
PHYSICAL REVIEW E 93, 022302 (2016)

Low-dimensional dynamics of structured random networks
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Using a generalized random recurrent neural network model, and by extending our recently developed mean-
field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015)], we study the
relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in
the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through
a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from
a silent to a chaotic state at a critical point we derive as a function of g. Above the critical point, although unit
activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This
provides a direct link between the network’s structure and some of its functional characteristics. We discuss
example applications of the general results to neuroscience where we derive the support of the spectrum of
connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we
study the stability of the cascade model for food web structure.

DOI: 10.1103/PhysRevE.93.022302

I. INTRODUCTION

Advances in measurement techniques and statistical in-
ference methods allow us to characterize the connectivity
properties of large biological systems such as neural and
gene regulatory networks [1–4]. In many cases connectivity
is shown to be well modeled by a combination of random and
deterministic components. For example, in neural networks,
the location of neurons in anatomical or functional space, as
well as their cell-type identity, influences the likelihood that
two neurons are connected [2,5,6].

For these reasons it has become increasingly popular to
study the spectral properties of structured but random connec-
tivity matrices using a range of techniques from mathematics
and physics [7–14]. In most cases, the spectrum of the random
matrix of interest is studied independently of the dynamics
of the biological network it implies. Therefore, these results
can be used only to make statements about the dynamics of a
linear system where knowing the eigenvalues and eigenvectors
is sufficient to characterize the dynamics.

Here we study the dynamics of nonlinear random recurrent
networks with a continuous synapse-specific gain function that
can depend on the pre- and postsynaptic neurons’ locations in
an anatomical or functional space. These networks become
spontaneously active at a critical point that is derived here,
directly related to the boundary of the spectrum of a new
random matrix model. Given the gain function we predict
analytically the network’s leading principal components in the
space of individual neurons’ autocorrelation functions.

In the context of analysis of single and multiunit recordings
our results offer a mechanism for relating structured recurrent
connectivity to functional properties of individual neurons
in the network, and suggest a natural reduced space where
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the system’s trajectories can be fit by a simple state-space
model. This approach has been used to explain the dynamics
of neurons in motor cortex by comparing the results of training
recurrent artificial neural networks (“reservoir computing”) to
neural data [15,16]. These applications have thus far assumed
the initial condition (i.e., the network before training) is a
completely unstructured neural substrate.

Recently we showed how a certain type of mesoscopic
structure can be introduced into the class of random recurrent
network models by drawing synaptic weights from a finite
number of cell-type-dependent probability distributions [13].
In contrast to networks with a single cell-type [17], these
networks can sustain multiple “modes,” characterized in terms
of the individual neuron autocorrelation functions.

Here these results are further generalized to networks where
the synaptic weight between neurons i,j is drawn at random
from a distribution with mean 0 and variance N−1g2

ij , where N

is the size of the network. The smoothness conditions satisfied
by the gain function g are stated below. This allows us to treat,
for example, networks with continuous spatial modulation of
the synaptic gain. The solution to the network’s system of
mean-field equations that we derive offers a new viewpoint on
how functional properties of single neurons can in fact be a
network phenomenon.

A. Model and main results

Consider a general synapse-specific gain function g(zi,zj )
that depends on normalized neuron indices zi = i/N , where
i = 1, . . . ,N . We assume that there is some length scale
s0 > 0 below which g has no discontinuities. That is, we let
g : (0,1]2 → R+ be a uniformly bounded, continuous function
everywhere on the unit square except possibly on a measure
zero set S0. The function g may depend on N in such a way
that its Lipschitz constant CL(N ) = C0

LNβ , with C0
L < ∞ and

1 > β � 0. Every point where g does not satisfy the above
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smoothness conditions must be on the boundary between
squares of side s0 where it does.

The network connectivity matrix is then J ∈ RN×N with
elements

Jij = g(zi,zj )J 0
ij , (1)

where J 0
ij is a random matrix with elements drawn from

a distribution with mean 0, variance 1/N and finite fourth
moment. In the simulations we use a Gaussian distribution
unless noted otherwise.

In this paper we analyze the eigenvalue spectrum of the
connectivity matrix J and the corresponding dynamics of
the neural network. Note that by requiring that g is bounded
and differentiable on the unit square outside of S0 we allow
the synaptic gain function to be a combination of discrete
modulation (e.g., cell-type dependent connectivity for distinct
cell types, as in [13]) and of continuous modulation (e.g.,
networks with heterogeneous and possibly correlated in- and
out-degree distributions, as in [18,19]).

When g can be written as an outer product of two
vectors [i.e., g(zi,zj ) = g1(zi)g2(zj )], the model discussed
here overlaps with that studied by Wei and by Ahmadian et al.
[9,12], but those works also consider matrix models that are
not studied here.

The connectivity matrix J must not represent an all-to-all
connected network, as the distribution of elements of J 0 can
have a finite mass at 0 (see Sec. V). However, in the current
work we do not consider sparse models where the number of
nonzero elements is finite or scales sublinearly with N . Studies
of such matrices exist in the literature (for example, [20,21]),
but are limited to models with no structure.

In Sec. II we show that the spectral density of J is circularly
symmetric in the complex plane, and is supported by a disk
centered at the origin with radius r = √

�1 with

�1 = max
{
λ
[
G

(2)
N

]}
, (2)

where G
(2)
N ∈ RN×N

+ is a deterministic matrix with elements
[G(2)

N ]ij = 1
N

g2(zi,zj ). Note that �1 is the Perron-Frobenious
eigenvalue of a non-negative matrix, so indeed �1,r ∈ R+.
For general synapse-specific gain function g it has not been
possible so far to obtain an explicit formula for �1. However,
we have been able to derive explicit analytic formulas in three
cases of biological significance. First, in Sec. IV we discuss the
case where G

(2)
N is a circulant matrix such that g(zi,zj ) = g(zij )

with

zij = min{|zi − zj |,1 − |zi − zj |} (3)

and show that �1 = 2
∫ 1

2
0 g2(z)dz. This special case is im-

portant for large neural networks where connectivity often
varies smoothly as a function of neuron’s index. Moreover,
for this parametrization all the eigenvalues and corresponding
eigenvectors can be computed analytically, which will make it
possible to make stronger statements about the dynamics as is
explained in Secs. III and IV.

For two additional parametrizations of g, the current mean-
field approach is insufficient to fully characterize the dynamics,
but we can use the general result [Eq. (2)] to analytically
characterize the spectrum of the connectivity matrix. In Sec. V

we derive the support of the bulk spectrum and the outliers of
a random connectivity matrix with heterogeneous joint in- and
out-degree distribution. Finally, in Sec. VI we discuss a third
example pertinent to large scale models of ecosystems. These
systems are often modeled using g that has a triangular struc-
ture and in this case we also derive an analytic formula for �1.

Given the connectivity matrix J defined in Eq. (1), the
dynamics of neural network model with N neurons is described
by

ẋi(t) = −xi(t) +
N∑

j=1

Jijφj (t), (4)

where φj (t) = tanh[xj (t)]. The x variables can be thought of
as the membrane potential of each neuron, and the φ variables
as the deviation of the firing rates from their average values.

Using a modified version of dynamic mean field theory
we show that in the limit N → ∞ this system undergoes a
phase transition, where r is the coordinate that describes this
transition and r = 1 is the critical point. Below the critical
point (r < 1), the neural network has a single stable fixed
point at x = 0. Above the critical point the system is chaotic.

We analyze the dynamics above the critical point in more
detail and find a direct link between the network structure
(g) and its functional properties. To that end we define N

dimensional autocorrelation vectors

�i(τ ) = 〈xi(t)xi(t + τ )〉, Ci(τ ) = 〈φi(t)φi(t + τ )〉, (5)

where 〈·〉 denotes average over the ensemble of matrices J and
time. Note that because the average of each element of J is zero
and the nonlinearity is an odd function, autocorrelations are
computed about the fixed point xi = φi = 0. These vectors
are restricted to the potentially low-dimensional subspace
spanned by the right eigenvectors of G

(2)
N with corresponding

eigenvalues that have real part greater than 1. Thus, although
the network dynamics are chaotic, they are confined to a low-
dimensional space, which has been suggested as a mechanism
that could make computation in the network more robust [22].

