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Comprehensive spectral approach for community structure analysis on complex networks
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A simple but efficient spectral approach for analyzing the community structure of complex networks is
introduced. It works the same way for all types of networks, by spectrally splitting the adjacency matrix into
a “unipartite” and a “multipartite” component. These two matrices reveal the structure of the network from
different perspectives and can be analyzed at different levels of detail. Their entries, or the entries of their
lower-rank approximations, provide measures of the affinity or antagonism between the nodes that highlight the
communities and the “gateway” links that connect them together. An algorithm is then proposed to achieve the
automatic assignment of the nodes to communities based on the information provided by either matrix. This
algorithm naturally generates overlapping communities but can also be tuned to eliminate the overlaps.
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I. INTRODUCTION

Community structure detection has been one of the most
important research topics in network science in recent years.
Although no exact definition exists, a community is broadly
understood as a set of nodes that “work together to achieve
a certain function of the network.” It is usually assumed that
there is a correlation between the density of connections and
function, namely that subsets of the network whose nodes are
more densely connected than in a random “null model” are
likely to perform some function together [1–4]. Alternatively,
especially in the case of bipartite or directed networks, a
frequently used assumption is that nodes that share many
connections are likely to perform a common task [1,5]. The
two assumptions have essentially the same meaning in the
case of very densely connected communities but are otherwise
distinct. The method presented in this paper naturally identifies
communities defined according to either assumption.

Various methods have been proposed so far to identify the
community structure, most of them applying only to unipartite
undirected networks [1–3,6–24]. They include divisive algo-
rithms [2], graph partitioning [10], hierarchical clustering [12],
partitional clustering [13], spectral clustering [14–18], as well
as more unusual methods [19–21]. However, the most com-
monly used methods are those based on the maximization of
a goal function called modularity, introduced by Newman and
Girvan [3,4,7]. The maximization is achieved using different
heuristic approaches like greedy search [7], extremal optimiza-
tion [9], simulated annealing [8], or spectral bisectioning [3,4].
The latter has evolved into more sophisticated algorithms,
which increase performance [22,25,26] or are specifically
designed for bipartite networks [5,27], directed networks [28],
or networks with overlapping communities [29–32]. Although
community detection algorithms that use modularity as a goal
function are known to suffer from a resolution problem which
prevents them from detecting communities below a certain
size [33–39], they are so far the most frequently used in the
case of undirected networks with nonoverlapping communities
because modularity is based on a clear working definition
of what it means for such a network to be modular [1].
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However, in the case of bipartite or directed networks and
especially for networks with overlapping communities there is
no universally accepted definition of modularity [1,5,27–32]
and there is no way to directly compare the quality of
partitions that have been obtained by maximizing different
modularity functions. For this reason, it is important to have a
community detection method that is independent of a definition
of modularity, works the same way in all situations, and
produces results compatible with modularity-based methods
whenever comparison is meaningful.

The first steps in this direction were taken in Refs. [23,40].
Although Ref. [40] does not provide a method for identifying
the community structure, it is notable for using a truncated sin-
gular value decomposition (SVD) of a “contribution matrix”
to analyze the structure of predetermined communities and the
relationship between them. The algorithm of Ref. [23] identi-
fies the communities by using a singular value decomposition
of the unsigned Laplacian matrix for unipartite networks or
of the rectangular adjacency submatrix for bipartite networks,
followed by the application of a k-means clustering algorithm
in the subspace spanned by the left and right singular vectors
corresponding to the largest singular values. In this latter
regard, they are still very close to the spectral clustering
algorithms of Refs. [13–16]. Their algorithm has the drawback
of using different matrices for uni- and bipartite networks and
can identify only “unipartite”-type communities (comprising
nodes from both parties) on bipartite networks. In addition,
Ref. [23] lacks a performance comparison with modularity-
based methods in terms of ensemble averages. The community
detection method introduced in this paper is simpler and
works the same way for all types of networks. It starts by
generating two matrices, in which “unipartite” and respectively
“multipartite”-type communities (the latter consisting of nodes
from a single party) are immediately visible. The entries of
these matrices provide a measure of the affinity or antagonism
between the different nodes which can be useful by itself
(and likely sufficient for many purposes) but can also be used
to generate either overlapping or nonoverlapping community
structures.

