n〉 → 2), e.g., for rings or chains of infinite size, and
0 for complete absence of transport (when 〈n〉 → ∞), e.g.,
for networks with a single eigenvalue with spectral density of
order 1 such as star graphs or complete graphs. The breakdown
of transport for 〈n〉 → ∞ is captured by a critical exponent

κ ≡ lim
〈n〉→∞

ln[1 − χ∞(〈n〉)]
ln[1/〈n〉] , (5)

which is bounded from above: For random trees, which are also
sequentially growing networks, but without loops, the spectral
density is related to the average degree 〈f 〉 of those nodes with
degree larger than 1. For a node in a tree with degree f > 1,
the size of the corresponding starlike SSG is n = f + 1, which
counts all nodes connected by a single bond to that particular
node with f > 1. In the limit of diverging average degree, one
finds �(E∗,σ 	 σc) ≈ 1 − 2/(〈f 〉 − 1) [15], leading to κ = 1.
Since all other networks will have smaller densities of the most
highly degenerate eigenvalue, κ is bounded from above by 1.
In the case of sequentially growing networks with loops and a
single highly degenerate eigenvalue E∗, one has

1 − 〈�(E∗,〈n〉 	 N )〉 ∼ 1/〈n〉. (6)

Then, κ is bounded from below also by 1, since

1 − 〈χ〉 = 1 − 〈�2(E∗,〈n〉)〉
� 1 − 〈�(E∗,〈n〉)〉2 ∼ 1/〈n〉. (7)

Replacing, for H = C, 〈n〉 by the size of that SSG with the
maximally degenerate eigenvalue, nmax, yields a similar result.

IV. TRANSITION TO OPTIMAL TRANSPORT

Clearly, transport does not always break down completely
if the size of a SSG becomes of the order of N . An additional
requirement is that this SSG leads to a single highly degenerate
eigenvalue. If two or more eigenvalues are highly degenerate,
it directly follows from Eq. (3) that χ < 1 since two or more
spectral densities in the sum are strictly smaller than 1 [6].

For complex networks with loops, we start from complete-
graph-like SSGs. By replacing every complete-graph-like SSG
of size n > 3 by a ring of the same size (for n = 3 the complete
graph is a triangle which is also a ring), we obtain a network
which is, depending on the probability distribution, a collection
of connected ringlike SSGs. It is believed that regularities
play an important role, see, e.g., Chap. 15 of Ref. [20], and
that they are the reason for large degeneracies of eigenvalues,
however, no rigorous proof seems to exist. For our initially
built complex networks, all nodes in a complete-graph-like
SSG have the same distance from that node, which connects
to other parts of the network, and thus are considered to be
identical (indistinguishable). For networks with ringlike SSGs
this is not the case, because one can distinguish the nodes on
the ringlike SSG by distance from the node connecting to the
rest of the network.

Sequentially growing networks have an underlying treelike
backbone if one only considers the connections between SSGs.
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If the SSGs are complete-graph-like, the complex network with
N nodes can be viewed as the dual network, d(G), of a tree, G,
with N + 1 nodes; see also Fig. 1(a). Then, one can obtain the
spectrum of H[d(G)] = A[d(G)] directly from the spectrum
of the connectivity matrix C(G) of the tree, using the incidence
matrix B(G), which relates nodes and bonds [20]:

C(G) = B(G)BT (G), (8)

where BT (G) is the transposed matrix. We note that B(G) is
not symmetric, for trees with N + 1 nodes there are N bonds,
such that it is a (N + 1) × N matrix. Also, the adjacency
matrix A[d(G)] of the dual network follows from B(G) as

A[d(G)] = BT (G)B(G) − 2I, (9)

where I is the identity matrix. The spectrum follows as [20]

spec[C(G)] ∼ spec[A[d(G)] + 2I]\{0}. (10)

The term 2I only accounts for a constant shift in the spectrum
of A[d(G)]. Therefore, the spectral densities of C(G) and
A[d(G)] are equivalent. If C(G) leads to highly degenerate
eigenvalues, so will A[d(G)]. Consequently, the universal
features of the tree with H(G) = C(G) directly translate
to the dual structure with complete-graph-like SSGs and
H[d(G)] = A[d(G)]. In this case the whole analysis presented
in [15] is valid, in particular also in the N → ∞ limit.