B. Separate excitation and inhibition

There are some limitations to the interpretation of the
dynamics in Eq. (4) with connectivity described by Eq. (1)
as a neuronal network. Most importantly, every column of J

has both positive and negative elements corresponding to the
unrealistic assumption that every neuron is both excitatory and
inhibitory, and the hyperbolic tangent nonlinearity implies that
firing rates can be both positive and negative. The usual justi-
fication of these assumptions is that every degree of freedom
xi is in fact an average over a small number of neurons some
of which are inhibitory and some are excitatory, and that φi

represents the deviation of the firing rate from the steady state.
A more satisfying treatment to this problem is the recent

work of Kadmon and Sompolinsky [23] extending our previous
work [13]. They studied a network with block structure, where
the distribution of elements in each block has a nonzero
mean such that, if appropriately defined, the elements in
each column can have the same sign. They also considered
non-negative transfer functions in addition to the hyperbolic
tangent. Their analysis showed that in addition to the stable
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fixed point and chaotic regimes, there is an additional regime of
saturated firing rates. For the general case it was not possible to
determine whether the transition to chaotic or saturated regime
is seen first upon variation of the connectivity parameters, or
what the dynamics look like if conditions for both instabilities
hold (i.e., what the saturated and chaotic dynamics look like).
We anticipate that for cases where the first transition is to the
chaotic regime, the analysis presented here for synaptic weight
distributions with mean 0 will apply (with the appropriate
modifications similar to those in [23]) when the mean is
nonzero.

Here we also treat networks with separate excitatory and
inhibitory populations (Sec. V), by deriving the support of
the bulk spectrum and outliers of connectivity matrices with
heterogeneous degree distributions.

II. DERIVATION OF THE CRITICAL POINT

A. Finite number of partitions

We begin by recalling our recent results for a function g that
has block structure. We defined a D×D matrix with elements
gcd and partitioned the indices 1, . . . ,N into D groups, where
the cth partition has a fraction αc neurons. The synaptic gain
function was then defined by g(zi,zj ) = gcicj

, where ci is the
partition index of the ith neuron (c = 1, . . . ,D).

Defining nd = N
∑d

c=1 αc allows us to write formally ci =
{c| i

N
∈ ( nc−1

N
,nc

N
]}. With these definitions, we rewrite Eq. (4):

ẋi = −xi +
D∑

d=1

gcid

nd∑
j=nd−1+1

J 0
ij φj (t). (6)

In [13] we used the dynamic mean field approach [17,24,25]
to study the network behavior in the N → ∞ limit. Averaging
Eq. (6) over the ensemble from which J is drawn implies that
neurons that belong to the same group are statistically identical.
Thus, the behavior of the full network can be summarized by
D representative neurons ξd (t) and their inputs ηd (t), provided
that (a) they satisfy

ξ̇d (t) = −ξd (t) + ηd (t), (7)

and (b) that ηd (t) is drawn from a Gaussian distribution with
moments satisfying

〈ηd (t)〉 = 0, (8)

〈ηc(t)ηd (t + τ )〉 = δcd

D∑
b=1

αbg
2
cbCb(τ ). (9)

Here 〈·〉 denotes averages over i = nc−1 + 1, . . . ,nc and
k = nd−1 + 1, . . . ,nd in addition to average over realizations
of J . The average firing rate correlation vector is denoted by
C(τ ). Its components using the mean field variables are

Cd (τ ) = 〈φ[ξd (t)]φ[ξd (t + τ )]〉. (10)

The cross-covariance matrix 〈ηc(t)ηd (t + τ )〉 is diagonal so
we define the vector H (τ ) to be the diagonal. Now we can
rewrite Eq. (9) as

H (τ ) = MC(τ ), (11)

where M ∈ RD×D
+ is a constant matrix reflecting the network

connectivity structure: Mcd = αdg
2
cd .

A trivial solution to this equation is H (τ ) = C(τ ) = 0
which corresponds to the silent network state: xi(t) = 0. Recall
that in the network with a Girko matrix as its connectivity
matrix (D = 1), the matrix M = g2 is a scalar and Eq. (11)
reduces to H (τ ) = g2C(τ ). In this case the silent solution is
stable only when g < 1. For g > 1 the autocorrelations of η are
nonzero which leads to chaotic dynamics in the N dimensional
system [17].

When D > 1, Eq. (11) can be projected on the eigenvectors
of M leading to D consistency conditions, each equivalent to
the single group case. Each projection has an effective scalar
given by the eigenvalue in place of g2 in the D = 1 case.
Hence, the trivial solution will be stable if all eigenvalues of
M have real part < 1. This is guaranteed if �1, the largest
eigenvalue of M , is < 1. If �1 > 1 the projection of Eq. (11)
on the leading eigenvector of M gives a scalar self-consistency
equation analogous to the D = 1 case for which the trivial
solution is unstable. As we know from the analysis of the
D = 1 case, this leads to chaotic dynamics in the full network.
Therefore �1 = 1 is the critical point of the D > 1 network.
Furthermore, the fact that in the D = 1 case the presence of
the destabilized fixed point at x = 0 corresponds to a finite
mass of the spectral density of J with real part >1 [17,26]
allowed us to read the radius of the support of the connectivity
matrix with D > 1 and identify it as r = √

�1 [13].

B. Continuous case

The vector dynamic mean field theory we developed in [13]
relies on having an infinite number of neurons in each partition
with the same statistics. The natural choice is therefore to have
the size of each group of neurons be linear in the system size:
Nc = αcN .

This scaling imposes two limitations for comparing the
results to the dynamics of more realistic networks. First, it
requires knowledge of the cell-type identity of each neuron in
the recording, which often is not available. Second, it limits
the analysis of the dynamics to quantities that are averaged
over neurons that belong to the same cell type.

To lift the requirement of block structured variances [i.e.,
now g = g(zi,zj )], we can do the following. Let K(N ) ∈ N
be a weakly monotonic function of N such that

lim
N→∞

K(N )

N
= 0, lim

N→∞
Nβ

K(N )
= 0. (12)

Recall that we allow the Lipschitz constant of g to grow as
Nβ with 1 > β � 0, implying that limN→∞ K(N ) = ∞. A
natural choice is K(N ) = Nβ̃ with β̃ = 1 − β, but as long as
1 > β̃ > β the specific scaling behavior will not matter in our
analysis. For convenience we will suppress the N dependence
when possible.

Let μ = 1, . . . ,K and let

μi =
{
μ

∣∣∣∣ i

N
∈
(

μ − 1

K
,
μ

K

]}
. (13)
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Furthermore, define g̃ ∈ RN×N
+ with elements

g̃ij = g

(
μi − 1

2

K
,
μj − 1

2

K

)
. (14)

In other words, g̃ is an N×N matrix with K2 equally sized
square blocks. The value of elements in each block is the
value of the function g in the middle of that block. These
definitions allow us to bridge the gap between the block and
the continuous cases. Indeed, consider the random connectivity
matrix with elements J̃ij = g̃ij J

0
ij and the network that has J̃

as its connectivity.
First, since N/K → ∞ as N → ∞, the number of neurons

in each group goes to infinity, and we may use the vector
dynamic mean field theory as before, but in a K dimensional
space [rather than D which was O(1)]. The critical point is
now given in terms of the largest eigenvalue of an N × N

matrix M̃ with elements

M̃ij = 1

N
g2

(
μi − 1

2

K
,
μj − 1

2

K

)
, (15)

where rank{M̃} � K .
Second, recall that the function g is assumed to be smooth

outside of a set with measure zero S0. These properties will
allow us to show (see Appendix A) that as N → ∞ we have

g̃ij → g(zi,zj ), M̃ij → [
G

(2)
N

]
ij
, (16)

meaning that by studying the system with connectivity
structure g̃ in the limit N → ∞ we are in fact obtaining results
for the generalized connectivity matrix with a smooth synaptic
gain function g.