Finally, with the exception of Ref. [22], all spectral
algorithms proposed so far to maximize modularity perform
recursive bisections of the network and its communities by
using only the leading eigenvalue of the modularity matrix.
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The bisections must be combined with additional “fine-tuning”
[3,4], “final tuning” [25], and possibly agglomeration [26]
steps, without which the performance of these algorithms
would be insufficient. These additional steps do not increase
the complexity of the algorithms but require significant extra
effort to program. A question of both theoretical and practical
importance is whether a different type of spectral algorithm,
that uses multiple eigenvectors of the adjacency matrix and
is not specifically designed to maximize modularity, still
needs such additional steps to achieve good performance. We
present results showing that, except for extremely sparse or
weakly modular networks, the algorithm proposed in this paper
produces good to excellent community structures without
additional steps.

II. METHOD

A. Background

Let A be the adjacency matrix of a sparse network with N

nodes. There is no restriction on whether the network is uni-
or bipartite, unweighted or weighted. In the weighted case,
A is understood to be the weights matrix. We will assume
that the network is undirected, but directed networks can be
represented as bipartite undirected ones for the purpose of
community structure analysis [5].

The goal is to partition the network into a set of communities
{Ck}, with k = 1,K , that makes sense in light of the criteria
mentioned in the Introduction. Although the adjacency matrix
is the most straightforward representation of a network, it has
so far been considered unfit for the purpose of determining the
community structure. The reason for this apparent inability
and the way to deal with it are discussed in this section.

Community detection algorithms have been proposed that
use either the stochastic matrix [16,17] or different forms of
the network Laplacian [18,23], but the most popular algorithms
start with the definition of a modularity function. In the case
of unipartite undirected networks, modularity is defined as

Q =
K∑

k=1

∑
i,j∈Ck

(
Aij − didj

2m

)
, (1)

where di is the degree of node i and 2m = ∑N
i=1 di . Modularity

is then expressed as

Q = 1

2m
ST MS, (2)

where M is the modularity matrix defined by

Mij = Aij − didj

2m
(3)

and S is a binary N × K matrix with Sik = 1 if node i belongs
to community k and zero otherwise.

In the standard spectral bisectioning algorithm due to
Newman [3,4] as well as in its variants [5,27,28,32], S is
a column matrix and the network is recursively bisectioned
according to the signs of the components of the eigenvector
corresponding to the largest eigenvalue of the modularity
matrix and then of its modified community-wide version until
the modularity function can no longer be increased. There
are also “fine-tuning” [3,4] and “final tuning” [25] steps that

can be added at the end of each bisection and at the end of the
bisectioning process, respectively, to improve the performance
of the algorithm.

Of particular interest are the variants introduced by Guimera
[5] and Barber [27], which are both specifically designed
to deal with bipartite networks but detect different types of
communities. The algorithm of Ref. [5] finds communities
that are subsets of only one party. Such communities will be
called “bipartite” or “multipartite” in this paper. On the other
hand, the algorithm described in Ref. [27] finds cross-party
communities, which will be called “unipartite.” As will be
seen, the algorithm presented in this paper is capable of
detecting both types of communities on bipartite and therefore
also on directed networks.

In Ref. [3], Newman points out the possibility of using
more than one eigenvector of the modularity matrix but
this idea has not been pursued until recently [22,23]. The
algorithm proposed in Ref. [22] uses orthonormal rotations in
a space spanned by the eigenvectors corresponding to the K

largest eigenvalues of the modularity matrix while Ref. [23]
uses a singular value decomposition of the unsigned network
Laplacian followed by k-means clustering in a similar space.

B. General description

On the other hand, it is obvious that the community
structure can be regarded as a “coarse graining” of the
network under analysis. The intuition behind the method
proposed in this paper is to translate the coarse graining
algebraically into a representation of a community as a square
submatrix whose entries are all positive or greater than a
certain positive threshold, centered on the main diagonal of
a simplified adjacency matrix. This makes sense if belonging
to a community is viewed as being under the influence of
a “center of power,” with all members interacting with each
other through it. The problem of identifying the community
structure (including the case of overlapping communities) then
translates into finding all such submatrices that are maximal
(not contained within larger ones).

Submatrices of the kind described above are nowhere to be
found in the adjacency matrices of typical real-world or model
networks. Networks composed of sparsely interconnected
cliques come closest to this picture but even they have
all diagonal elements equal to zero unless self-loops are
allowed. In order to obtain a coarse-grained version of the
adjacency matrix it seems natural to perform a singular value
decomposition A = U�V T [41] and then retain only the terms
corresponding to the largest K < N singular values,

A{1−K} =
K∑

k=1

σkU:kV
T

:k . (4)

Here U and V are orthogonal matrices whose columns are
the left and right singular vectors of matrix A while � is
diagonal with non-negative entries σk . This is reminiscent of
approaches used in some lossy image compression and face
recognition algorithms as well as of the principal component
analysis method used in statistics [23,40]. A low-rank approx-
imation of the adjacency matrix is expected to retain only
its most important features, enhancing sets of similar rows
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FIG. 1. A simple nearly bipartite network.

or columns, introducing additional links within the densely
connected subsets, and weakening the links between them [41].
This is exactly what is needed in order to reveal communities
defined either by high density of links or by similarity of
connection, as discussed in the Introduction. Moreover, it is
known that retaining the first K singular values from an SVD
leads to the best rank-K approximation of the original matrix
in terms of Frobenius norm [41]. Everything seems right, and
yet, if the method is applied as described above, it gives fair
results on some networks but completely fails to identify a
meaningful community structure on many.

