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We propose a coupled system of fast and slow phase oscillators. We observe two-step transitions to quasiperiodic
motions by direct numerical simulations of this coupled oscillator system. A low-dimensional equation for
order parameters is derived using the Ott-Antonsen ansatz. The applicability of the ansatz is checked by the
comparison of numerical results of the coupled oscillator system and the reduced low-dimensional equation.
We investigate further several interesting phenomena in which mutual interactions between the fast and slow
oscillators play an essential role. Fast oscillations appear intermittently as a result of excitatory interactions with
slow oscillators in a certain parameter range. Slow oscillators experience an oscillator-death phenomenon owing
to their interaction with fast oscillators. This oscillator death is explained as a result of saddle-node bifurcation in a
simple phase equation obtained using the temporal average of the fast oscillations. Finally, we show macroscopic
synchronization of the order 1 : m between the slow and fast oscillators.
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I. INTRODUCTION

Coupled limit-cycle oscillators have been studied in various
research fields such as physics, chemistry, biology, and
mechanical and electrical engineering. In particular, mutual
synchronization plays an important role in circadian rhythms,
heartbeats, brain waves, etc. There has been an intensive
theoretical study of mutual synchronization in a large number
of limit-cycle oscillators [1,2]. The Kuramoto model is a
simple model which exhibits a phase transition from a
disordered state to a synchronized state [1,3–5]. Ott and
Antonsen developed a method to reduce the Kuramoto model
to a low-dimensional dynamical system [6]. Since then, many
authors have studied Kuramoto-type models using the Ott-
Antonsen ansatz. Martens et al. studied coupled systems of two
groups of oscillators with different average frequencies using
the ansatz [7]. In their model, two groups of oscillators interact
with phase coupling. However, the interaction expressed by
the phase difference is not suitable for two oscillators with
a large frequency difference. Activator-inhibitor coupling is
more frequently observed in chemical reactions and neural
systems.

For example, pacemaker neurons for respiratory rhythm
were found in the ventrolateral medullary region called the
pre-Bötzinger complex. Recently, the role of glial cells, called
astrocytes, in respiratory rhythmogenes has been studied.
Slow calcium oscillation of astroglial cells was found in the
pre-Bötzinger complex [8]. It was observed that rhythmic
calcium elevation of astrocytes precedes the firing of neurons
[9]. Therefore, coupling between neurons and astrocytes might
play an important role in rhythm generation. Oku et al.
proposed a coupled system of one fast oscillator and one slow
oscillator as a simple model of neurons and astrocytes [10].

Motivated by this observation, we propose a coupled system
of a large number of fast and slow phase oscillators in
Sec. II. In Sec. III, we study the coupled phase oscillator
model and find two-step transitions to quasiperiodic motion
by direct numerical simulations. In Sec. IV, we derive a
low-dimensional equation for order parameters using the
Ott-Antonsen ansatz, and reproduce the two-step transitions

to quasiperiodic motion by the numerical simulation of the
low-dimensional equation. The main objective in this paper
is to report some interesting cooperative dynamics in this
coupled system of fast and slow oscillators in which mutual
interactions play an essential role. We show intermittent
occurrence of fast oscillation in Sec. V, an oscillator-death state
for slow oscillators caused by interaction with fast oscillators
in Sec. VI, and macroscopic synchronization of the order 1 : m

in Sec. VII.