C. Circular symmetry of spectrum

In [11] we used random matrix theory techniques to derive,
for the case of block-structured J , an implicit equation that the
full spectral density of J satisfies. The circular symmetry of
the spectrum for that case is obvious because the equations
[see Eq. (3.6) in [11]] depend on the complex variable z

only through |z|2. Similar implicit equations, with integrals
instead of sums, can be written for the continuous case.
Rigorous mathematical analysis of the spectral density implied
by such equations is beyond the scope of this paper and will
be presented elsewhere. Nevertheless, the integral equations
still depend on |z|2, supporting the circular symmetry of the
spectrum.

III. DYNAMICS ABOVE THE CRITICAL POINT

A. Finite number of partitions

To study the spontaneous dynamics above the critical
point we recall again the analogous result for a matrix with
block structure. The D dimensional average autocorrelation
vectors C(τ ),�(τ ) (see definition below) are restricted to a D�

dimensional subspace, where D� is the number of eigenvalues
of M with real part >1 (i.e., the algebraic multiplicity of these
eigenvalues). This result is obtained by projecting Eq. (11) on
the right eigenvectors of M [13].

The definitions of the d = 1, . . . ,D component of these
vectors are

�d (τ ) = 1

Nαd

nd∑
i=nd−1+1

〈xi(t)xi(t + τ )〉, (17)

Cd (τ ) = 1

Nαd

nd∑
i=nd−1+1

〈φi(t)φi(t + τ )〉, (18)

and the D� dimensional subspace is

UM = span
{
uR

1 , . . . ,uR
D�

}
, (19)

where uR
d are the right eigenvectors of M in descending order

of the real part of their corresponding eigenvalue (see examples
in Fig. 1). An equivalent statement is that, independent of the
lag τ , projections of the vectors C(τ ),�(τ ) on any vector in
the orthogonal complement subspace U⊥

M are approximately
0. Note that for asymmetric (but diagonalizable) M, U⊥

M is
spanned by the left rather than the right eigenvectors of M:

U⊥
M = span

{
uL

D�+1, . . . ,u
L
D

}
. (20)

B. Autocorrelation modes in the generalized model

We can repeat the analysis of [13] for a network with
connectivity J̃ = g̃ij J

0
ij that has K2 blocks, and for each

N,K(N ) obtain the subspace UM̃ that the K dimensional
autocorrelation vectors C̃(τ ),�̃(τ ) are restricted to. These
vectors have components

�̃μ(τ ) = 1

K

N/Kμ∑
i=(N/K)(μ−1)+1

〈xi(t)xi(t + τ )〉, (21)

C̃μ(τ ) = 1

K

N/Kμ∑
i=(N/K)(μ−1)+1

〈φi(t)φi(t + τ )〉. (22)

Now when we take the limit N → ∞ the dimensionality
of the autocorrelation vectors C̃(τ ),�̃(τ ) becomes infinite as
well, but the subspace UM̃ may be of finite dimension K�,
where K� is the algebraic multiplicity of eigenvalues of M̃

with real part greater than 1 (see Sec. IV for an example).
We have shown that for g that satisfies the smoothness

conditions, studying the network with connectivity Jij =
g(zi,zj )J 0

ij is equivalent to studying the network with con-
nectivity J̃ in the limit N → ∞. Therefore, in that limit,
the individual neuron autocorrelation functions Ci(τ ),�i(τ )
[Eq. (5)] are restricted to the subspace spanned by the right
eigenvectors of M̃ → G

(2)
N corresponding to eigenvalues with

real part >1.
This in fact is equivalent to, given the network structure

g, predicting analytically the leading principal components
in the N dimensional space of individual neuron autocorre-
lation functions (see Fig. 2). Note that traditionally principal
component analysis is performed in the N dimensional space
of neuron firing rates rather than autocorrelation functions.
Numerical analysis performed in [27] suggests that the sys-
tem’s trajectories, when considered in the space spanned by the
vectors x or φ(x) (individual neuron activations or firing rates),
occupy a space of dimension that is extensive in the system
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FIG. 1. Eigenspaces of two example networks—one with block structured connectivity (top) and another with continuous gain modulation
(bottom). (a) The synaptic gain matrix gij . (b) The spectrum of the random connectivity matrix J in the complex plane. The spectrum is
supported by a disk with radius r = √

�1 indicated in red. (c) The square root of the largest eigenvalues of G
(2)
N . When these are greater

than 1, the corresponding eigenvectors [shown in (d)] are active autocorrelation modes. For the continuous function we chose the circulant
parametrization (see Sec. IV A) with g0 = 0.3,g1 = 3.0 and γ = 2.0. For the block structured connectivity, g was chosen such that the first
five eigenvalues match exactly those of the continuous network.

size N . However, when considered in the space of individual
neuron autocorrelation functions, the dimension of trajectories
is intensive in N and usually finite. In the subspace we
derive here the information about the relative phases between
neurons is lost, but the amplitude and frequency information
is preserved. Section VII includes further discussion of the
consequences of our predictions and how they may be applied.

C. Finite N behavior

For a finite system it is evident from numerical simulations
that the N dimensional vector of autocorrelation functions
has nonzero projections on inactive modes—eigenvectors of
G

(2)
N with corresponding eigenvalue which is <1 (see Fig. 2).

Here we study the magnitude of this effect, and specifically its
dependence on N and on the model’s structure function g. For
simplicity, we will study the projections of the autocorrelation
vector C(τ ) at lag τ = 0. Let

σ 2
C(g,N ) = 〈‖C
(0)U⊥(G(2)

N

)‖2〉
〈‖C(0)‖2〉 , (23)

where U⊥(G(2)
N ) is an N×(N − K�) matrix with columns equal

to orthogonalized eigenvectors of G
(2)
N with corresponding

eigenvalue less than 1 [see Eqs. (19) and (20)]. Here 〈·〉 denotes
averaging over an ensemble of connectivity matrices (with the
same structure g and same size N ).

Consider the homogeneous network [i.e., constant
g(zi,zj ) = g0 > 1]. Now U⊥(G(2)

N ) contains all the vectors in
RN perpendicular to the dc mode 1√

N
[1, . . . ,1] and the squared

norm ‖C(0)‖2 = O(N ) because on average all neurons have

the same autocorrelation function [Eq. (10)]. Thus, σ 2
C(g0,N )

is simply the variance over the neural population of the
individual neuron autocorrelation functions at lag τ = 0.

We can now use the mean-field approximation to determine
the N dependence of σ 2

C(g0,N ). For N � 1, the elements of
the vector C(0) follow a scaled χ2 distribution,

Ci(0) = N−1q
(
g2

0

)
yN

i , yN
i ∼ χ2(N ), (24)

where q(g0) ∼ O(g0) ∼ O(1) and χ2(N ) is the standard
χ2 distribution with N degrees of freedom. Thus, in this limit,

〈Ci(0)〉 = q
(
g2

0

)
,

〈Ci(0)Cj (0)〉 − 〈Ci(0)〉〈Cj (0)〉 = 2δijN
−1q2

(
g2

0

) ≈ δij /N.

(25)

The autocorrelation function is in general a single neuron
property. Therefore, their variation about the mean is uncor-
related across neurons independent of the network’s structure:
〈Ci(0)Cj (0)〉 − 〈Ci(0)〉〈Cj (0)〉 ∝ δij . Thus, we can use the
notation 〈(δCi(0))2〉 = 〈Ci(0)Ci(0)〉 − 〈Ci(0)〉〈Ci(0)〉.