A simple example is the network shown in Fig. 1, which is
nearly bipartite except for the link between nodes 9 and 10. The
network is shown in two different layouts, which emphasize
the unipartite and bipartite communities respectively. The first
term of the expansion in Eq. (4) does contain information
about the relative importance of the nodes within the network,
which is not surprising, since U:1 = V:1 defines the eigenvector
centrality measure. As more terms are added, though, the sin-
gular value expansion simply converges towards the adjacency
matrix without ever revealing a community structure.

To understand the root of the problem, note first that for
real symmetric matrices the singular value decomposition is
closely related to the eigenvalue decomposition A = U�UT :
the singular values are the absolute values of the eigenvalues,
σi = |λi |, and any negative eigenvalue signs are transferred to
the columns of U on the right to form V . Retaining the largest
K singular values in an SVD is the same as retaining the largest
K eigenvalues in absolute value. However, individual rank-1
terms of the form λiU:iU

T
:i in the eigenvalue expansion of A

tell different stories when interpreted in terms of community
structure depending on the sign of λi .

If λi > 0, the matrix has two blocks with positive entries on
the main diagonal and two off-diagonal blocks with negative
entries. This corresponds to a partition of the network into
two unipartite-style communities, with the positive matrix
elements quantifying affinity and the negative ones quantifying
antagonism between the nodes.

If λi < 0, the blocks with positive entries are off-diagonal,
which corresponds to a bipartite approximation of the network,
with two same-party communities appearing in the negative
blocks and the connections between the nodes in the positive
ones. This is reminiscent of Newman’s observation [3] that the
eigenvector corresponding to the largest negative eigenvalue
of the modularity matrix M can be used discern a (nearly)
bipartite structure.

It is known [42] that bipartite networks have symmetric
positive and negative eigenvalues of the adjacency matrix. In
addition, many unipartite networks have large negative eigen-
values, of magnitude comparable to the largest positive ones.
This means that two mutually exclusive types of community
description interfere if one simply performs a singular value
decomposition of the adjacency matrix. The key to correctly
revealing the community structure of a network based on the
adjacency matrix is to spectrally split it into an “unipartite”
and a “multipartite” component, the former constructed using
exclusively the eigenvectors with positive eigenvalues and the
latter the eigenvectors with negative eigenvalues,

AU =
∑
λk>0

λkU:kU
T
:k , (5)

AM =
∑
λk<0

λkU:kU
T
:k . (6)

For the purpose of revealing the community structure, we
can retain the largest Kp positive eigenvalues and the largest
N − Kn + 1 negative eigenvalues. Assuming the eigenvalues
are listed in decreasing order, the “coarse-grained” versions of
these matrices are

A{1−Kp} =
Kp∑
k=1

λkU:kU
T
:k , (7)

A{Kn−N} =
N∑

k=Kn

λkU:kU
T
:k . (8)

The results of such a spectral split for the network in Fig. 1
are shown in Figs. 2(a) and 2(b). The first matrix reveals
communities in “unipartite” mode: nodes from one party that
are densely connected as second-order neighbors are lumped
together with the first-order neighbors through which they are
connected into cross-party communities. The negative entries
of the second matrix reveal communities in “bipartite” mode,
with nodes from only one party that share neighbors in the
other lumped by themselves. The results for this network are
discussed in more detail below.

The interpretation of the eigenvectors of the adjacency ma-
trix as “community modes” is best understood as generalizing
the definition of the eigenvector centrality: the eigenproblem
Au = λu is interpreted as a self-consistent way of quantifying
the centrality of the nodes on a network such that the centrality
ui of node i is proportional to the sum of the centralities of its
neighbors, �N

j=1Aijuj . Since centrality measures are assumed
to be non-negative, only the eigenvector corresponding to the
largest eigenvalue is used to define the classical centrality.
On the other hand, if negative eigenvector elements are
allowed, the negative signs can be transferred to the elements
of A. We thus end up with two groups of nodes, all with
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FIG. 2. Split eigenvalue expansions of the adjacency matrix for
the network in Fig. 1. Red (solid) and blue (hollow) dots represent
positive and negative matrix entries, respectively. The dot in the
legend box has unity diameter.

positive centrality measures, but the centrality of one node is
proportional to the sum of the centralities of the nodes from
the same group that are connected to it minus the sum of the
centralities of the nodes from the opposite group to which it is
connected. This leads to meaningful bisections of the network.