II. COUPLED SYSTEMS OF FAST AND SLOW PHASE
OSCILLATORS

The model equation is a coupled active rotator model [11]
expressed as

dφ1i

dt
= ω01 + δω1i − b1 sin φ1i + K1

N

N∑
j=1

sin(φ1j − φ1i)

+g1S2, for i = 1,2, . . . ,N,
(1)

dφ2i

dt
= ω02 + δω2i − b2 sin φ2i + K2

N

N∑
j=1

sin(φ2j − φ2i)

+ g2S1, for i = 1,2, . . . ,N,

where φ1i and φ2i denote the phases of the fast and slow
oscillators, respectively; ω01 and ω02 (where ω01 > ω02) are
the average values of the natural frequencies of the fast
and slow oscillators, respectively; δω1i and δω2i denote the
deviation of the natural frequency from the two average values;
K1 and K2 are coupling constants of the phase coupling
in each group; and b1 and b2 are parameters which control
the excitability. For example, each element in the first group
behaves as an oscillator when ω01 + δω1i > b1. However, it
becomes an excitable element and leads to a stable stationary
state for t → ∞ when b1 > ω01 + δω1i , if interaction terms
are absent. Interactions between the fast and slow oscillators
are expressed by the last terms, g1S1 and g2S2, where S1

denotes a signal from the slow oscillators to the fast oscillators,
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FIG. 1. Time evolutions of S1 (solid line, representing fast oscillation) and S2 (dashed line, representing slow oscillation) obtained by the
numerical simulation of Eq. (1) at (a) K = 0.015, (b) K = 0.021, and (c) K = 0.04. The number N of oscillators is 5000. The initial condition
is set to be φ1i(0) = φ2i(0) = 0. (d) Time evolution of S1 (solid line) and S2 (dashed line) at K = 0.04. The initial values of φ1i and φ2i are
randomly distributed between 0 and 2π .

and S2 denotes a signal from the fast oscillators to the slow
oscillators. We assume that S1 and S2 are expressed by some
functions of the order parameter A1 = (1/N)

∑N
j=1 eiφ1j and

A2 = (1/N )
∑N

j=1 eiφ2j . In this paper, we propose a model ex-

pressed by S1 = 1 − (1/N)
∑N

j=1 sin φ1j = 1 − Im A1, S2 =
1 − (1/N )

∑N
j=1 sin φ2j = 1 − Im A2.

Near the excitable element-oscillator transition, i.e., b1 �
ω01 + δω1i , φ1i stays close to π/2 for a long time, that
is, 1 − sin φ1i is close to 0. When the element is excited,
the phase rotation occurs through 3π/2 where 1 − sin φ1i

increases to 2. Since the temporal average of S1 increases
continuously from 0 at the transition from excitable dynamics
to oscillatory dynamics, S1 is a quantity representing the
activity of the oscillator, similar to the pulse frequency of
neurons. Because S1 and S2 are always positive, g1 > 0 implies
excitatory coupling from slow oscillators to fast oscillators and
the excitatory coupling makes the fast oscillator even faster.
On the other hand, g2 < 0 denotes inhibitory coupling from
fast oscillators to slow oscillators, and the inhibitory coupling
makes the slow oscillators even slower. Different types of
cooperative dynamics are observed for other combinations of
signs of g1 and g2.

We assume that δω1i and δω2i obey the Lorentz distribu-
tions:

p1(δω1) = γ1

2π

1

(δω1)2 + γ 2
1

, p2(δω2) = γ2

2π

1

(δω2)2 + γ 2
2

.

Parameters γ1 and γ2 express the width of the natural frequency
distributions for the fast and slow oscillators, respectively.

III. TRANSITION TO MACROSCOPIC
QUASIPERIODIC MOTION

In this section, we study transitions to quasiperiodic motion
by direct numerical simulation of Eq. (1). There are many
parameters in our model system Eq. (1), and the whole
parameter space is not yet surveyed. In the respiratory system,
fast oscillators correspond to neurons, which exhibit pulsating
(nonsinusoidal) oscillation, and b1 can take a nonzero value.
Slow oscillators correspond to astrocytes which exhibit smooth
sinusoidal oscillation, and parameter b2 can be assumed to be
zero. In this paper, we present some typical numerical results
for b1 = 1, b2 = 0, assuming that K1 = K2. In this section,

parameters other than K1 = K2 = K are fixed as ω01 = 1.2,
ω02 = 0.4, g1 = 0.3, g2 = −0.4, and γ1 = γ2 = 0.01. The
results are generic and qualitative behaviors do not change
even if the parameter values are varied slightly.