In the case with D partitions the vectors that span UG(2)

are no longer parallel to the dc mode. We assume that the
projections on U⊥

G(2) can still be estimated using the χ2

distribution, but here with αcN degrees of freedom for the
c partition [instead of N , see Eq. (24)]. Thus, for a network
with D partitions,

〈Ci(0)〉 = qci
(M),

〈(δCi(0))2〉 = 2q2
ci

(M)(αci
N )−1 ≈ D/N. (26)
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ALJADEFF, RENFREW, VEGUÉ, AND SHARPEE PHYSICAL REVIEW E 93, 022302 (2016)

1 1000
0

1

1 1000

0050

500 1000 1500 2000

10-3

10-2

10-1

(a)

(b)

(c)

(d)

(e)

(f)

-50 0 50
0

0.5

1

0

0 200-200

0

0.4

1
eigenvalue no.

neuron no.

FIG. 2. Low-dimensional structure of network dynamics. Traces of the firing rates φ[xi(t)] (a) and autocorrelations Ci(τ ) (b) of eight
example neurons chosen at random from the network with continuous gain modulation (shown in the bottom row of Fig. 1). (c) The sum of
squared projections of the vector Ci(τ ) on the vectors spanning UG(2) (the active modes, solid lines) or U⊥

G(2) (the inactive modes, dashed lines).
The dimension of the subspace UG(2) is K� = 1 for the network with g = const and K� = 3 for the block and continuous cases (orange and
red, respectively), much smaller than N − K� ≈ N , the dimension of the orthogonal complement space U⊥

G(2) . (d) Our analytically derived
subspace accounts for almost 100 percent of the variance in the autocorrelation vector for |τ | � 10 (in units of the synaptic time constant).
(e) Reducing the dimensionality of the dynamics via principal component analysis on φ(x) leads to vectors (inset) that account for a much
smaller portion of the variance (when using same dimension K� for the subspace), and lack structure that could be related to the connectivity.
(f) Summary data from 50 simulated networks per parameter set (N , structure type) at τ = 0. As N grows the leak into U⊥

G(2) diminishes if one
reduces the space of the Ci(τ ) data while the fraction of variance explained becomes smaller when using PCA on the φ[xi(t)] data, a signature
of the extensiveness of the dimension of the chaotic attractor.

Finally, for K(N ) partitions,

〈Ci(0)〉 = qi

(
g

(2)
N

)
,

〈(δCi(0))2〉 = 2q2
i

(
G

(2)
N

)
(K/N) ≈ K[g]/N. (27)

At this stage, Eq. (27) remains ambiguous because the function
K(N ) is not a property of the neural network model. Rather, it
is a construction we use to show that in the limit N → ∞ we
are able to characterize the dynamics using the vector dynamic
mean field approach. Therefore, for finite N we now wish to
estimate an appropriate value of K = K[g].

This can be done by noting that the network with block
structured connectivity is a special case of the one with a
continuous structure function. For that special case we know
that K[g] = D. Since g is smooth, for sufficiently large N ,
we can assume that in each block g is linear in both variables

zi and zj :

g(zi,zj ) ≈ g̃ij + g̃
(1,0)
N (μi,μj )

(
zi − μi − 1

2

K

)

+g̃
(0,1)
N (μi,μj )

(
zj − μj − 1

2

K

)
. (28)

Here g̃
(1,0)
N (μi,μj ) is the first derivative of g with respect to

the first variable, evaluated in the middle of the μi,μj block.
The only expression for K[g] that depends on first deriva-

tives of g and agrees with the homogeneous and block cases
is

K[g] ≈ 1 +
∫∫

[|g(1,0)(x,y)| + |g(0,1)(x,y)|]dxdy

≈ 1 +
∫∫

‖∇g‖dxdy. (29)
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We are unable to test this prediction quantitatively, because
we do not know the dependence of the function q on the
structure g. We are able to show however that the dependence
on N is the same as for the block models, which is confirmed
by numerical simulations [compare solid purple, orange and
red lines in Fig. 2(f)]. In the cases where g depends on N , the
value of K[g] will also depend on N , such that the scaling of
the “leak” may no longer be ∝ N−1.

IV. AN EXAMPLE WHERE g IS CIRCULANT

When the matrix g(zi,zj ) is circulant such that g(zi,zj ) =
g(zij ) with

zij = min{|zi − zj |,1 − |zi − zj |}, (30)

the eigenvalues and eigenvectors of G
(2)
N are given in closed

form by integrals of the function g2(zij ) and the Fourier
modes with increasing frequency. In particular, the largest
eigenvalue �1 = 2

∫ 1/2
0 g2(z)dz corresponds to the zero fre-

quency eigenvector ∝ [1, . . . ,1]. To show this, consider the
k + 1 eigenvalue of the circulant matrix G

(2)
N :

�k+1 = 1

N

N∑
j=1

exp

(
2πijk

N

)
g2(z1,zj ). (31)

So in the limit N → ∞,

�k+1 = lim
N→∞

2

N

N/2∑
j=1

exp(2πikz1j )g2(z1j )

= 2
∫ 1/2

0
exp(2πikz)g2(z)dz, (32)

as desired.

A. A ring network

As an example we study a network with ring structure that
will be defined by g(zi,zj ) = g0 + g1(1 − 2zij )γ , such that
neurons that are closer are more strongly connected.

This definition leads to the following form for the critical
coordinate along which the network undergoes a transition to
chaotic behavior:

�1 = g2
0 + 2g0g1

γ + 1
+ g2

1

2γ + 1
. (33)

Interestingly, as g1 increases continuously, additional discrete
modes with increasing frequency over the network’s spatial
coordinate become active by crossing the critical point �k = 1.
When modes with sufficiently high spatial frequency have been
introduced, nearby neurons may have distinct firing properties.

B. A toroidal network

In contrast to the ring network discussed above, the
connectivity in real networks often depends on multiple
factors. These could be the spatial coordinates of the cell body
or the location in a functional space (e.g., the frequency that
each particular neuron is sensitive to). Therefore we would
like to consider a network where the function g depends on

the distance between neurons embedded in a multidimensional
space.

This problem was recently addressed by Muir and Mrsic-
Flogel [14] by studying the spectrum of a specific type
of Euclidean random matrix. In their model, neurons were
randomly and uniformly distributed in a space of arbitrary
dimension, and the connectivity was a deterministic function
of their distance. While their approach resolves the issue of
the spectral properties of the random matrix when connectivity
depends on distance in more than one dimension, the dynamics
these matrices imply remain unknown.

To study the spectrum and the dynamics jointly, we define
a network where neurons’ positions form a square K×K grid
(with K = √

N ) on the [0,1] × [0,1] torus [see Fig. 3(a)]:

θ1
i = �i/K�

K
, θ2

i = imodK

K
. (34)

The positions of the neurons on the torus are schematized in
Fig. 3(a).

An analogous parametrization for g to the one we used in
the ring example which respects the toroidal geometry reads

gij = g0 + g1[cos(2πzij ) + 1][cos(2π
√

Nzij ) + 1]. (35)

Note that now g depends on N , but it is bounded and its
Lipschitz constant scales as

√
N , so it satisfies the smoothness

conditions.
Figure 3(b) shows the spectrum of G(2) and the cor-

responding eigenvectors, plotted on a torus. Because there
are nonuniform modes that are active (2 through 5), then
each neuron has a different participation in the vector of
autocorrelation functions. In Figs. 3(c) and 3(d) we show for
a network with a range of N values that indeed the vector of
autocorrelation functions is restricted to the predicted subspace
in contrast to the firing rate vector.

The gain function analyzed here depends on a Euclidean
distance on the torus. Other metrics, for example a city-block
norm, can be treated similarly.

Overall these results provide a mechanism whereby con-
tinuous and non-fine-tuned connectivity that depends on a
single or multiple factors can lead to a few active dynamic
modes in the network. Importantly, the modes maintained by
the network inherit their structure from the deterministic part
of the connectivity.

V. MATRICES WITH HETEROGENEOUS
DEGREE DISTRIBUTIONS

Here we will use our general result to compute the spectrum
of a random connectivity matrix with specified in- and out-
degree distributions. Realistic connectivity matrices found in
many biological systems have degree distributions which are
far from the binomial distribution that would be expected
for standard Erdős-Rényi networks [28]. Specifically, they
often exhibit correlation between the in- and out-degrees,
clustering, community structures and possibly heavy-tailed
degree distributions [5,29]. Some results exist for symmetric
adjacency matrices with broad degree distributions [30,31] that
are useful to studying systems beyond neuroscience.

