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Delocalization and quantum chaos in atom-field systems
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1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, México D. F., C.P. 04510, México
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Employing efficient diagonalization techniques, we perform a detailed quantitative study of the regular and
chaotic regions in phase space in the simplest nonintegrable atom-field system, the Dicke model. A close
correlation between the classical Lyapunov exponents and the quantum Participation Ratio of coherent states on
the eigenenergy basis is exhibited for different points in the phase space. It is also shown that the Participation
Ratio scales linearly with the number of atoms in chaotic regions and with its square root in the regular ones.
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I. INTRODUCTION

The nonequilibrium dynamics of isolated quantum many-
body systems is a fundamental problem where relevant
progress has been achieved, and many challenging questions
related with thermalization remain open (see Refs. [1,2] and
references therein). Altland and Haake [3,4] have demon-
strated that effective equilibration can occur for unitary
dynamics under conditions of classical chaos, showing that
the evolution equation of the Husimi function is of the Fokker-
Planck type in the Dicke model [5]. The transition from ergodic
to nonergodic behavior in integrable many-body systems
with a weak nonintegrable perturbation has been quantified
employing the average over an energy shell of the inverse
participation ratio between the eigenstates of the integrable and
the total Hamiltonian. The delocalization is associated with the
thermal behavior of the system[6,7]; however, in the case of
the thermodynamic limit a further analysis is required [1].

The presence of chaos and its relation with the quantum
phase transition (QPT) in the Dicke model were studied by
Emary and Brandes [8] employing the semiclassical Poincaré
sections, the nearest neighbor distributions of eigenenergies
and their similitudes with the Wigner or Poisson distributions.
By means of the Holstein-Primakoff mapping, delocalization
in phase space and macroscopic coherence are suggested as
general features of the onset of chaos. On the other hand, by
employing the efficient coherent basis (ECB) it has recently
been possible to obtain exact numerical solutions both for
the ground state [9,10] and for a relevant part of the energy
spectrum, in both the normal and superradiant phases, for a
large number of atoms N . With these tools we were able to
extend the above mentioned study to different energies and
coupling constants. Classical and quantum qualitative signals
of regularity and chaos were analyzed using, respectively,
Poincaré sections and Peres lattices, as well as the Anderson-
Darling parameter as a quantitative tool to identify chaos in
the quantum energy spectrum [11–13], extending the pioneer
work of Emary et al. [8].

In this work we analyze several regions in the phase space of
the Dicke model, for different energies and an atom-field cou-
pling strength, where the classical chaos conditions required
in Refs. [3,4], characterized by their Lyapunov exponents,
effectively occur, and we show that they are intimately
associated with the Participation Ratio of the corresponding
coherent state on the eigenenergy basis. Following a seminal

idea by Haake [14], it is shown that a large Participation
Ratio of the coherent state, which quantifies its delocalization,
provides a quantum measure of chaos in each point of the
associated classical phase space. The idea of delocalization
of a coherent state in a chaotic regime was proposed in the
context of the kicked rotator model. A complete review of
that model can be found in Ref. [15], where additionally the
delocalization of the wave functions is discussed in terms of
the entropy localization length, which is a measure similar to
the Participation Ration used here. The Participation Ratio of
the coherent state is closely related with the Husimi function.
As a by-product, we show that the Husimi functions for
different eigenenergy states in an energy window reproduce
regular or chaotic Poincaré sections, providing graphical and
qualitative support for the previous findings.

The article is organized as follows. In Sec. II we describe
the Dicke Hamiltonian and its classical limit. In Sec. III we
present some basic results characterizing the classical and
quantum dynamics of the Dicke model: Poincaré sections and
Lyapunov exponents, and the Husimi function of individual
energy eigenstates. In Sec. IV we employ the Participation
Ratio of coherent states in order to quantify chaos in phase
space using the eigenstates of the Dicke Hamiltonian. Finally,
we expose our conclusions.

II. DICKE HAMILTONIAN AND ITS CLASSICAL LIMIT

A. The Dicke Hamiltonian

The Dicke model describes the simplest nonintegrable
atom-field system, exhibiting quantum chaos [8,16,17]. The
Hamiltonian has three terms: one associated to the monochro-
matic quantized radiation field, a second one to the atomic
sector, and a last one which describes the interaction between
them. With � = 1, it reads

HD = ωa†a + ω0Jz + γ√
N

[(aJ+ + a†J−)

+ δ(a†J+ + aJ−)]. (1)

The parameter δ allows us to switch between the traditional
Dicke model (δ = 1) and its integrable approximation (via
the rotating wave approximation), the Tavis-Cummings model
(δ = 0). Here the frequency of the radiation mode is ω,
associated with the number operator a†a. For the atomic part
ω0 is the excitation energy, while Jz, J+, J− are collective
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atomic pseudo-spin operators which obey the SU(2) algebra.
It holds that if j (j + 1) is the eigenvalue of J2 = J 2

x +
J 2

y + J 2
z , then j = N /2 (the pseudo-spin length) defines the

symmetric atomic subspace, which includes the ground state.
The interaction parameter γ depends principally on the atomic
dipolar moment. In addition, HD commutes with the parity
operator �:

� = eiπ�, with � = a†a + Jz + j. (2)

The eigenvalues λ = n + m + j of the � operator are the
total number of excitations, where n is the number of photons
and nexc = m + j the number of excited atoms. When δ = 0,
the Hamiltonian commutes with �; hence in this case it is
integrable. For the rest of this article we limit ourselves to
the δ = 1 case which includes the antiresonant terms, the
nonintegrable case or Dicke model proper. As mentioned
before, one of the most representative traits of the Hamiltonian
is its second-order QPT in the thermodynamic limit [18–21],
a paradigmatic example of quantum collective behavior [22].
When the atom-field interaction reaches the critical value γc =√

ωω0/(1 + δ), its ground state goes from a normal (γ < γc),
with no photons and no excited atoms, to a superradiant phase
(γ > γc), where the number of photons and excited atoms be-
comes comparable to the total number of atoms in the system,
i.e., a macroscopic population of the upper atomic level.

Despite its simplicity, the Dicke Hamiltonian remains as
a model of great theoretical and experimental interest. A
mean-field description of the ground state allows us to extract
the critical exponents for the ground state energy per particle,
the fraction of excited atoms, the number of photons per atom,
their fluctuations and the concurrence [8,16,23]; however,
around the QPT it has a singular behavior [24–26]. Analytical
expressions for its eigenenergies have been reported [27–31].
Another important feature in the Hamiltonian is the excited-
state quantum phase transitions (ESQPTs) [32,33], manifested
as a singularity in the level density, order parameters, and wave
function properties [34,35]. They could have important effects
in decoherence [36] and in the temporal evolution for quantum
quenches [37,38]. It is strongly suggested that the relation be-
tween the ESQPTs and chaos is dependent on the system [39].

While the Dicke Hamiltonian was designed to describe
a system of N two-level atoms interacting with a single
monochromatic electromagnetic radiation mode within a
cavity [5], it can also be employed to describe a set of N
qubits from quantum dots, Bose-Einstein condensates, or QED
circuits interacting with a bosonic field [40–43]. It is worth
mentioning that the experimental observation of the super
radiant QPT in a BEC system described by a Dicke-like
Hamiltonian [44] has attracted renewed interest in its study.

B. The classical Hamiltonian

An effective classical Hamiltonian can be obtained em-
ploying Glauber and Bloch coherent states for the bosonic
and pseudo-spin sector, respectively. In the case of the Dicke
model this is a natural choice given the algebraic structure
of the degrees of freedom. Its dynamical properties can be
described by the temporal evolution of this coherent state
product, assuming the system remains as such a product [45].
The Glauber and Bloch coherent states for the bosonic and

pseudo-spin sector, respectively, are defined as

|α〉 = e−|α|2/2eαa† |0〉,

|z〉 = 1

(1 + |z|2)j
ezJ+ |j,−j 〉.

(3)

In order to obtain the effective classical Hamiltonian, we
calculate the expectation value of the Hamiltonian operator in
the coherent state product [46]. In Refs. [47,48] it is shown that
this is the classical Hamiltonian that emerges from the quantum
propagator in terms of coherent states, when the semiclassical
approximation is used. Therefore, the results obtained in this
paper are expected to be valid for any classical Hamiltonian
derived from the semiclassical approximation. The dynamical
classical equations can be put directly in terms of the coherent
parameters z and α, or in terms of canonical variables (q,p)
and (φ,jz) satisfying

dq

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂q
,

(4)
dφ

dt
= ∂H

∂jz

,
djz

dt
= −∂H

∂φ
,

where α =
√

j

2 (q + ip) with q and p real values, whereas
for the Bloch parameter, the stereographic projection z =
tan(θ/2)eiφ provides the set of canonical variable by consid-
ering j̃z ≡ (jz/j ) = − cos θ and φ = arctan(jy/jx), where θ

and φ are spherical angular variables of a classical vector �j =
(jx,jy,jz) (| �j | = j ) with θ measured respect to the negative z

axis.
The classical Hamiltonian per particle (see Appendix A),

expressed in terms of the canonical variables, reads

hcl(p,q,j̃z,φ) = 〈α,z|HD|α,z〉
j

= ω0j̃z + ω

2
(q2 + p2) + 2γ

√
1 − j̃z

2
q cos φ.

(5)

The phase space of the classical Hamiltonian is IR2 × S2 (for
bosons and atoms, respectively) and, except in some limiting
cases (γ = 0 or ω0 = 0), is nonintegrable, having the energy
per particle hcl(p,q,j̃z,φ) = ε as the only constant of motion.
Both the QPT and the ESQPT are reflected in the classical
energy surface.

Since the number of bosons is not limited, the range of
possible energies ε is only lower bounded. The second-order
QPT, according to the Ehrenfest classification, appears as a dis-
continuity on the second derivative of the semiclassical ground
state energy ε0(γ ), which can be expressed as [22,25,49]

ε0(γ ) =
{−ω0 for γ � γc,

−ω0
2

( γ 2
c

γ 2 + γ 2

γ 2
c

)
for γ > γc.