C. Application to bipartite and directed networks

To better understand the way the spectral split method
works, let us analyze in detail what it does to a bipartite
network. The eigenproblem for a bipartite adjacency matrix

A

(
u

v

)
=

(
0 B

BT 0

)(
u

v

)
= λ

(
u

v

)
(9)

with B of dimensions m × n is equivalent with

(BBT )u = λ2u, (10)

(BT B)v = λ2v, (11)

and, if we perform a singular value decomposition

B = U�V T , (12)

we find

BBT = U�2UT , (13)

BT B = V �2V T . (14)

The eigensystem of A (nullspace excluded) is thus of the form{
±σi,

1√
2

(
U:i

±V:i

)}
, i = 1,r, (15)

where r � min(m,n) is the rank of B.

The full (nontruncated) unipartite and multipartite compo-
nents of A are then

AU = 1

2

r∑
i=1

σi

(
U:i

V:i

)(
UT

:i V T
:i

)
, (16)

AM = −1

2

r∑
i=1

σi

(
U:i

−V:i

)(
UT

:i −V T
:i

)
, (17)

or, in terms of B,

AU = 1

2

(√
BBT B

BT
√

BT B

)
, (18)

AM = 1

2

(
−

√
BBT B

BT −
√

BT B

)
, (19)

where
√

M denotes the principal, positive semidefinite root of
a positive semidefinite matrix M .

The elements of matrices BBT and BT B count the number
of ways one can travel in two steps from a node in one party
to another (or the same) node in the same party. The roots
of these matrices act as substitutes for the absent intraparty
connections, and their low-rank approximations highlight the
sets of nodes that are similarly connected in this way. Bipartite
communities appear as negative entries in AM .

The low-rank approximations of the unipartite component
additionally highlight similar connections from either side to
the other, and nodes from one party together with those from
the other party through which they are connected are placed in
the same community.

Note that, especially when the bipartite adjacency matrix
is not written in the standard form of Eq. (9), the best way to
reveal the bipartite communities is to use

AU − AM =
(√

BBT 0

0
√

BT B

)
(20)

instead of AM . This prevents the off-diagonal blocks in Eq. (19)
from interfering with the bipartite community detection
process and also reveals these communities through positive
entries, as can be seen in Fig. 2(d).

In the case of directed networks, the asymmetric adjacency
matrix plays the role of B [5]. Bipartite communities are
defined by similarity of only incoming or only outgoing
links, whereas unipartite communities are defined based on
similarity on either side and also contain the nodes to which
the similar connections are made.

D. A modularity-type matrix

Discarding the first term of the unipartite component
AU can be useful for revealing high-modularity unipartite
community structures, which are also less likely to exhibit
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overlaps. This is because the matrix

A{2−N} = A − λ1U:1U
T
:1 (21)

has similar properties with the modularity matrix defined in
Eq. (3). Since the components of U:1 are the eigenvector
centralities of the nodes, they are expected to be fairly
correlated with the node degrees. Matrix A{2−N} is, in fact, a
modularity-type matrix with a different null model, which uses
the eigenvector centralities instead of the degrees, and AU −
λ1U:1U

T
:1 is its unipartite component. The matrix depicted in

Fig. 2(c) represents A{2−3} for the network in Fig. 1.
In light of the meaning of the first term in Eq. (5) as an

outer product of the classical centrality eigenvector and best
rank-1 approximation of the adjacency matrix, we see that
A{1−K} provides more information about the importance of
the nodes and links on the network as a whole, while A{2−K} is
more focused on distinct communities, the importance of the
nodes and links within them, and the possible antagonism
between them. It should be noted, however, that keeping
the first term does help with the detection of overlapping
communities.

E. Example network

For the network in Fig. 1, the truncated unipartite com-
ponent of the adjacency matrix A{1−3} shown in Fig. 2(a)
reveals three communities, comprising nodes {1–4}, {5–8},
and {7, 9, 10}. This is consistent with the visual analysis of
the network, which suggests the overlap between the latter
two communities. Moreover, the importance of the “gateway”
link between nodes 3 and 5 as well as the central importance
of node 7 are clearly indicated. Other smaller but significant
entries indicate the stronger relationship between node 3 and
nodes {6, 8} as well as between node 5 and nodes {2, 4}.
Finally, the relatively close interaction between sets {6, 8}
and {9, 10} is also indicated.