We consider a connectivity matrix appropriate for a neural
network model. Since each element of this matrix will have
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(a)

(b)

(c) (d)

FIG. 3. Results for a toroidal network. (a) A grid strategy with K = √
N for tiling the [0,1] × [0,1] torus with N neurons (left) and the

resulting deterministic gain matrix with elements gij for three values of N as defined in Eq. (35) (right). Unlike the ring network, here g

depends on N , and its derivative is unbounded so as N increases the gain function “folds.” The parameters of the connectivity matrix are
g0 = 0.7, g1 = 0.8. (b) The 25 nonzero eigenvalues of G

(2)
N for N = 1600 and the eigenvectors corresponding to eigenvalues that are greater

than 1 plotted on a torus with coordinates (θ1
i ,θ 2

i ). (c) The sum of squared projections of the vector Ci(τ ) on the vectors spanning UG(2) (the
active modes, red line) or U⊥

G(2) (the inactive modes, black line). Shades indicate the standard deviation computed from 50 realizations. (d)
Comparison of the variance explained at τ = 0 by our predicted subspace (solid line) and by performing PCA on φ(x) (dashed line). Error bars
represent 95% confidence intervals. Inset: the subspace we derived accounts for a large portion of the variance for time lags |τ | � 10 (in units
of the synaptic time constant).

a nonzero mean, our current theory cannot make statements
about the dynamics. Nevertheless the spectrum of the con-
nectivity matrix is important on its own as a step towards
understanding the behavior of random networks with general
and possibly correlated degree distributions.

Consider a network with NE excitatory and NI inhibitory
neurons (N = NE + NI ). The connectivity is defined through
the in- and out-degree sequences, N dimensional vectors where
the ith element represents the number of incoming or outgoing
connections to or from neuron i. Each inhibitory neuron has
incoming or outgoing connections with probability p0 to or
from every other neuron in the network. Within the excitatory
subnetwork, degree distributions are heterogeneous. Specif-
ically, kin,kout are the average excitatory in- and out-degree
sequences that are drawn from a joint degree distribution that
could be correlated. We assume that

∑NE

i=1 kin
i =∑NE

i=1 kout
i =

NEk̄, where k̄ is the mean connectivity, and that the marginals
of the degree distribution are equal. Define x,y to be the NE

dimensional vectors x = kin/
√

NEk̄ and y = kout/
√

NEk̄.
The matrix P defines the probability of connections given

the fixed normalized degree sequences and p0:

Pij =
{
xiyj , 1 � i,j � NE

p0, otherwise . (36)

The random adjacency matrix is then Aij ∼ Bernoulli(Pij ).
Note that because the adjacency matrix is random, kin and kout

are the average in- and out-degree sequences.
The connectivity matrix is then

Jij = AijWij (37)

with

Wij =
{−W0, j > NE

1, otherwise , (38)

where W0 is the ratio of the synaptic weight of inhibitory to
excitatory synapses. It should be noted that the connections to
and from inhibitory neurons are much less well characterized
empirically, and the evidence for specific structure in these
connections is weaker than for excitatory neurons. For this
reason, outside of the excitatory subnetwork connectivity is
assumed to be homogeneous.

To leading order, the distribution of eigenvalues of J will
depend only on the mean and variance of its elements, which
are summarized in the deterministic matrices Q (means) and
G

(2)
N (variances) with elements

Qij = PijWij , (39)[
G

(2)
N

]
ij

= Pij (1 − Pij )W 2
ij . (40)

We will show that the rank of the deterministic matrix Q is
�3 (generically for large N and non-fine-tuned parameters
rank{Q} = 3). In [10], Tao considered a case similar to
ours, studying the spectrum of the sum of a random matrix
with independent and identically distributed elements and a
low-rank perturbation. In Sec. II of that paper, it is shown
that because the resolvent, (J 0 − z)−1 (where z is a complex
number), is close to − 1

z
I outside the support of the spectrum,

outlying eigenvalues fluctuate around the nonzero eigenvalues
of the low-rank perturbation. Adapting the arguments of [32]
in Sec. V, as done in [11], it can be shown the resolvent
of random matrices with independent and nonidentically
distributed entries is also close to − 1

z
I outside the support of

the bulk spectrum. Hence, outlying eigenvalues will fluctuate
around the deterministic low-rank eigenvalues.

Combining these, we expect that if the nonzero eigenvalues
of Q are outside of the bulk that originates from the random
part of the matrix, the spectrum of the matrix J (with nonzero
means) will be approximately a composition of the bulk
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FIG. 4. Spectrum of connectivity matrices with heterogeneous,
correlated joint degree distribution. The network parameters were
chosen to be κ=0.7, θ=28.57, NE=1000, NI = 250, p0 = 0.05,

W0 = 5, where κ and θ are the form and scale parameters respectively
of the � distribution from which the in- and out-degree sequences
are randomly drawn. The average correlation ρ between the in- and
out-degree sequences was varied between 0 and 1. For the values
ρ = 0.2 (left) and ρ = 0.8 (right) we drew 25 degree sequences
and based on them drew the connectivity matrix according to the
prescription outlined in Sec. V. The eigenvalues of each matrix were
computed numerically and are shown in black. For each value of ρ

we computed the average functions 〈T 〉,〈S〉, etc., and the roots of the
characteristic polynomials A(�) and B(λ) (see Appendixes B and C
for derivation). The predictions for the support of the bulk (solid red
line) and the outliers (orange points and dotted line) are in agreement
with the numerical calculation. Inset: as a function of ρ, there is a
positive outlier that exits the disk to the right.

and outliers that can be computed separately and that the
approximation will become exact as N → ∞. This is verified
through numerical calculations (Fig. 4).

Viewing the normalized degree sequences x,y as determin-
istic variables we define

U =
NE∑
i=1

x2
i =

NE∑
i=1

y2
i ,

S =
NE∑
i=1

xi =
NE∑
i=1

yi,

T =
NE∑
i=1

xiyi,

V =
NE∑
i=1

(
xiy

2
i + x2

i yi

)
,

Z =
NE∑
i=1

x2
i y

2
i ,

R =
(

NE∑
i=1

xiy
2
i

)(
NE∑
i=1

x2
i yi

)
. (41)

Given the parameters W0,p0,NE,NI , we show in
Appendix B that rank{G(2)

N } � 4 (generically for large N and
non-fine-tuned parameters rank{G(2)

N } = 4) and its character-
istic polynomial is A(�) =∑N

k=0 (−1)kak�
N−k with

a0 = 1,

a1 = T − Z + NIW
2
0 p0(1 − p0),

a2 = R − ZT +NIW
2
0 p0(1 − p0)[T − Z − p0(1 − p0)NE],

a3 = NIW
2
0 p0(1 − p0){R − ZT + p0(1 − p0)

× [S2 − U2 − NE(T − Z)]},
a4 = NIW

2
0 p2

0(1 − p0)2[NE(ZT − R)

−ZS2 − U2T + SUV], (42)

and ak = 0 for k > 4. Therefore, using our results, the radius
of the bulk spectrum of J is equal to the square root of the
largest solution to A(�) = 0.

Furthermore we show that the nonzero eigenvalues of
Q are equal to the roots of the polynomial B(λ) =∑N

k=0 (−1)kbkλ
N−k , with

b0 = 1,

b1 = T − NIW0p0,

b2 = NIW0p0[NEp0 − T ],

b3 = NIW0p
2
0

[
NET − S2

]
, (43)

and bk = 0 for k > 3, such that the outlying eigenvalues of J

are approximated by the roots of B(λ) that lie outside of the
bulk.