(6)

As the energy increases, in the superradiant region the
energy surfaces acquire different structures, associated with
the available phase space. They are marked by the ES-
QPT [13,35,50], sudden changes in the slope of the density of
states. For energies in the interval ε ∈ [ε0(γ ),−ω0] the surface
of constant energy is formed by two disconnected lobes, which
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FIG. 1. Poincaré sections [(a) and (b)] and Lyapunov exponents
[(c) and (d)] for the two sections q+ (left) and q− (right) as functions
of jz and φ, for ε = −1.4ω0 and γ = 2γc. In the Poincaré sections
the colors are associated with different classical trajectories. For the
Lyapunov exponents the color code is given on the bar. Blue depicts
the regular regions.

merges as the energy reaches ε = −ω0. For energies in the
interval ε ∈ [−ω0, + ω0], the energy surface is formed by a
sole lobe restricted to a fraction of the Bloch sphere. Finally,
for energies larger than ω0, the whole Bloch sphere becomes
accessible. A graphical representation of these energy surfaces
structures can be found in Fig. 1 of Ref. [13]. So, as mentioned,
the QPT separates the system into a normal and a superradiant
phase, with the latter having three regions separated by the
ESQPTs [13,50,51], as well as a great richness of regularity
and chaos.

III. CLASSICAL AND QUANTUM DYNAMICS
OF THE DICKE MODEL

A. Poincaré sections and Lyapunov exponents

In order to determine the presence of regularity or chaos
in the semiclassical system, we study the dynamics of the
canonical variables. We employ Poincaré sections for a
qualitative insight and the Lyapunov exponent to quantify the
presence of chaos [52,53]. The surface of interest is defined by
the plane in the variables φ − jz, which has p = 0 and satisfies
hcl(q,p = 0,jz,φ) = ε. This choice ensures a broad sampling
of orbits because all of them intersect this surface. Under these
conditions there are two different values of q, q±(jz,φ,ε),
solutions of the quadratic equation hcl(q,p = 0,jz,φ) = ε:

q±(jz,φ,ε) = −2γ

ω

√
1 − j̃z

2
cos φ

±
√

4γ 2

ω2

(
1 − j̃z

2)
cos2 φ + 2

ω
(ε − ω0j̃z).

(7)

The intersection of the classical orbits with this surface p = 0
defines the Poincaré surface sections.

Classical trajectories with energies very close to the ground
state energy are regular. They can be described by an
approximated quadratic, integrable Hamiltonian, obtained by
considering small oscillations around the minimum energy
configuration [8]. As the energy increases the quadratic
approximation breaks down. Chaotic trajectories appear when
a certain excitation energy εch is reached, which is coupling
dependent. For ε > εch a region of soft chaos, characterized
by a mixing of regular and chaotic orbits, is found. Fully
classical chaotic regions are always present (except for a
small vicinity around the case without interaction γ = 0)
at large enough excitation energies, in both the normal and
superradiant phases [13]. These chaotic regions include the
ground state in a small vicinity of γ ≈ γc, the QPT. A detailed
study of regularity and chaos in the classical dynamics of the
Dicke Hamiltonian, fully covering the regions of interest in
energy and coupling constant will be presented elsewhere [54].

In Fig. 1 we present the Poincaré sections and the Lyapunov
exponents for ε = −1.4ω0 and γ = 2γc in resonance (ω =
ωo), for the two surfaces q±, as functions of j̃z and φ.
Figures 1(a) and 1(b) display the Poincaré sections, with
different colors for different orbits. For this energy, regular
and chaotic regions coexist. Regular regions are observed
in Fig. 1(a) at the top, in a semicircular area covering the
whole available interval of variable φ. Another regular region
can be identified at the triangular central sector, and a small
third one at the bottom, around φ = 0 and j̃z = −0.8. Similar
regions are found in the other section in Fig. 1(b). Figures 1(c)
and 1(d) display the corresponding Lyapunov exponents, with
their magnitudes represented by the color bar on the right. The
blue regions are the regular ones (null Lyapunov exponent).
It is apparent from the comparison of the figures that the
Lyapunov exponent quantifies the presence of chaos, which
is qualitatively suggested by the Poincaré sections.

B. Quantum description of chaos

In the previous studies [12,13], we have employed the
Peres lattices [55] as quantum counterparts of the Poincaré
sections. They represent a qualitatively sensitive probe that
allows to visualize the competition between regular and
chaotic behavior in the quantum spectrum of a system [56].
We have also employed the Anderson-Darling parameter to
distinguish between Wigner and Poisson-like distributions of
nearest neighbor energy differences. While useful, they can
only be employed to study energy intervals. In this work we
move a step forward, employing two measures which allow
to study the presence of regularity and chaos in the quantum
regime for every pointy in phase space at a given energy. They
are the Husimi function and the Participation Ratio of coherent
states on the energy eigenstates.