The modularity-type matrix A{2−3} is shown in Fig. 2(c).
In agreement with the discussion form the previous subsec-
tion, this matrix shows nonoverlapping communities {1–4},
{5, 6, 8}, and {7, 9, 10}. These nonoverlapping versions are
not so well defined, presumably because of their competing
tendencies to include node 7. The antagonism between sets
{3, 5} and {7, 9, 10}, which tend to split the set {5–8} in
opposite directions, is also revealed.

Figures 2(b) and 2(d) reveal “bipartite” communities {1,
3}, {2, 4}, {5, 7}, and {6, 8} defined based on similarity
of connection. These figures show nodes 9 and 10 each in a
community by itself. This is an indication that the bipartite
division of the network fails due to the link between them,
with the algorithm providing an exact quadri-partite division
instead: {1, 3, 6, 8}, {2, 4, 5, 7}, {9}, and {10}, with the first
two parties divided into two communities each.

For sufficiently small networks, up to about 100 nodes,
the community structure can be detected by visual inspection
of the truncated unipartite and multipartite components of A.
For larger networks, two more ingredients are needed in order
to have an algorithm that can automatically produce near-
optimal community structures. The first is a rule for choosing
the number of eigenvalues K . The second is an algorithm to
assign the nodes to communities.
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FIG. 3. The eigenvalues for Zachary’s karate network. Prominent
positive eigenvalues 1 through 4 define the unipartite community
structure. Prominent negative eigenvalue 34 defines a bipartite
approximation of the network.

F. Choosing the eigenvalue threshold

The important structural features of a network are revealed
by the most prominent positive or negative eigenvalues of its
adjacency matrix and their corresponding eigenvectors. The
spectra of all modular graphs examined exhibit (at least at
the positive end, if no bipartite structure is discernible) a few
prominent eigenvalues separated by one or more large eigen-
gaps from the rest. This is reminiscent of properties observed
in the spectrum of the unsigned Laplacian matrix [23]. An
example for a well-known network, which is discussed in
detail in the Results section, is shown in Fig. 3. Numerical
experiments show that the highest modularity partitions are
obtained if exactly these eigenvalues are used to approximate
AU or AM .

However, it is important to emphasize that retaining more
eigenvalues can be very useful, shedding additional light on
the interactions between the nodes, despite the fact that if more
eigenvalues are used to partition the network into communities
the modularity will be lower. This ability to do a more in-
depth analysis of the network structure is an advantage that
the spectral split method offers over all community detection
methods proposed thus far. Additional research, using methods
similar to those described in Refs. [33–39], will be required to
quantify its resolution limit.

A simple rule that can be used to automatically generate
high modularity community structures is to choose the
threshold at the rightmost (or leftmost, in the case of the
bipartite component) of the three most prominent eigengaps.
More sophisticated algorithms can be devised to identify all
significant eigengaps but, at least for networks of size up to
N = 1000, such algorithms seem unnecessary.

The fact that the eigenvalues separated by large eigengaps
are sufficient to define the community structure is important
from a computational point of view. It is known [1,41] that the
eigenvalues from both ends of the spectrum of a symmetric
matrix and the corresponding eigenvectors can be computed by
using the Lanczos algorithm [43] much faster than the O(N3)
time required to compute the complete set of eigenvectors if
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these extremal eigenvalues are separated from the rest by large
eigengaps.

G. Assigning the nodes to communities

The following algorithm gives good high-modularity
nonoverlapping partitions once a low-rank approximation of
AU is computed:

(1) Set the negative entries of A{2−K} to zero.
(2) Perform a second eigenvalue decomposition of the

resulting matrix, which has only a few large, positive,
eigenvalues with eigenvectors whose positive components are
typically much larger than the negative ones.

(3) Assume that each eigenvector corresponding to a large
eigenvalue represents a community and assign each node
corresponding to a positive component to that community,
with a strength of the tie equal to the value of the component.

(4) If nonoverlapping communities are desired, assign each
node to the community to which it is connected with the highest
strength. For equal strengths, assign the node to the largest of
the communities.

It is important to point out that this is just one of many
algorithms that could be devised to convert the information
provided by the spectral split method into community as-
signments. It is quite possible that other, faster and better
performing, algorithms will be found.

As currently implemented by the author, with two eigen-
value decompositions and without the benefit of the Lanczos
algorithm, the spectral split method can be characterized as
“intermediately fast.” It is significantly faster than simulated
annealing or extremal optimization, which were the two most
accurate community detection methods known until now, but
slower than the other, less accurate, methods mentioned in
Introduction. However, the results presented in Sec. III show
that spectral split vastly outperforms the faster methods and
that it outperforms even extremal optimization in the case
of large or highly modular networks. Moreover, using the
Lanczos algorithm is expected to result in significant time
savings, as discussed above.