Figures 1(a)–1(c) show the time evolutions of S1 (solid line,
representing fast oscillation) and S2 (dashed line, representing
slow oscillation) obtained by the numerical simulation of
Eq. (1) at K = 0.015, 0.021, and 0.04, respectively. The
number N of oscillators is 5000. The initial condition is set
to be φ1i(0) = φ2i(0) = 0. A stationary state appears at K =
0.015. Slow oscillation appears at K = 0.021. A quasiperiodic
motion is observed at K = 0.04. In the quasiperiodic state, the
fast oscillation of S1(t) is slowly modulated by the excitatory
coupling with the slow oscillation of S2(t). The slow oscillation
of S2(t) is depressed by the inhibitory coupling with the fast
oscillation of S1(t). Some fluctuations overlap on the quasiperi-
odic motion. This could be because of the finite-size effect
of N = 5000. The transition from the stationary state to the
macroscopic oscillatory state occurs at the first critical point
K ∼ 0.02, which is a typical synchronization transition in a
large population of slow oscillators. Mutual synchronization
occurs among fast oscillators and a macroscopic quasiperiodic
motion appears above the second critical point K ∼ 0.0256.
The two-step transitions to the quasiperiodic motion are
observed in wide parameter ranges. Figure 1(d) shows the time
evolutions of S1 (solid line) and S2 (dashed line) at K = 0.04
for Eq. (1) for the same set of parameters. However, the initial
values of φ1i and φ2i are randomly distributed between 0 and
2π . Almost the same time evolution as Fig. 1(c) is observed,
although the peak times of S1(t) and S2(t) are slightly different,
i.e., there is a phase shift. The time evolutions of the order
parameters do not depend on the initial conditions if the phase
shift is neglected. This result suggests that there is a certain
attractor in the macroscopic dynamics of order parameters.

To investigate the dynamical behavior of each oscillator,
we have calculated the average frequency of each fast or
slow oscillator as ω1i = [φ1i(t2) − φ1i(t1)]/(t2 − t1), ω2i =
[φ2i(t2) − φ2i(t1)]/(t2 − t1) for a large time interval t2 − t1.
Figures 2(a)–2(c) show the probability distributions p(ω1) and
p(ω2) of the average frequency of fast and slow oscillators
at K = 0.015, 0.021, and 0.04, respectively. These results
are obtained by the direct numerical simulations of Eq. (1)
with N = 5000. The probability distributions located around
ω = 1.1 and ω = 0.15 are p(ω1) and p(ω2), respectively. At
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FIG. 2. Probability distributions of p(ω1) (right) and p(ω2) (left) at (a) K = 0.015, (b) K = 0.021, and (c) K = 0.04 obtained by the direct
numerical simulations of Eq. (1) with N = 5000. Parts of p(ω) > 30 are cut.

K = 0.015, p(ω2) has a form of Lorentz distribution. Sharp
peaks such as the δ function appear owing to the macroscopic
synchronization at K = 0.04. Figure 3(a)–3(c) show the
relationship between the natural frequency ω01 + δω1i and the
time-average frequency ω1i for fast oscillators at K = 0.015,
0.021, and 0.04, respectively. That is, Figs. 3(a)–3(c) are scatter
plots of (ω01 + δω1i ,ω1i) for i = 1, . . . ,N in a restricted
range 1.15 < ω01 + δω1i < 1.25. Figures 3(d)–3(f) show the
relationship between the natural frequency ω02 + δω2i and
ω2i for slow oscillators at K = 0.015, 0.021, and 0.04,
respectively, in a restricted range 0.35 < ω02 + δω2i < 0.45.
Flat regions imply mutual synchronization, which corresponds
to the δ peak in the frequency distributions in Fig. 2. The
ranges of ω01 + δω1i and ω02 + δω2i are restricted to show the
flat regions clearly. Mutual synchronization of fast oscillators
occurs at frequency ω1i = 1.14 at K = 0.04. Similarly, mutual

synchronization of slow oscillators occurs at frequency ω2i =
0.153 at K = 0.04. A small flat region appears in slow
oscillators at K = 0.021 in Fig. 3(e), however, there is no flat
region in fast oscillators at K = 0.021 in Fig. 3(b). It is because
the macroscopic synchronization occurs for slow oscillators
but does not occur for fast oscillators at K = 0.021, that is,
K = 0.021 locates between the first and second critical points.