C. The Husimi function

In order to both identify chaotic or regular characteristics
in individual energy eigenstates, and to quantify chaos in the
phase space, we use the Husimi function. The Husimi or Q

function is one of the simplest distributions of quasiprobability
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in phase space. Having a well-defined classical limit, it allows
the comparison between the quantum and classical phase-
space description of the Dicke model [3,4,45]. When j → ∞
the Husimi function reduces to a classical probability function
on phase space obeying the Liouville equation [3,4]. The Q

function is defined as the expectation value of the density
matrix in a set of coherent states. For the eigenstates |Ek〉 with
energy Ek , it is the module squared of their projections in the
coherent states |α,z〉, given in Eq. (3). The resulting function
is

Qk(α,z) = |〈z,α|Ek〉|2. (8)

The Husimi function has been employed in the Dicke model
by several authors to study the quantum-classical transition
and equilibration [3,4,45], the wave functions of individual
states [45,57], and the ground-state QPT [58,59].

In order to make contact with the classical calculations, we
evaluate the Qk function along the same energy surfaces q±,
given in Eq. (7), selecting a set of eigenstates whose eigenen-
ergies satisfy |Ek/j − ε| ≈ 0. The comparison between the
different Husimi functions and the Poincaré surface sections
is quite illustrative. The evaluation of the Husimi function
employing the efficient coherent basis (see Appendix B)
involves technical aspects, described in Appendix C.

Density plots of the Husimi function Q+
k (j̃z,φ) =

Qk(j̃z,φ,q = q+,p = 0) for a j = 60 system with γ = 2γc

in resonance (ω = ω0) are shown in Fig. 2. We chose five
positive parity eigenstates, in the energy region of Fig. 1,
E/j = −1.4ω0. The similitude of the high-density areas of
the Husimi functions, depicted in white and light blue, with
different Poincaré sections at energy ε = −1.4ω0, included
at the center and superimposed in the quantum results, is

FIG. 2. (a), (b), (c), (e), and (f) Density plots of the Husimi
functions, Q+

k , for five positive parity Hamiltonian eigenstates of
a j = 60 system with γ = 2γc in resonance ω0 = ω. The energies of
the five states are very close to E/j = −1.4ω0. The Husimi functions
have a strong resemblance to different Poincaré sections at energy
ε = −1.4ω0, which are exhibited at the center (d) and superimposed
in the quantum results. The indices and energies of the parity
positive eigenstates (E+

k ) are (a)E+
291 = −1.4064ωoj , (b) E+

296 =
−1.4014ωoj , (c) E+

299 = −1.3967ωoj , (e) E+
293 = −1.4041ωoj , and

(f) E+
301 = −1.3941ωoj .

noticeable. The shown eigenstates were chosen to reproduce
the gross structures observed in the classical results: the three
largest stability islands [panels (b), (c), and (f)] and the two
largest chaotic seas in panels (a) and (e).

IV. (DE)LOCALIZATION OF THE COHERENT STATES

Haake suggests in Ref. [14], in the context of the kicked top,
that the minimum number of eigenstates of Floquet operators
necessary to reconstruct a coherent state, Dmin, can be a useful
tool to identify chaotic and regular regimes. In Ref. [14] it
is also shown that the scaling of Dmin with the dimension j

(in our context with the number of atoms), scales as
√

j in
regular regions, and as j in chaotic ones. In the regular case
the set of eigenstates tends to be localized, in correspondence
with the classical regular movement inside stability islands. In
the thermodynamical limit j → ∞ an infinitely small fraction
of eigenstates (∼√

j/j = 1/
√

j ) is enough to reconstruct a
coherent state associated with a regular region, whereas for a
coherent state in a chaotic region this fraction goes to a finite
value. This measure is proposed as an analog of the classical
Lyapunov exponent.

That this localization in the space of eigenstates effectively
takes place in the Dicke model can be seen in the distribu-
tion of the coherent states over the Hamiltonian eigenbasis
|Ck(α,z)|2 = |〈α,z|Ek〉|2. These distributions are shown in
panels (a) [system size j = 60] and (b) [j = 120] of Figs. 3
and 4, for a regular and a chaotic point in phase space,
respectively. In both figures the distributions become narrower
as j increases, but the number of participating states is clearly
larger in the chaotic case respect to the regular one. In panels
(c) of the same figures, the distributions for the j = 60 cases
are displayed in a 3D plot against the energy eigenvalues and

FIG. 3. (a, b) Distribution of a coherent state over the en-
ergy eigenstates, |Ck(α,z)|2 = |〈α,z|Ek〉|2, for ε = −1.4ω0 and j =
60,120. The coherent parameters correspond to a regular classical
point given by φ = 0, j̃z = −0.75, q = q+, and p = 0. (c) 3D plot
including 〈Jz〉k/j as a third coordinate for j = 60. The amplitudes
are localized along a regular line.
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FIG. 4. Same as Fig. 3 but for coherent parameters φ = 0.0,
j̃z = −0.55, p = 0, and q = q+, corresponding to a chaotic region.
The coherent state is mainly built upon eigenstates located in the
disordered part of the Peres lattice as seen in panel (c).