For the purpose of comparison, the spectral split method
combined with this algorithm was also applied to the classical
modularity matrix M . Note that, in light of the discussion at
Eq. (21), it is meaningless to talk about discarding the first
term in the eigenvalue expansion of M , and therefore M{1−K}
replaces A{2−K} in this case.

Finally, a refinement that leads to small increases in
modularity on some networks is to cube the eigenvalues and
construct A3

{2−K} or M3
{1−K} instead of A{2−K} or M{1−K}. This

refinement enhances the contrast between communities de-
fined by close eigenvalues and, even though the improvement
is modest, has been used to generate the results obtained in
Figs. 8, 9, and 10.

III. RESULTS

We start by presenting results for the larger modular
network in Fig. 4, which exhibits more features.

Figure 5(a) shows the low-rank approximation A{1−4}
based on the four prominent eigenvalues separated by large
eigengaps from the others. In the upper-left corner there is a
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FIG. 4. A modular unipartite network with 21 nodes.

community consisting primarily of nodes {1–6}, but including
nodes 7 and 8 as well. The central importance of nodes {1–3,
5} is clearly indicated, with node 5 highlighted as an important
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FIG. 5. Unipartite eigenvalue expansions of the adjacency matrix
for the network in Fig. 4. Red (solid) and blue (hollow) dots represent
positive and negative matrix entries, respectively.
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gateway node also connected to communities {9–11, 14} and
{15–17, 19}. Node 8, though not an important member of this
community, appears as a gateway node towards community
{18, 20, 21} to which it has stronger ties. Proceeding further
down along the main diagonal, we find community {9–11,
14} with secondary nodes 12 and 13 attached to it and then the
strong communities {15–17, 19} and {18, 20, 21}. The central
importance of the pairs {14, 15} and {17, 18} as gateway nodes
is also highlighted by significant off-community entries.

The full-rank unipartite component AU = A{1−8} is shown
in Fig. 5(b). As expected, the additional terms included
in Eq. (7) provide more detailed information about the
importance of the nodes and of the links between them. The
importance of the nodes can be inferred from the diagonal
elements of the matrix and the importance of the links
from the off-diagonal elements. For example, within the first
community, the importance of node 5 as a hub is emphasized in
a way that distinguishes it from nodes {1–3}. Its connections
with nodes 2, 4, 6, 9, and 17 are more clearly emphasized.
The second community is resolved into two, {9, 11, 14} and
{10, 12, 13}, with the link between 9 and 10 highlighted as
an important gateway. A more detailed analysis is left to the
reader, but it is clear that looking at a high-rank approximation
or at the full-rank unipartite matrix provides a much richer
picture of the network’s structure than a simple partition into
communities.

Finally, matrix A{2−8} shown Fig. 5(c) highlights the
antagonism between nodes {1–6} from the first community
and community {15–17, 19}, as well as between the latter and
community {9–11, 14}.

Detailed results for two well-known benchmark networks,
the unipartite karate network of Zachary [44] and the bipartite
Southern women network [45,46], are presented next.

A. Zachary’s karate network

The adjacency matrix for the karate network is shown
in Fig. 6(a) and its eigenvalues in Fig. 3. The four positive
eigenvalues separated by large eigengaps from the others are
the ones that define a high modularity community structure.
The nonoverlapping partition with the maximum modularity
for this network is {1–4, 8, 12–14, 18, 20, 22}, {5–7, 11,
17}, {9, 10, 15, 16, 19, 21, 23, 27, 30, 31, 33, 34}, and
{24–26, 28, 29, 32}, for which the Newman modularity is
Qmax = 0.419790. A quick inspection of Fig. 6(b) or 6(c)
reveals a slightly different result, with an overlap between
the first two communities at node 1 and an overlap between
the last two communities at node 24. Both of these overlaps
make sense in light of the way nodes 1 and 24 are connected.
If the algorithm described in the previous section is used to
generate a nonoverlapping community structure, the maximum
modularity partition described above is reproduced with the
exception of node 24 being assigned to the third community,
which results in a very slight drop in modularity to Q =
0.417406. Note though that node 24 is connected to only two
nodes in the community where it is placed by maximizing
modularity and to three nodes in the community where it is
placed by the spectral split algorithm.