IV. LOW-DIMENSIONAL EQUATION FOR
MACROSCOPIC MOTION

In this section, we derive a low-dimensional equation
for macroscopic motions using the Ott-Antonsen ansatz.
The phase distributions for fast and slow oscillators with
frequency deviation δω1 and δω2 are expressed as P1(φ1,t,δω1)
and P2(φ2,t,δω2), respectively. For the mean-field model

FIG. 3. Relationships between the natural frequency ω01 + δω1i and ω1i for fast oscillators at (a) K = 0.015, (b) K = 0.021, and (c)
K = 0.04. Relationships between the natural frequency ω02 + δω2i and ω2i for slow oscillators at (d) K = 0.015, (e) K = 0.021, and (f)
K = 0.04.
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expressed by Eq. (1), the phase distribution functions P1,P2

satisfy

∂P1

∂t
= − ∂

∂φ1

[{
ω01 + δω1 + g1S2(t)

+ 1

2i
[H1(t)eiφ1 − H̄1(t)e−iφ1 ]

}
P1

]
,

(2)
∂P2

∂t
= − ∂

∂φ2

[{
ω02 + δω2 + g2S1(t)

+ 1

2i
[H2(t)eiφ2 − H̄2(t)e−iφ2 ]

}
P2

]
,

where H1(t) = −K1Ā1(t) − b1 and H2 = −K2Ā2(t) − b2.
Here, Ā is the complex conjugate of A. Assuming the Ott-
Antonsen ansatz, the distributions P1(φ1) and P2(φ2) can be
expanded as

P1(φ1,t,δω1)

= 1

2π

{
1 +

∞∑
m=1

{a1(t,δω1)meimφ1 + ā1(t,δω1)me−imφ1}
}

,

(3)
P2(φ2,t,δω2)

= 1

2π

{
1 +

∞∑
m=1

{a2(t,δω2)meimφ2 + ā2(t,δω2)me−imφ2}
}

,

where ā1(t,δω1) and ā2(t,δω1) denote the complex conjugates
of a1(t,δω1) and a2(t,δω2).

For the Lorentz distribution, the order parameters are
expressed as A1(t) = ā1(t, − iγ1) and A2(t) = ā2(t, − iγ2).
Then, the order parameters A1(t) and A2(t) obey the following
coupled equations,

dA1

dt
= (μ1 + iω01 + ig1S2)A1

+ (b1/2)
(
1 − A2

1

) − c1|A1|2A1,

dA2

dt
= (μ2 + iω02 + ig2S1)A2

+ (b2/2)
(
1 − A2

2

) − c2|A2|2A2, (4)

where μ1 = K1/2 − γ1, μ2 = K2/2 − γ2, c1 = K1/2, and
c2 = K2/2. Here, S1 and S2 are expressed as S1 = 1 − Im A1

and S2 = 1 − Im A2. Equation (4) is rewritten using the phase
and amplitude variables defined by θ1 = tan−1(Im A1/Re A1),

θ2 = tan−1(Im A2/Re A2), R1 = |A1|, and R2 = |A2| as

dR1

dt
= μ1R1 − c1R

3
1 + (b1/2)

(
1 − R2

1

)
cos θ1,

dθ1

dt
= ω01 + g1(1 − R2 sin θ2) − (b1/2)(R1 + 1/R1) sin θ1,

(5)
dR2

dt
= μ2R2 − c2R

3
2 + (b2/2)

(
1 − R2

2

)
cos θ2,

dθ2

dt
= ω02 + g2(1 − R1 sin θ1) − (b2/2)(R2 + 1/R2) sin θ2.