〈Jz〉k/j . In the plane (Ek/j,〈Jz〉k/j ) a Peres lattice is formed.
It has two regular arrays of points at the edges, associated
with regular dynamics, and an interior region of scattered
points which characterize the chaotic states [13]. In Fig. 3
the intensities are clearly arranged along one regular edge,
while in Fig. 4 most of the intensity is located in the chaotic
area. So, for the regular case, the coherent state is mainly built
upon states in the ordered part of the Peres lattice, whereas for
the chaotic case the main contribution comes from states in
the disordered part.

It should be emphasized that the numerical convergence is
challenging when the numbers of atoms is increased. A careful
analysis of this point is presented in Appendix D.

A. The participation ratio

The use of the participation ratio PR as a measure of
localization of a quantum state was introduced several years
ago [60–64]. It has been applied to the Dicke model in
connection to the study of equilibrium of many-body quantum
closed systems [65]. Also, it has been employed to show that
the equilibration process depends on the spreading of the initial
state over the perturbed basis [66]. In this section we introduce
the participation ratio PR as a quantitative measure of the
localization of the coherent states in the eigenenergy basis. At
variance with Dmin, it does not require a cutoff (the smallest
relevant contribution) to determine how many eigenstates are
enough; i.e., the PR has its own scale. Since it is more amenable
to analytic studies (see, for instance, Ref. [67]), in the literature
more common is the use of the so-called Inverse Participation
Ratio (IPR = 1/PR); however, given that in this contribution
we calculate the PR numerically and it is directly related to
the localization of the states, we opted for the PR instead its
inverse.

For a pure quantum state |�〉, expanded in a basis {|φk〉} of
dimension N , the participation ratio is

PR = 1∑N
k=1 |〈φk|�〉|4 . (9)

It is defined in the interval PR ∈ [1,N ]. When PR = 1 it means
the state |�〉 is identical to one of the states of the basis,
and it is considered as having maximum localization. On the
other hand, if every state of the basis equally contribute to the
state, we would have |〈φn|�〉| = 1/

√
N . In this case, PR = N .

So, the maximum value of the PR is related to maximum
delocalization in the given basis.

In order to make contact with the classical phase space we
employ the coherent states given in Eq. (3), whose parameters
are defined by a single point (q,p,jz,φ) in the phase space
with energy ε, as explained in Sec. III. The PR is

PR = 1∑
k |〈Ek|α,z〉|4 = 1∑

k Q2
k(α,z)

. (10)

The PR is obtained from the Husimi functions [Eq. (8)] for
every eigenstate evaluated over a single point in phase space.
We restrict ourselves to ω = ω0,γ = 2γc and study the energy
surface for a given ε with p = 0.

As a first example, we select the ground state energy and
the point in phase space which characterize the coherent
state corresponding to the ground state in the thermody-
namic limit [22,25]. Its canonical variables are p = 0, q =
− 2γ

ω

√
1 − ( γc

γ
)4

, j̃z = −( γc

γ
)2, and φ = 0 with energy as in

Eq. (6). It has PR = 1.00585 for j = 30 and nearly perfect
overlap with the ground or the first excited state, which are
degenerate in the superradiant phase and thermodynamic limit
(but still numerically distinguishable for j = 30). The value
of PR for this coherent state becomes even closer to one for
larger number of atoms.

To explore the phase space for ε = −1.4ω0, we calculate
the PR for points chosen over the energy surface using j = 60.
The results are shown in Fig. 5, panels (a) and (c) for q+ and the
others for q−. We observe that the PR over the surface closely
resembles the distribution of Lyapunov exponents shown in
panels (c) and (d) of Fig. 1, characterizing regions of regular
or chaotic behavior.

A detailed comparison between the PR and the Lyapunov
exponent is shown in Fig. 6, where we plot points for
q = q+ [panel (a)] and q = q− [panel (b)], using j = 60 and
Nmax = 100 (see Appendix D), along the line with φ = 0. The
Lyapunov exponent (black points) quantifies chaos, having
nonzero values in chaotic regions and zero over regular ones.
We can see there is a global agreement with the PR (red points):
lower values correspond to regular regions. However, this
global agreement is clearer if we look into a binary criterion.
We consider the quantity pR(N ) = N−1PR . If pR < 1 we
assign a zero value (PRbin = 0) just like in the Lyapunov
exponent case (if � = 0, �bin = 0). For pR > 1 we assign
the value one (PRbin = 1), as well as for a nonzero Lyapunov
exponent (�bin = 1). In Fig. 7 we show the results for the same
482 points restricted to the φ = 0 line. By considering only
the binary criterion the sensitivity of the PR is remarkable. The
global agreement for regular and chaotic regions is noticeable.
The remaining differences can be attributed to the finite
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FIG. 5. 3D plots [(a) and (b)] and respective density plots [(c)
and (d)] of PR over the energy surface ε = −1.4ω0 for γ = 2γc in
resonance ω = ω0. Left and right columns correspond, respectively,
to q+ and q− with j = 60 and Nmax = 100.