Finally, Fig. 6(d) shows a rank-1 approximation of the
bipartite component of the adjacency matrix, namely the term
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FIG. 6. The adjacency matrix and three low-rank unipartite and
bipartite components for Zachary’s karate network. Red (solid) and
blue (hollow) dots represent positive and negative matrix entries,
respectively. The dot in the legend box has unity diameter.

corresponding to the most prominent negative eigenvalue. This
splits the network with nodes {1, 2, 3, 17, 25, 26, 33, 34} in one
community and the rest of them in another, which is roughly
the two opposite centers of power connected through the other
nodes.

B. The Southern women network

This network is the most frequently used benchmark for
bipartite community detection algorithms [5,23,27]. Nodes
1 through 18 represent women, while nodes 19 through 32
represent events in which they participated. The original
partition into communities, given by the authors of Ref. [45],
pertains only to women and is an overlapping one: {1–9} and
{9–18}. The adjacency matrix for this network is shown in
Fig. 7(a) while unipartite and bipartite components for K = 2
are shown in Figs. 7(b)–7(d).

By inspection of Fig. 7(b) we find overlapping unipartite
communities {1–10, 19–27} and {3, 7–18, 25–32} while
Fig. 7(d) reveals overlapping bipartite communities {1–10},
{3, 7–18}, {19–27}, and {25–32}. A more careful consid-
eration of the link weights shows that the only significant
overlaps between the women communities occur at nodes 8
and 9, which is in good agreement with the original partition.
Note that in this simple case, where the network is rigorously
bipartite and divided using very low-rank approximations
of the adjacency matrix, the bipartite communities can be
expressed as intersections between the unipartite communities
and either party. This is not necessarily the case, however, if
higher-rank approximations of the adjacency matrix are used
or if the network is only approximately bipartite.

Matrix A{2}, which is depicted in Fig. 7(c), reveals two
unipartite nonoverlapping communities: {1–7, 19–24} and
{8–18, 25–32}. This result is very close to the partition
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FIG. 7. The adjacency matrix and three low-rank unipartite and
bipartite components for the Southern women network. Red (solid)
and blue (hollow) dots represent positive and negative matrix entries,
respectively. The dot in the legend box has unity diameter.

obtained in Refs. [5,27] for the case of division into two
communities: {1–7, 9, 19–26} and {8, 10–18, 27–32}.

With regard to the bipartite communities, the highest
modularity division reported in Ref. [27] is {1–6}, {7, 9, 10},
{8, 16–18}, {11–15}, {19–24}, {25, 26}, {27, 29}, and {28,
30–32}. Similar partitions can be obtained with the spectral
split algorithm if more eigenvalues are included. For example,
using A{1−3} − A{30−32} we find partitions {1–7, 9, 10}, {8,
16-18}, {11–15}, {19–25, 27}, {26}, and {28–32}.

Finally, Figs. 7(b) and 7(d) also show the higher importance
of nodes {25–27}, which represent events {7–9} and were
attended by many women from both groups [23,45]. The event
communities are actually shown to be overlapped at these
nodes.

C. Other benchmark networks

Table I shows a comparison of the modularities obtained
using the spectral split method applied to the adjacency
matrix and to the modularity matrix, denoted by ss(A) and
ss(M), respectively, with those obtained using the unrefined
leading eigenvector method [4], denoted by lev, and with the
highest modularity results found in literature [25]. Included are

TABLE I. Comparison of the modularity values obtained for a
few well-known benchmark networks.

Network N 〈d〉 lev ss(A) ss(M) Best

Karate 34 4.59 0.3934 0.4174 0.4174 0.4197
Dolphins 62 5.13 0.4912 0.5190 0.5144 0.5285
Lesmis 77 6.60 0.5323 0.5526 0.5469 0.5600
Football 115 10.7 0.4926 0.5889 0.5817 0.6046
Jazz 198 27.7 0.3936 0.4328 0.4402 0.4450
C. elegans 453 8.97 0.3474 0.3394 0.3394 0.4520
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FIG. 8. Ensemble averages of the mutual information versus the
average modularity of the built-in partition for N = 300, 〈k〉 = 8,

kmax = 16. Results are presented for the leading eigenvector algorithm
(unrefined: continuous black line, with refining: dotted red line),
extremal optimization with refining (dashed green line), spectral split
of M (dash-dotted blue line), and spectral split of A (dash-dot-dotted
brown line).

some of the best-known networks: Zachary’s karate network
[44], the dolphins network of Lusseau et al., the network
of interactions between the characters in Victor Hugo’s Les
Miserables [47], the American college football network first
studied by Girvan and Newman [48], the network of jazz
musicians [49], and the metabolic network of the worm C.
elegans [50].