If the degree sequences are not specified, but only the
joint in- and out-degree distribution they are drawn from, the
random matrix J will be constructed in two steps: first kin and
kout are drawn from their joint in- and out-degree distribution,
and then the elements of J are drawn using the prescription
outlined above. In such cases, one can in principle compute
the averages 〈T 〉,〈S〉, etc., in terms of the moments of the
joint degree distribution, and substitute these averages into the
formulas we give assuming the degree sequences are fixed.

We have carried out that calculation (Appendix C) for �

degree distributions with form parameter κ , scale parameter θ ,
and arbitrary correlation ρ of the in- and out-degree sequences
(see Fig. 4). We find that, for fixed marginals, the radius of the
bulk spectrum depends extremely weakly on the correlation
of the in- and out-degree sequences (see solid red line in
inset to Fig. 4). The matrix Q however has a real, positive
eigenvalue that for typical examples increases monotonically
with the correlation, such that for some value it exits the bulk
to the right (see Fig. 4). Work by Roxin [18], Schmeltzer
et al. [19], and unpublished work by Landau and Sompolinsky
[33] has shown that the broadness and correlation of the
joint degree distribution can lead to qualitative changes in
the behavior of a spiking network. Further work is required to
investigate whether and why these changes can be explained
by the spectrum of the connectivity matrix derived here. We
anticipate that the outlier exiting the spectrum may be related
to the transition to a saturated state observed in networks with
block structure in [23].
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VI. AN EXAMPLE FROM ECOLOGY

Random matrices have been used to study a wide vari-
ety of complex systems outside of neuroscience. Examples
include metabolic networks, gene-regulatory networks, and
communication networks. Here we analyze matrices with
triangular structure that arise in ecology of food webs. The
past few years have seen a resurgence of interest in the use
of methods from random matrix theory to study the stability
of ecosystems [34–36]. While the original work by R. May
assumed a random unstructured connectivity pattern between
species [37], experimental data shows marked departures
from random connectivity [38]. This includes hierarchical
organization within ecosystems where larger species have
asymmetric effect on smaller species, larger variance in the
number of partners for a given species [39], and fewer cycles
involving three or more interacting species than would be
expected from an Erdős-Rényi graph [40]. A popular model
for food web structure is the cascade model [41], where
species are rank ordered, and each species can exclusively prey
upon lower-ranked species. The differential effects between
predators and prey in the cascade model can be described
using connectivity matrices with different statistics for entries
above and below the diagonal [42]:

Jij = μ(zi,zj )/
√

N + g(zi,zj )J 0
ij (44)

with

μ(zi,zj ) = μa�(zi − zj ) − μb�(zj − zi), (45)

g(zi,zj ) = ga�(zi − zj ) + gb�(zj − zi), (46)

where � is the Heaviside step function. We use the convention
�(0) = 0. Here, J describes the interactions between different
species in the ecosystem. For μa,μb > 0 and sufficiently larger
than ga,gb, the entries above (below) the diagonal are positive
(negative), so the matrix describes a perfectly hierarchical food
web, where the top-ranked species consumes all the other
species, the second species consumes all the species but the
first, and so on.

We will focus on the random part of the matrix (i.e., we set
μa = μb = 0). The spectrum of the sum of the deterministic
and random parts remains a problem for future study. Note
that since the deterministic part has full rank, one cannot apply
simple perturbation methods.

According to our analysis, the support of the spectrum of
J is a disk with radius

√
�1,�1 = limN→∞ max λ[G(2)

N ], and

G
(2)
N (zi,zj ) = N−1

[
g2

a�(zi − zj ) + g2
b�(zj − zi)

]
. (47)

Following the derivation in [42] we will show that

�1 = g2
a−g2

b

2ln(ga/gb) .

The characteristic polynomial DN (λ) = det |Iλ − G
(2)
N | is

simplified by subtracting the i + 1 column from the ith column
for i = 1, . . . ,N − 1 giving

DN (λ) = det

∣∣∣∣∣∣∣∣∣∣

λ + a 0 0 −a

−(λ + b)
. . . 0

...

0
. . . λ + a −a

0 0 −(λ + b) λ

∣∣∣∣∣∣∣∣∣∣
, (48)

where we have defined a = g2
a/N and b = g2

b/N . This sim-
plifies to the recursion relation DN (λ) = (λ + a)DN−1(λ) −
a(λ + b)N−1. Taking into account that D2(λ) = λ2 − ab, this
recursion relation can be solved, giving

DN (λ) = 1

a − b
[a(λ + b)N − b(λ + a)N ]. (49)

Setting the characteristic polynomial DN (λ) to 0 leads to the
equation

b = a

(
b + λ

a + λ

)N

, (50)

which has multiple roots,

λk = a

(
b
a

)1/N
e2πik/N − b

a

1 − ( b
a

)1/N
e2πik/N

, k = 1, . . . ,N. (51)

We are interested in the largest among the N roots, which is
real and positive. Taking into account the dependence of a and
b on N , we find that

�1 = lim
N→∞

max
k

[
a

(
b
a

)1/N
e2πik/N − b

a

1 − ( b
a

)1/N
e2πik/N

]
= g2

a − g2
b

ln
(

g2
a

g2
b

) , (52)

as desired.
Interestingly, for all values of ga,gb the spectral radius of J

is smaller than the radius of the network if the predator-prey

structure did not exist. The latter is equal to
√

(g2
a + g2

b)/2.
This suggests that the hierarchical structure of the interaction
network serves to stabilize the ecosystem regardless of how
dominant the predators are over the prey.

Note however that in this model there are no correlations.
In [42], it was shown numerically that correlations (i.e.,
the expectation value of J 0

ij J
0
ji) can dramatically change the

stability of the network, compared with one that has no
correlations.

VII. DISCUSSION AND CONCLUSIONS

We studied jointly the spectrum of a random matrix model
and the dynamics of the neural network model it implies. We
found that, as a function of the deterministic structure of the
network (given by g), the network becomes spontaneously
active at a critical point.

Identifying a space where the dynamics of a neural
network can be described efficiently and robustly is one of
the challenges of modern neuroscience [43]. In our model,
above the critical point, the deterministic dynamics of the
entire network are well approximated by a potentially low-
dimensional probability distribution, with dimension equal to
the number of eigenvalues of a deterministic matrix that have
a real part greater than 1.

The two limitations of our previous studies [11,13] for
interpreting multiunit recordings are (1) that the cell-type
identity of each neuron in the network has to be known and (2)
that predictions are averaged over all neurons of a specific type.

Here both limitations are remedied. First, while some
information about the connectivity structure is still required,
this could be in the form of global spatial symmetries (“rules”)
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present in the network, such as the connectivity rule we used
in the ring model. Second, our analysis provides a prediction
for single neuron quantities, namely the participation of every
neuron in the network in the global active dynamic modes.

Existence of discrete network modules with no apparent
fine-tuned connectivity has been shown to exist in networks
of grid cells in mammalian medial entorhinal cortex [44].
These cells fire when the animal’s position is on the vertices
of a hexagonal lattice, and are thought to be important for
spatial navigation. Interestingly, when characterizing the firing
properties of many such cells in a single animal one finds that
the the lattice spacing of all cells belongs (approximately) to a
discrete set that forms a geometric series [44]. Much work has
been devoted to trying to understand how such a code could
be used efficiently to represent the animal’s location (see for
example [45,46]) and how such a code could be generated [47].

However, we are not aware of a model that explains how
multiple modules (subnetworks with distinct grid spacing)
could be generated without fine-tuned connectivity that is not
observed experimentally. In our model, continuous changes to
a connectivity parameter can introduce additional discrete and
spatially periodic modes into the network represented by finer
and finer lattices. We are not arguing that the random network
we are studying here could serve as a model of grid-cell
networks, as there are many missing details that cannot be ac-
counted for by our model. Nevertheless our analysis uncovers
a mechanism by which a low-dimensional, spatially structured
dynamics could arise as a result of random connectivity.