For b2 = 0, R2 = 0 for μ2 < 0, and R2 = √
μ2/c2 for μ2 > 0,

and Eq. (5) becomes coupled equations of the three variables
R1, θ1, and θ2.

Thus, Eq. (1) is reduced to a low-dimensional system Eq. (4)
or (5). We have performed numerical simulations of Eq. (4) at
various K’s for ω01 = 1.2, ω02 = 0.4, g1 = 0.3, g2 = −0.4,
and γ1 = γ2 = 0.01, which are parameter values used in
the previous section. The initial conditions are Re A1 = 0.1,
Im A1 = 0, Re A2 = 0.1, and Im A2 = 0. Figures 4(a)–4(c)
show time evolutions of S1 = 1 − Im A1 (solid curve) and
S2 = 1 − Im A2 (dashed curve) at K = 0.015, 0.021, and 0.04,
respectively. A stationary state is obtained at K = 0.015, slow
oscillation appears at K = 0.021, and quasiperiodic motion is
observed at K = 0.04.

It is noted that the time evolutions of S1 and S2 obtained
by direct numerical simulations of Eq. (1) shown in Fig. 1 are
almost the same as the time evolutions of S1 and S2 calculated
using the low-dimensional equations (4) shown in Fig. 4, if
the phase shift and fluctuations by the finite-size effect are
neglected. Although we have not yet proved mathematically
that the invariant manifold corresponding to the Ott-Antonsen
ansatz is a global attractor in the whole phase space [12],
Eq. (4) describes the dynamics of the order parameters very
well, which strongly suggests that the Ott-Antonsen ansatz is
applicable to our system.

Detailed bifurcation structures can be investigated using
Eq. (4), because fluctuations by the finite-size effect do not
appear and numerical simulations are much faster for Eq. (4).
Figure 4(d) shows the magnitudes r1 and r2 of the oscillations
as functions of K calculated using Eq. (4). Here, r1 and r2 are
calculated as the root mean square of the time sequences of
S1(t) and S2(t), respectively. For the sinusoidal oscillation,
r is equal to the amplitude of the oscillation divided by√

2. The synchronization transition occurs in the population
of slow oscillators first at K = Kc = 2γ2 = 0.02, where

FIG. 4. Time evolutions of S1 = 1 − Im A1 (solid curve) and S2 = 1 − Im A2 (dashed curve) at (a) K = 0.015, (b) K = 0.021, and (c)
K = 0.04. (d) Magnitudes r1 and r2 of the oscillations as functions of K calculated using Eq. (4).
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μ2 = K/2 − γ2 = 0 is satisfied. It is because the amplitude
R2 of macroscopic oscillations for the slow oscillators is zero
for μ2 = K/2 − γ2 < 0, and R2 increases continuously from
0 for μ2 = K/2 − γ2 > 0. The quasiperiodic motion occurs
at K = 0.0256, where the magnitude r1 increases rapidly.

Stationary states, slow oscillation states, fast oscillation
states, and quasiperiodic states are typical macroscopic states
in our coupled systems of fast and slow oscillators. The four
macroscopic states are observed in wide parameter ranges.
In the following three sections, we discuss three topics of
interesting cooperative dynamics in our coupled systems of
fast and slow oscillators. Mutual interactions expressed by g1

and g2 play an essential role in the cooperative dynamics. We
investigate the coupled systems of fast and slow oscillators
using numerical simulations of both Eqs. (1) and (4). In each
case, we will check the applicability of the Ott-Antonsen ansatz
by comparing the numerical results of Eqs. (1) and (4).