We note that choosing H[d(G)] = C[d(G)] results also in
highly degenerate eigenvalues but each complete-graph-like
SSG has its “own” highly degenerate eigenvalue since a
single complete graph of size n has a (n − 1)-fold degenerate
eigenvalue E∗ = n. Thus, for a network comprised of several
complete-graph-like SSGs, there will be several terms in the
total spectrum entering in χ . For χ , this yields a significantly
lower value of the most highly degenerate eigenvalue, which
will lead to a smaller value compared to the case for A[d(G)].
Figure 2 shows a comparison for the two choices for ensembles
of R = 103 sequentially growing networks with N = 103

nodes. In anticipation of the example discussed below, the
networks are built from a scale-free probability distribution
ps(n) ∼ n−s , where s is a fixed parameter. One clearly
observes the large degeneracies for H[d(G)] = A[d(G)],
see left column, while the density is much smoother for
H[d(G)] = C[d(G)]. Note, in this respect, the different orders
of magnitudes in the two columns. The different values of s

emphasize different widths of the distribution, i.e., also the
width of the spectrum of the different sizes of the SSGs.
For increasing s, the difference between the two choices for
H[d(G)] becomes smaller; see the largest peaks in the two
densities in the lower row of Fig. 2. For trees, the choice of
the Hamiltonian was less crucial, since for A(G) as well as for
C(G) the most highly degenerate eigenvalue is independent of
the size of the starlike SSGs [15].

Since rings have (at most) twofold degenerate eigenvalues,
we expect that in this case we obtain (nearly) optimal transport.
We interpolate between these two limiting structures by a
small-world-type mechanism [22]: By randomly removing a
fixed fraction 1 − pint of internal bonds of each complete-
graph-like SSG with size n > 3 one obtains small-world-like
SSGs (in order to be consistent with the usual small-world
notation, we define pint with respect to the ringlike SSGs).
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FIG. 2. Spectral density of an ensemble of R = 103 realizations
of sequentially growing networks with N = 103 and complete-graph-
like SSGs built from a scale free probability distribution ps(n) ∼ n−s .
Left column: results for H[d(G)] = A[d(G)] for two values of the
parameter s. Right column: results for H[d(G)] = C[d(G)] with the
same values for s. Note the semilogarithmic scales and the different
scales of the x axis in the two columns.

Here, internal bonds are those bonds whose complete removal
yields the ringlike SSG; see Fig. 1(b). For a complete graph
of size n, there are n(n − 3)/2 such internal bonds. It is
worth mentioning that the interpolation parameter pint also
specifies the “regularity” (as defined above according to the
indistinguishability of nodes in a SSG) of the network: For
pint = 1 one obtains complete-graph-like SSGs with maximal
regularity, while for pint = 0 one has ringlike SSGs with small
regularity.

We note that the limiting structure of connected rings can
lead to eigenvalues which are the same for different ringlike
SSGs of the same size. Therefore, the collection of rings has
a (slightly) larger value of χ compared to a single ring of the
same size. Randomly adding bonds to the ringlike SSGs can
easily result in lifting these accidental degeneracies, which
will lead to a decrease of χ . For a single ring, however, adding
bonds always yields an increase in χ [23].

V. EXAMPLE

We corroborate our findings and statements from above
by numerical Monte Carlo calculations of complex networks
whose SSGs have a scale-free size distribution, ps(n) ∝ n−s ,
with the sequential growth algorithm given in [21]. Together
with the small-world procedure, we have χ = χ (s,pint) and
χ = χ (s,pint).

Figure 3 shows the transition from optimal transport
to maximal breakdown of the ensemble averages of (a)
〈χ (s,pint)〉 and of (b) 〈χ (s,pint)〉 as a function of the scaling
parameter s ∈ [1,5] and of the small-world-type parameter pint

for networks of size N = 103 with R = 106/N realizations.
The insets show the s dependence (upper right panels) for
given values of pint and the pint dependence (lower right panel)
for s = 1 and s = 2. For s � 5, we find that there is only
little difference between the two extreme cases of ringlike
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FIG. 3. Quantum transport properties of a complex network with loops and with SSG sizes chosen from a scale-free distribution. Numerical
results (surface defined by dots) for the ensemble averaged global efficiency measures (a) 〈χ(s,pint)〉 and (b) 〈χ (s,pint)〉 for N = 1000 as a
function of the scale-free parameter s and of the small-world-type parameter pint with R = 106/N realizations. Insets: Upper panels show
χ (s,pint) and χ(s,pint) as a function of s for five fixed values of pint. The lines represent the analytic results given in Ref. [15] for pint = 1
and for N = 1000 (solid) as well as for N → ∞ (dashed) of the lower bound χ . The lower panels show χ (s,pint) and χ(s,pint) for s = 1 as a
function of 1 − pint in double logarithmic scale.