FIG. 6. Comparison between the PR and Lyapunov exponent over
the line ε = −1.4ω0,p = 0,φ = 0. With j = 60 and Nmax = 100. For
q = q+ (a), and q = q− (b). The black points stand for the Lyapunov
exponent and the red ones for the PR .

FIG. 7. Same as Fig. 6 but considering a binary criterion for the
PR and the Lyapunov exponent.

value of j . Since the resolution of the quantum phase space
(2π� ∝ 1/j ) is limited by Heisenberg’s uncertainty, it can be
expected that the agreement between the regions with red and
black points would improve for larger j . This expectation
is supported by the results shown in panels (a) and (b) of
Figs. 3 and 4 and the dependence of the Participation Ratio
on the number of atoms discussed below. Both results show
that the number of states participating in the construction
of a given coherent state increase monotonically with the
number of atoms, which in turn increases the resolution in
the quantum phase space. In the thermodynamic limit, the
remaining differences between the Lyapunov exponent and
the PR would become negligible.

B. Scaling of the Participation Ratio

While we have shown that in the classical chaotic regions
the PR is larger than in the regular ones for given values of j

and Nmax, we still need to clarify if its magnitude is enough
to determine if a point in the phase space is associated with
regular or chaotic dynamics. In this section we demonstrate
that its scaling as a function of j is a quantum measure of
chaos associated with each point in phase space.

Following the findings of Haake [14], we calculate the PR as
a function of N = 2j for several points over chaotic regions
or stability islands. The results are shown in Fig. 8. It can
be seen that for points in regular regions, the Participation
Ratio scales as

√
N , while for points in chaotic regions it

scales as N . This confirms that the results in Ref. [14] are
also valid in the Dicke model, providing a second criterion for
quantifying chaos employing purely quantum tools. It follows
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FIG. 8. Scaling of the PR as a function of N (black points)
calculated on a regular point determined by a zero Lyapunov exponent
(a) and a chaotic point (b). The red lines are the fitted curves for each
case and the fitting is shown in each panel. The points are in the
energy surface E/jω0 = −1.4, with p = 0, φ = 0, and j̃z = −0.75
for the regular point and j̃z = −0.55 for the chaotic one. A cutoff
Nmax ∼ 100 was used for every value of N . In the insets we show the
corresponding asymptotic constant values of PR/

√
N and PR/N for

the regular and chaotic points, respectively.

that limj→∞ PR/N goes to zero for a regular point, while for a
chaotic point it remains finite, which corresponds to the binary
criterion presented before.

V. CONCLUSIONS

In the present work we have shown that it is possible to
employ only quantum tools to characterize chaos in the phase
space. We did that employing, in a qualitative way, the Husimi
function to characterize the regular or chaotic behavior of
individual eigenstates of the Dicke Hamiltonian. We showed
that they can be associated with regular or chaotic sectors of
the classical Poincaré surface sections.

A quantitative quantum measure of chaos is provided by the
Participation Ratio of the coherent state expanded in the basis
of Hamiltonian eigenstates. In regular regions it scales as the
square root of the number of atoms, and PR/N is smaller
than one, going to zero as N goes to infinity. In chaotic
regions PR/N tends to a constant, finite value. Its behavior
was exhibited to follow closely that of the Lyapunov exponent.
The Participation Ratio is, in this sense, the quantum equivalent

of the Lyapunov exponent, providing a quantum measure of
chaos for each point of the phase space. A detailed study of the
different energy regions and coupling strengths is in progress.

The present proposal can be applied to any quantum
mechanical system when it is possible to build a classical
phase space through a semiclassical treatment. In future work
we plan to explore different semiclassical approximations to
the Dicke Hamiltonian [68] and other models.
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APPENDIX A: THE SEMICLASSICAL HAMILTONIAN

The state (3) expressed in the Fock and Dicke basis is

|α,z〉 ≡ |α〉 ⊗ |z〉

= e− |α|2
2

(1 + |z|2)j

∞∑
n=0

j∑
m=−j

αn

√
n!

√(
2j

j + m

)
zj+m|n〉

⊗ |j,m〉. (A1)

Then the semiclassical Dicke Hamiltonian 〈αz|HD|αz〉 (δ =
1), reads

Hcl(α,z) = ω|α|2 − ω0j

(
1 − |z|2
1 + |z|2

)

+ γ
√

2j

1 + |z|2 (α + α∗)(z + z∗). (A2)

We introduced the real conjugate variables (q,p) trough

α =
√

j

2 (q + ip) and (φ,j̃z) ≡ (φ, − cos θ ) trough z =
tan(θ/2)eiφ . By substituting the previous expressions in the
expectation value of HD/j we obtain hcl of Eq. (5).