More broadly, our results offer insight into the question
of what is the appropriate random matrix model for studying
networks with structured connectivity. We focus our discussion
on networks with increased probability of bidirectional con-
nections (see for example [5]). Most empirical datasets consist
of connectivity measurements within a subnetwork of a few
neurons, and thus cannot distinguish between the following
two processes giving rise to the observed over-representation
of bidirectional connections [48]. One possibility is that
microscopic (e.g., molecular) signaling is responsible for an
increased probability that neuron i is connected to j , given
that j is connected to i. An alternative possibility is that the
in- and out-degree sequences are correlated macroscopically,
so that if neuron j is connected to i the in and out degrees of
i will be large with increased probability, so the chance that

i is connected to j is larger than the average connectivity in
the network. These two possibilities are related to different
random matrix models that imply markedly different network
dynamics: the first to an elliptic model where the elements
Jij and Jji are correlated [7], and the second to a model with
heterogeneous and correlated degree distributions, such as the
one studied here that has a circularly symmetric spectrum.
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APPENDIX A: THE LIMIT K,N → ∞
Here we will show that the difference between the piecewise

estimate g̃ and the continuous synaptic gain function g goes
to 0 as N → ∞. We assumed that the unit square can be
tiled by square subsets of area s2

0 > 0 where g is bounded,
differentiable, and its first derivative is bounded in each subset.
Note that the Lipschitz constant of g can depend on N , but s0

cannot.
For N,K(N ) ∈ N, recall our definitions for g̃ and μi

[Eqs. (13) and (14)] and define kij = (K−1(μi − 1),K−1μi] ×
(K−1(μj − 1),K−1μj ]. Also recall our assumption that each
point is either inside a square with side s0 within which there
are no discontinuities or on the border of such a subset. Thus,
for K > s−1

0 we can assume that every constant region of g̃ is
contained within a single square subset.

We would like to show that for all i,j

lim
N→∞

|g̃N (zi,zj ) − g(zi,zj )| = 0. (A1)

Since s0 is independent of N , we only have to show that
Eq. (A1) is true within a subset where g satisfies the
smoothness conditions.

Using our definitions and the fact that g has Lipschitz
constant CL(N ) = C0

LNβ ,

|g̃N (zi,zj ) − g(zi,zj )| =
∣∣∣∣∣g
(

μi − 1
2

K
,
μj − 1

2

K

)
− g(zi,zj )

∣∣∣∣∣ � sup
(z′

i ,z
′
j )∈kij

∣∣∣∣∣g
(

μi − 1
2

K
,
μj − 1

2

K

)
− g(z′

i ,z
′
j )

∣∣∣∣∣
� CL sup

(z′
i ,z

′
j )∈kij

⎡
⎣(μi − 1

2

K
− z′

i

)2

+
(

μj − 1
2

K
− z′

j

)2
⎤
⎦

1/2

= C0
L

Nβ

2K
. (A2)

So finally,

lim
N→∞

|g̃N (zi,zj ) − g(zi,zj )| � C0
L

2
lim

N→∞
Nβ

K(N )
= 0. (A3)

APPENDIX B: THE CHARACTERISTIC
POLYNOMIALS OF G(2)

N AND Q

Here we compute directly the characteristic polynomials
of G

(2)
N and Q [Eqs. (42) and (43)] using the minor expansion

formula.
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1. Calculation of spectrum of G(2)

Recall that N = NE + NI , and let G(2)
k be the k×k matrix

with elements taken from the intersection of k specific rows
and columns of G

(2)
N . The notation G(2)

kE,kI
will indicate that

exactly kE and kI of these rows and columns correspond to
excitatory and inhibitory neurons, respectively.

For convenience we will use v = p0(1 − p0) and w =
W 2

0 p0(1 − p0). We would like to write an expression for the
characteristic polynomial of G

(2)
NE+NI

using the sums over its
diagonal minors

ANE,NI
(�) =

N∑
k=0

(−1)kak�
N−k, (B1)

where ak =∑ detG(2)
k for k � 1 and a0 = 1. The notation∑

detG(2)
k means a sum over all combinations of NE,NI such

that NE + NI = k (i.e., the so-called k-row diagonal minors
of G

(2)
N ). We will compute a0, . . . ,a4 explicitly and show that

ak = 0 for k > 4.
We begin by noting that the determinant of the 3×3 matrix

G(2)
3,0 = diag(x1,x2,x3)

⎛
⎝1 − x1y1 1 − x1y2 1 − x1y3

1 − x2y1 1 − x2y2 1 − x2y3

1 − x3y1 1 − x3y2 1 − x3y3

⎞
⎠

× diag(y1,y2,y3)

is 0 because the middle matrix is the sum of two rank 1
matrices.

The coefficient a0

By definition, a0 = 1.

The coefficient a1

The second coefficient, a1 is simply the trace

Tr
{
G

(2)
NE,NI

} =
NE∑
i=1

xiyi(1 − xiyi) + NIw,

a1 = T − Z + NIw, (B2)

where in the second row we used the functions of the degree
sequences [Eq. (41)].

The coefficient a2

The third coefficient a2 is the sum of two row diagonal
minors. There are three types of diagonal minors, only two of
which are nonzero:

detG(2)
2,0 = det

(
xi 0
0 xj

)
det

(
(1 − xiyi) (1 − xiyj )

(1 − xjyi) (1 − xjyj )

)

× det

(
yi 0
0 yj

)
= xixjyiyj (xiyj + xjyi − xiyi − xjyj ),

detG(2)
1,1 = det

(
xiyi(1 − xiyi) w

v w

)
= w[xiyi(1 − xiyi) − v],

detG(2)
0,2 = det

(
w w

w w

)
= 0. (B3)

Carrying out the summation over possible combinations,

∑
detG(2)

2,0 =
∑
i<j

xixjyiyj (xiyj + xjyi − xiyi − xjyj )

= 1

2

NE∑
i=1

NE∑
j=1

xixjyiyj (xiyj +xjyi −xiyi −xjyj )

= R − ZT ,

∑
detG(2)

1,1 = NIw

NE∑
i=1

[xiyi(1 − xiyi) − v]

= NIw[T − Z − vNE]. (B4)

Putting these together we get

a2 = R − ZT + NIw[T − Z − vNE]. (B5)

The coefficient a3

The fourth coefficient a3 is the sum of all three row diagonal
minors. Now there are four types of minors, only one of which
is nonzero:

detG(2)
3,0 = 0 (shown above),

detG(2)
2,1 = det

⎛
⎜⎝

xiyi(1 − xiyi) xiyj (1 − xiyj ) w

xjyi(1 − xjyi) xjyj (1 − xjyj ) w

v v w

⎞
⎟⎠

= w detG(2)
2,0 + vw[xjyi(1 − xjyi) + xiyj (1 − xiyj )

− xiyi(1 − xiyi) − xjyj (1 − xjyj )],

detG(2)
1,2 = detG(2)

0,3 = 0

(repeated columns of inhibitory neurons). (B6)

Carrying out the sum,

a3 =
∑

detG(2)
2,1

= wNI [R − ZT ] + vwNI

1

2

NE∑
i=1

NE∑
j=1

[xjyi(1 − xjyi)

+ xiyj (1 − xiyj ) − xiyi(1 − xiyi) − xjyj (1 − xjyj )]

= wNI {R − ZT + v[S2 − U2 − NE(T − Z)]}. (B7)

The coefficient a4

The last nonzero coefficient is a4, the sum of all four row
diagonal minors. Here there are five types, only one of which
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is nonzero:

detG(2)
4,0 = 0

(
because detG(2)

3,0 = 0
)
,

detG(2)
3,1 = det

⎛
⎜⎜⎜⎝

xiyi(1 − xiyi) xiyj (1 − xiyj ) xiyk(1 − xiyk) w

xjyi(1 − xjyi) xjyj (1 − xjyj ) xjyk(1 − xjyk) w

xkyi(1 − xkyi) xkyj (1 − xkyj ) xkyk(1 − xkyk) w

v v v w

⎞
⎟⎟⎟⎠

= vw(xi − xj )(xi − xk)(xj − xk)(yi − yj )(yi − yk)(yj − yk),

detG(2)
2,2 = detG(2)