SSGs (pint = 0) and complete graphlike SSGs (pint = 1). In
both cases, we obtain values of 〈χ (5,0)〉 and of 〈χ (5,1)〉 of
the order of 1/N . This is to be expected, since for large s

the dominant contribution to ps(n) comes from small values
of n, leading to networks with long linear segments in both
cases, resulting in rather flat �(E). Decreasing s results in a
separation of the two extreme cases: While the network with
ringlike SSGs yields small values of 〈χ (s,0)〉 for all s ∈ [1,5],
the network with complete-graph-like SSGs shows increasing
values of 〈χ (s,1)〉 indicating the onset of complete breakdown.
Here, we also plot the analytic result of the lower bound 〈χ〉
for the corresponding tree (solid line in upper right panels) as
well as the N → ∞ result (dashed line in upper right panels);
see Eqs. (5) and (8) of Ref. [15]. As expected, the analytic
result for the tree with N = 1001 matches the data for the
sequentially growing network for pint = 1 of size N = 1000
(green squares).

Starting from the complete-graph-like SSGs, pint = 1, we
observe an initial decrease of 〈χ (s,pint)〉 for all values of fixed
s, which is related to smaller spectral densities of the highly
degenerated eigenvalues. Especially, for small s there is a
sharp drop in 〈χ (s,pint)〉 and 〈χ(s,pint)〉 for pint � 1. Small
values of s, i.e., large 〈n〉, indicate a small number of SSGs,
thus at least one SSG containing a significant fraction of all
nodes. Assuming a single complete graph, one can estimate
the change with pint in, at least, 〈χ (s,pint)〉: Removing a
single bond from a complete graph will reduce the degeneracy
of the highly degenerate eigenvalue by 2 because exactly
two of the eigenvectors of the complete graph will not be
eigenvectors of the modified graph. This change is small for
large N , thus indicating a smooth transition in 〈χ (s,pint)〉 as
a function of pint; see the lower right panels in Fig. 3. A
similar effect has been observed numerically for the transition
from the complete graph to the star graph [24]. A single
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network with a small-world-type transition to the complete
graph also allows for mean-field results of the spectrum [25].
There, one finds that the width of the spectrum becomes
singular only for pint = 1; see Eq. (8) of Ref. [25]. For all
other values of pint < 1, the eigenvalues are at most twofold
degenerate, indicating a discontinuous transition even for
finite N .

For small s, we also observe that already large values of
pint < 1 lead to values of 〈χ(s,pint)〉 and 〈χ (1,pint)〉 which are
below 〈χ (1,0)〉 and 〈χ (1,0)〉, respectively. This supports our
statement that incidental degeneracies are lifted by randomly
adding bonds to the ringlike SSGs. Furthermore, only large
values of pint yield highly degenerate eigenvalues of order
N ; see the differences for, say, s = 1 between pint = 0.9
(diamonds in upper right panels) and pint = 0.99 (lower
triangles). Interestingly, for fixed pint � 0.99, maximal values
of 〈χ(s,pint)〉 and 〈χ (s,pint)〉 are found for s ∈ [2,4]; see also
the upper panels in the insets in Fig. 3. Thus, while the
two limits of small and large s lead to efficient transport,
intermediate values of s render the transport slightly less
efficient. The maximal values of 〈χ (s,pint)〉 and 〈χ(s,pint)〉 for
fixed pint are, in fact, an artefact of the scale-free distribution
ps(n): As is easily verified, this distribution leads to a slightly
increased probability to find m SSGs of the same size n,
[ps(n)]m, in the interval s ∈ [2,4]. This will cause accidental

degeneracies because SSGs of the same size (can) lead to the
same eigenvalues.

VI. CONCLUSION

We have shown that all sequentially growing networks with
single highly degenerate eigenvalues show universal behavior
at the breakdown of quantum transport. The breakdown is
driven by a parametric dependence of the spectral density of the
network’s Hamiltonian on the average size of the SSGs which
themselves show highly degenerate eigenvalues. Changing the
topology of the SSGs from, say, complete-graph-like SSGs to
ringlike SSGs allowed us to trigger a transition to optimal
transport on complex quantum networks. Our general results
are supported by numerical computations of complex quantum
networks with a scale-free distribution of sizes of SSGs and a
small-world-type transition to optimal transport.
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