APPENDIX B: THE EFFICIENT COHERENT BASIS

There are two main challenges to solve the Dicke Hamil-
tonian. The Hamiltonian’s nonintegrability implies it must
be diagonalized numerically. Then the second challenge is
the dimension of the Hilbert space, which is, formally,
infinite. Therefore a cutoff procedure has to be implemented
to numerically diagonalize and obtain the eigenvalues and
eigenfunctions of the Dicke Hamiltonian. Instead of using
the Fock basis to obtain the matrix elements, we employ the
efficient coherent basis (ECB), which is the exact Hamiltonian
eigenbasis in the limit ω0 = 0 [9,23]. The ECB is constructed
from vacuum sates, |0〉mx

, of a new bosonic displaced operator
A = a + 2γ

ω
√
N Jx :

|N ; j,mx〉 = (A†)N√
N !

|0〉mx
. (B1)

The displaced vacuum states are obtained from rotated (by
−π

2 around the y axis) atomic states, which means we are
employing the eigenstates |j,mx〉 of Jx instead of those of Jz.
The vacuum states of the new basis, expressed in terms of the
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rotated raising SU(2) operator J+,x , are

|0〉mx
= |αmx

〉|j,mx〉

=
√

(j − mx)!

(j + mx)!(2j )!
(J+,x)mx+j |αmx

〉|j, − j 〉, (B2)

where |αmx
〉 is a boson coherent state with Glauber parameter

αmx
= −2γmx/(ω

√
2j ). In previous works we have shown

that employing this new basis with a given cutoff in the
superradiant region, the number of converged states is orders
of magnitude larger than those that can be obtained with the
same cutoff in the Fock basis. In other words, it is efficient
in order to study larger systems or the ultrastrong coupling
regime in comparison with the Fock basis, where the diago-
nalization procedure easily becomes intractable numerically.
For more details about the efficient basis and convergence see
Refs. [9–11].

APPENDIX C: THE HUSIMI FUNCTION IN THE
EFFICIENT COHERENT BASIS

We use the efficient basis (ECB) to diagonalize numerically
the Dicke Hamiltonian. The kth eigenstate of the Dicke
Hamiltonian |Ek〉, spanned in the ECB (see Appendix B),
reads

|Ek〉 =
∑
N,mx

〈N ; j,mx |Ek〉|N ; j,mx〉, (C1)

where the coefficients Ck
N,mx

= 〈N ; j,mx |Ek〉 are calculated
numerically. The coherent state in Eq. (3) spanned in the
eigenstate basis is

|α,z〉 =
∑

k

〈Ek|α,z〉|Ek〉 =
∑

k

Ck(α,z)|Ek〉. (C2)

From the definition of the Husimi function [Eq. (8)] it follows
that Qk(α,z) = |Ck(α,z)|2. The evaluation of the probability
amplitudes

Ck(α,z) = 〈Ek|α,z〉 =
∑
N,m′

(
Ck

N,mx

)∗〈N ; j,mx |α,z〉, (C3)

involves the overlaps 〈N ; j,mx |α,z〉. By employing the defi-
nition of the ECB, we have

〈N ; j,mx |α,z〉 = 〈αmx
|〈j,mx | 1√

N !

(
a − αmx

)N |α,z〉

= 1√
N !

(
α − αmx

)N 〈αmx
|α〉〈j,mx |z〉, (C4)

with αmx
= −2γmx/(ω

√
2j ). The Glauber coherent states

overlap is simply

〈αmx
|α〉 = e−|αmx |2/2e−|α|2/2eα∗

mx
α. (C5)

There is, however, an additional difficulty in estimating
the overlap 〈j,mx |z〉, because |z〉 is a coherent state built on
the basis of Jz, while the ECB is defined in terms of the
eigenstates of Jx , |j,mx〉. To avoid the use of the Wigner D-
matrix, we express the atomic coherent state in terms of the Jx

eigenbasis:

|z〉 = |w〉 = 1

(1 + |w|2)j
ewJ+,x |j, − j 〉x

= 1

(1 + |w|2)j

j∑
mx=−j

√(
2j

j + mx

)
wj+mx |j,mx〉. (C6)

From the previous expression it is direct to find the overlap
〈jmx |z〉 = 〈jmx |w〉 in terms of the coherent parameter w:

〈jmx |z〉 = 1

(1 + |w|2)j

√(
2j

j + mx

)
wj+mx . (C7)

To express the overlap in terms of the Jz-coherent parameter
z, we use the expectation values of the pseudospin operators,

〈Jx〉
j

= Re(z)

|z|2 + 1
= |w|2 − 1

|w|2 + 1
,

〈Jy〉
j

= − Im(z)

|z|2 + 1
= − Im(w)

|w|2 + 1
,

〈Jz〉
j

= |z|2 − 1

|z|2 + 1
= − Re(w)

|w|2 + 1
,

(C8)

from which we obtain w(z):

w = 1 + z

1 − z
. (C9)

The final expression for the coefficients Ck(α,z), which give
us the Husimi function Qk(α,w(z)) = |Ck(α,w(z))|2, is

Ck(α,z) =
∑
Nmx

{(
Ck

N,mx

)∗ w(z)j+mx

√
N !(1 + |w(z)|2)j

eα∗
mx

αe− |α|2+|αmx |2
2

×
√(

2j

j + mx

)(
α + 2γ

ω
√

2j
mx

)N
}

, (C10)

where w(z) is given by Eq. (C9) and the coefficients Ck
N,mx

are
calculated numerically.