With the exception of the C. elegans metabolic network,
both applications of the spectral split algorithm compare very
well with the other methods, and ss(A) seems generally
better than ss(M). Note that the highest modularity results
are typically obtained by simulated annealing or extremal
optimization, which are much slower methods. The results
in Table I suggest that the spectral split method works better
for networks with higher average degree or higher modularity.
They also seem to hint that the algorithm might not work well
for larger networks.

D. Statistical ensemble results

To check the validity of these statements and to quantify
the performance of the algorithm, tests were performed on
ensembles of random benchmark networks generated using the
algorithm from Ref. [51]. These are scale-free networks with a
built-in community structure. They have a number of tunable
parameters, which include the average degree, the maximum
degree, and the mixing parameter μ, which represents the
average fraction of links running between different modules
and controls the average modularity of the statistical ensemble
of networks. The parameters not discussed here were kept at
their default values.

Tests were performed on networks of size N between
100 and 1000, average degree 〈d〉 between 6 and 30 and
maximum degree up to 100. Some of the results are presented
in Figs. 8, 9, and 10. The data points in these figures represent
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FIG. 9. Ensemble averages of the mutual information versus the
average modularity of the built-in partition for N = 300, 〈k〉 = 20,

kmax = 40. Results are presented for the leading eigenvector algorithm
(unrefined: continuous black line, with refining: dotted red line),
extremal optimization with refining (dashed green line), spectral split
of M (dash-dotted blue line), and spectral split of A (dash-dot-dotted
brown line).

averages computed over ensembles of 100 networks with
fixed values of the mixing parameter μ. The average mutual
information between the computed and the built-in partitions is
plotted versus the average modularity of the built-in partition.
The error bars represent the standard error of the mean. To
obtain the different points, μ was varied between 0.1 and
0.6 in steps of 0.05.

The spectral split method [both ss(A) and ss(M)] is
compared with three other methods implemented using the
Radatools software package [52]. These are the leading
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FIG. 10. Ensemble averages of the mutual information versus the
average modularity of the built-in partition for N = 1000, 〈k〉 = 20,

kmax = 40. Results are presented for the leading eigenvector algorithm
(unrefined: continuous black line, with refining: dotted red line),
extremal optimization with refining (dashed green line), spectral split
of M (dash-dotted blue line), and spectral split of A (dash-dot-dotted
brown line).

eigenvector method [4] without refining (lev), the same
method with multiple Kernighan-Lin-like and greedy opti-
mization refining [4,7] repeated 10 times (heuristics string
srfr 10), and the extremal optimization method of Ref. [9]
followed by spectral optimization and refining (heuristics
string esrfr 1).

It is clear that increasing network size does not reduce
the ability of the spectral split method to detect the correct
community structure. Quite to the contrary, it is in the case
of large networks that it compares most favorably with its
peers. Note that the N = 300 and N = 1000 networks from
the high-modularity ensembles routinely exhibit 10 to 20
communities. Spectral split is vastly superior to the unrefined
leading eigenvector method, and it overtakes all the other
methods, including extremal optimization, in the case of
networks with significant modularity.

On the other hand it is true that, without refinement, the
spectral split algorithm falls behind extremal optimization
in the case of low-modularity or very sparse networks. For
networks that are not very sparse, the low values of modularity
at which this happens are comparable to those of similar
random networks, and therefore it is questionable whether
such community structure is truly meaningful [1].

In regard to speed we note that, although slower than
less accurate methods, spectral split is faster than extremal
optimization or simulated annealing while offering compara-
ble accuracy. For example, in the case of networks of size
N = 1000 it is an order of magnitude faster than extremal
optimization even without using the Lanczos algorithm to
compute the eigenpairs.

Finally, ss(M) appears superior to ss(A) on very sparse
networks, but the difference in performance between the
two variants is negligible in all other cases and decreases
with increasing network size. If we also consider the results
obtained in the previous subsection, which show ss(A)
outperforming ss(M) on real-world networks, we conclude
that the comparison between them is probably a complex issue
that depends on many aspects of network topology.

IV. CONCLUSIONS

A method for analyzing the structure of complex networks
was introduced. This method does more than simply partition
the network into communities, providing information, at
different levels of detail, about the strengths of the interactions
between the nodes. In this regard, it is useful even without an
actual grouping of the nodes into communities. The spectral
split method introduced in this paper can be applied to the
adjacency matrix, in which case it can reveal both unipartite
and bipartite community structures, but for unipartite net-
works it can also be applied to the modularity matrix. An
algorithm is also introduced for the purpose of constructing
the communities. Tests on statistical ensembles of benchmark
networks show that the spectral split method combined with
this algorithm produces excellent results, especially in the case
of large networks or networks with significant modularity.
It is possible that further research will produce faster and
better-performing community assignment algorithms which
will make the spectral split method even more competitive.
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