1,3 = detG(2)
0,4 = 0 (repeated columns of inhibitory neurons). (B8)

Carrying out the sum we get

a4 = 1

6
vwNI

NE∑
i=1

NE∑
j=1

NE∑
k=1

(
x2

i xj − x2
i xk + x2

j xk − x2
j xi + x2

k xi − x2
k xj

)(
y2

i yj − y2
i yk + y2

j yk − y2
j yi + y2

k yi − y2
k yj

)
= NIvw[NE(ZT − R) − ZS2 − U2T + SUV]. (B9)

The coefficients ak with k > 4

Now we show that ak = 0 for k > 4. A diagonal minor
representing a subnetwork of five neurons or more can have
NI = 0, NI = 1, or NI � 2. If NI � 2 the diagonal minor is
zero because of repeated columns. If NI = 1, then NE � 4.
Here, the determinant is a weighted sum of k = NE − 1 =
N − 2 row diagonal minors of the form detG(2)

NE−1,0 which is
zero for NE � 4. Last, if NI = 0 then again we have a sum of
terms of the form detG(2)

NE,0 which are zero as discussed above.

2. Calculation of spectrum of Q

Using a similar approach we will compute the characteristic
polynomial of Q and show that generically rank{Q} = 3.
Using the sums over diagonal minors of QNE+NI

,

BNE,NI
(λ) =

N∑
k=0

(−1)kbkλ
N−k, (B10)

where bk =∑ detQk for k � 1 and where Qk is a k×k

matrix with elements taken from the intersection of k rows
and columns of Q. Again, QkE,kI

will indicate that kE and
kI rows and columns correspond to excitatory and inhibitory
neurons, respectively.

The coefficient b0

By definition we have b0 = 1.

The coefficient b1

The second term is the trace

b1 = Tr
{
QNE+NI

} =
NE∑
i=1

xiyi − NIW0p0

= T − NIW0p0. (B11)

The coefficient b2

The third coefficient is the sum over two row diagonal
minors:

detQ2,0 = det

(
xiyi xiyj

xjyi xjyj

)
= 0,

detQ1,1 = det

(
xiyi −p0W0

p0 −p0W0

)
= p0W0(p0 − xiyi),

detQ0,2 = det

(−p0W0 −p0W0

−p0W0 −p0W0

)
= 0; (B12)

carrying out the summation, we get

b2 = p0W0NI

NE∑
i=1

(p0 − xiyi)

= p0W0NI (NEp0 − T ). (B13)

The coefficient b3

The fourth and last nonzero coefficient is the sum over three
row diagonal minors:

detQ3,0 = 0,

detQ2,1 =
⎛
⎝xiyi xiyj −p0W0

xjyi xjyj −p0W0

p0 p0 −p0W0

⎞
⎠

= p2
0W0(xiyi + xjyj − xiyj − xjyi),

detQ1,2 = det Q0,3 = 0 (repeated columns). (B14)

Carrying out the sum,

b3 = NIp
2
0W0

∑
i<j

(xiyi + xjyj − xiyj − xjyi)

= 1

2
NIp

2
0W0

NE∑
i=1

NE∑
j=1

(xiyi + xjyj − xiyj − xjyi)

= NIp
2
0W0(NET − S2). (B15)
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The coefficients bk with k > 3

Now we show that bk = 0 for k > 3. A minor representing a
subnetwork of four neurons or more can have NI = 0, NI = 1,
or NI � 2. If NI � 2 the minor is zero because of repeated
columns. If NI = 1, then NE � 3. Here, the determinant is a
sum of k = NE − 1 = N − 2 row diagonal minors of the form
detQNE−1,0 which is zero for NE � 3. Last, if NI = 0 then
again we have a sum of terms of the form detQNE,0 which is
zero as discussed above.

APPENDIX C: NETWORKS WITH �

DEGREE DISTRIBUTIONS

We choose a specific parametrization where the marginals
of the joint in- and out-degree distribution are � with form
parameter κ , scale parameter θ , and have average correlation
ρ. Owing to the properties of sums of random variables that
follow a � distribution, we can write the random in- and out-
degree sequences as

kin
i = k1i + k2i , k1i ∼ �(κρ,θ ),

kout
i = k1i + k3i , k2i ,k3i ∼ �(κ(1 − ρ),θ ), (C1)

where 1 � i � NE . In this appendix 〈·〉 will denote averages
over the joint in- and out-degree distribution.

The moments of the � distribution imply that, for this
parametrization,

〈(
kin
i

)n〉 = 〈(kout
i

)n〉 = θn

n−1∏
m=0

(κ + m) (C2)

for all 1 � i � NE . Here, since elements of kin
i and kout

i are
(separately) independent and identically distributed we will
suppress the subscript i and superscripts in,out when possible,
and let 〈k2〉 = 〈kin
kin〉, kinkout = kin
kout, etc.

One can verify that indeed the average correlation between
the in- and out-degree sequences is

〈kinkout〉 − 〈kin〉〈kout〉√
〈kin2 − 〈kin〉2〉

√
〈kout2 − 〈kout〉2〉

= ρ. (C3)

Using this parametrization we compute the averages
〈T 〉,〈S〉, etc., and express them in terms of ρ, θ, κ , and NE .

The functional T

T =
NE∑
i=1

xiyi = 1

NEκθ

NE∑
i=1

kin
i kout

i ,

〈T 〉 = 1

κθ
〈kinkout〉 = θ (ρ + κ). (C4)

The functional S

S =
NE∑
i=1

xi = 1√
NEκθ

NE∑
i=1

kin
i ,

〈S〉 =
√

NE

κθ
〈k〉 =

√
NEκθ. (C5)

The functional U

U =
NE∑
i=1

x2
i = 1

NEκθ

NE∑
i=1

kin2
i ,

〈U〉 = 1

κθ
〈k2〉 = θ (κ + 1). (C6)

The functional Z
To compute 〈Z〉 we first derive an expression for 〈kin2kout2〉.

Using the independence of k1,k2,k3,

〈kin2kout2〉 = 〈(k2
1 + 2k1k2 + k2

2

)(
k2

1 + 2k1k3 + k2
3

)〉
= θ4{6κρ + κ2[1 + 8ρ + 2ρ2]

+ 2κ3[1 + 2ρ] + κ4}. (C7)

Now we can write

Z =
NE∑
i=1

x2
i y

2
i = 1

N2
Eκ2θ2

NE∑
i=1

kin2
i kout2

i ,

〈Z〉 = 1

NEκ2θ2
〈kin2kout2〉

= θ2

NE

{
6
ρ

κ
+ [1 + 8ρ + 2ρ2]

+2κ[1 + 2ρ] + κ2

}
. (C8)

The functional R
To compute 〈R〉 (and 〈V〉) we first derive an expression for

〈kinkout2〉. Using the independence of k1,k2,k3,

〈kin2kout〉 = 〈(k2
1 + 2k1k2 + k2

2

)
(k1 + k3)

〉
= θ3κ(κ + 1)(κ + 2ρ),

〈kinkout2〉 = 〈(k1 + k2)
(
k2

1 + 2k1k3 + k2
3

)〉
= θ3κ(κ + 1)(κ + 2ρ). (C9)

Now we can write

R = 1

N3
Eκ3θ3

(
NE∑
i=1

kin
i kout2

i

)(
NE∑
i=1

kin2
i kout

i

)
,

〈R〉 = 1

NEκ3θ3
〈kinkout2〉〈kin2kout〉

= θ3(κ + 1)2(κ + 2ρ)2

NEκ
. (C10)

The functional V

V = 1

N3
Eκ3θ3

NE∑
i=1

(
kin
i kout2

i + kin2
i kout

i

)
.

〈V〉 = 1

N2
Eκ3θ3

(〈kinkout2〉 + 〈kin2kout〉)

= 2(κ + 1)(κ + 2ρ)

N2
Eκ2

. (C11)
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