1. Husimi function in the ECB with well defined parity.

We can take advantage of the Parity symmetry of the Dicke
model to reduce, by a factor 2, the size of the Hamiltonian
matrices that have to be diagonalized. The Hilbert space of the
Dicke model has two invariant subspaces related each to the
two eigenvalues of the parity operator of Eq. (2). The ECB
Eq. (C4) is not a set of eigenstates of the parity operator in
Eq. (2), but it can be used to construct a basis with well defined
parity (p = ±1). As is shown in Ref. [12], the resulting basis
is of the form

|N ; j,mx ; p〉 = (|N ; j,mx〉 + p (−1)N |N ; j, − mx〉)√
2
(
1 + δmx,0

) , (C11)

with N = 0,1, . . . and mx � 0.
Since the eigenfunctions of the Dicke Hamiltonian have

well-defined parity, they can expressed as follows:

|Ek〉 =
∑
N,m′

〈N ; j,m′; p|Ek〉|N ; j,m′; p〉. (C12)
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TABLE I. Participation Ratio PR as a function of j for two representative points over the energy surface E/jω0 = −1.4, in the superradiant
phase γ = 2.0γc, in resonance ω = ω0 = 1.0, with p = 0, and φ = 0.0. We show the normalization and normalization considering only the
converged states (with a bound in the accuracy of the wave function better than 10−3) for each value of j . Where Nst , Nconv, Norm., and Norm.
C. stand for “Number of eigenstates,” “Number of converged eigenstates,” “Normalization,” and “Normalization considering only converged
states,” respectively.

Lyapunov � = 0.00 Lyapunov � = 0.02
(φ,j̃z) = (0.0, −0.75) (φ,j̃z) = (0.0, −0.55)

j Nmax Nst Nconv Norm. Norm. C. PR Norm. Norm. C. PR

10 100 2121 1672 1.0 1.0 18.2076 1.0 1.0 31.9987
20 100 4141 2773 1.0 1.0 20.4116 1.0 1.0 44.2253
30 100 6161 3256 1.0 1.0 18.6708 1.0 1.0 63.031
40 100 8181 3355 1.0 1.0 19.5617 1.0 1.0 86.1852
50 100 10 201 3346 1.0 1.0 20.8512 1.0 1.0 109.174
60 100 12 221 3201 1.0 1.0 22.861 1.0 1.0 141.439
70 100 14 241 3146 1.0 1.0 22.964 1.0 1.0 164.997
80 150 24 311 7505 1.0 1.0 25.4273 1.0 1.0 191.694
90 140 25 251 6380 1.0 1.0 26.4029 1.0 1.0 220.674
100 120 24 321 4305 1.0 1.0 30.7917 1.0 0.999999 237.983
110 120 26 741 4207 1.0 1.0 29.1449 0.999999 0.999979 263.38
120 110 26 751 3419 1.0 0.999704 36.1878 0.999724 0.987882 283.974

Again the C
k,p

N,m′ = 〈N ; j,m′; p|Ek〉 are obtained numerically. In order to calculate the Husimi function we need Ck,p(α,z) =
〈Ek|α,w(z)〉, which in terms of the BCE basis is

Ck,p(α,w(z)) =
∑
N,mx

(
C

k,p

N,mx

)∗ 1√
2(1 + δmx,0)

[〈N ; j,mx |α,w(z)〉 + p (−1)N 〈N ; j,−mx |α,w(z)〉],

and whose overlaps have been already calculated. Finally, after substituting the values of these overlaps, we obtain

Ck,p(α,w(z)) =
∑
Nmx

(
C

kp

N,mx

)∗ 1√
N !2(1 + δmx,0)

w(z)j e− |α|2+|αmx |2
2

(1 + |w(z)|2)j

×
√(

2j

j + mx

)[(
α − αmx

)N
eαmx αw(z)mx + p (−1)N

(
α + αmx

)N
e−αmx αw(z)−mx

]
.

With this, we have the Husimi function Qk,p(α,w(z)) = |Ck,p(α,w(z))|2.

APPENDIX D: CONVERGENCE OF THE NUMERICAL RESULTS

We need to introduce a cutoff Nmax in the number of photonic-like excitations. The dimension of the space is Nst =
(2j + 1)(Nmax + 1). For each coherent state, i.e., for each set of phase space parameters (α,z), we must guarantee that it can be
described in the truncated Hilbert space of the efficient basis, checking that its norm is close enough to one. The truncation limit
the number Nconv of converged eigenstates, whose wave function is reliably described [10–12,50]. Additionally, we must check
that the same coherent state can be described employing the converged eigenstates, satisfying

Nconv∑
k=1′

|Ck(α,z)|2 = 1. (D1)

As the number of atoms (2j ) considered increase, the cutoff should be greater too. In Table I we list in the first four columns,
the value of j, Nmax, Nst , and Nconv. It can be seen how fast the dimension of the space grows and how the fraction of converged
states diminish as j grows.
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