V. WAXING AND WANING DYNAMICS

When ω01 + δω1i < b1 = 1, the oscillator of the first group
becomes an excitable element when the coupling is absent. In
this section, we discuss the waxing and waning behavior of fast
oscillators. As a typical example, the parameters are fixed to be
ω1 = 0.7, ω2 = 0.01, g1 = 0.3, and g2 = −0.005. Figure 5(a)
shows the time evolutions of S1(t) (solid curve) and S2(t)
(dashed curve) at K = 0.04. The numerical simulation was
performed using Eq. (1) with N = 1000. The initial condition
is φ1i(0) = φ2i(0) = 0. We have checked that almost the same
time evolution is obtained in the case where φ1i(0) and φ2i(0)
take random numbers between 0 and 2π as the initial condition.
Figure 5(b) shows the time evolutions of S1(t) (solid curve)
and S2(t) (dashed curve) using the numerical simulation of
Eq. (4). These results show again that the time evolution of the
order parameters does not depend on the initial values of φ1i

and φ2i and the Ott-Antonsen ansatz is a good ansatz.
Quasiperiodic motion appears in the time evolution of S1(t)

similarly to the case of Figs. 1(c), 1(d), and 4(c). However,
S1(t) exhibits a characteristic intermittent time evolution. The
originally excitable elements in the first group are excited by
the slow oscillation and exhibit fast oscillation intermittently
when S2(t) takes high values. On the other hand, the fast
oscillation disappears when the level of S2(t) becomes low.

That is, fast oscillations are induced by slow oscillations.
This type of intermittent appearance of fast oscillations or the
waxing and waning behavior is sometimes observed in neural
systems. An example is spindle oscillation in brain waves,
which appears during light sleep. The spindle oscillation is
thought to appear in the thalamic network [13].

Figure 5(c) shows the magnitudes r1 and r2 of the oscillation
as functions of K obtained using the numerical simulation of
Eq. (4). The macroscopic oscillation appears at K = Kc =
2γ2 = 0.02, which is the critical value of synchronization
transition of slow oscillators.

VI. OSCILLATOR DEATH OF SLOW OSCILLATORS
COUPLED WITH FAST OSCILLATORS

In this section, we discuss an oscillator-death state found
in another parameter region. We vary γ1 and g2 as control
parameters. Other parameters are fixed to be ω01 = 1, ω02 =
0.1, K1 = K2 = 0.025, and γ2 = 0.01. The order parameter
R2 of the slow oscillation, R2 = √

μ2/c2, takes a positive
value in Eq. (5) at this parameter set. The macroscopic fast
oscillation is expected to appear when γ1 is small. Figures 6(a)–
6(f) show the time evolutions of S1 (solid line) and S2

(dashed line) at γ1 = 0.02, g2 = −0.25 [Fig. 6(a)], γ1 = 0.02,
g2 = −0.2 [Fig. 6(b)], γ1 = 0.02, g2 = −0.145 [Fig. 6(c)],
γ1 = 0.006, g2 = −0.25 [Fig. 6(d)], γ1 = 0.006, g2 = −0.2
[Fig. 6(e)], and γ1 = 0.006, g2 = −0.145 [Fig. 6(f)] obtained
by numerical simulations of Eq. (1) with N = 1000. The initial
condition is φ1i(0) = φ2i(0) = 0. Figures 7(a)–7(f) show the
time evolutions of S1 (solid line) and S2 (dashed line) obtained
by numerical simulations of Eq. (4) for the same parameter
values as in Fig. 6. Almost the same time evolutions are
observed in the numerical simulation of Eqs. (1) and (4),
although there are phase shifts and some fluctuations owing to
the finite-size effect overlap in the time evolutions shown in
Fig. 4. Slow oscillations are observed in Figs. 7(a) and 7(c),
and quasiperiodic motions are observed in Figs. 7(d) and 7(f).
A stationary state appears in Fig. 7(b). The stationary state
corresponds to a stable stationary solution to Eq. (5). Only
fast oscillation appears in Fig. 7(e). Note that slow oscillations
disappear even if μ2 > 0.

Figure 8(a) shows a phase diagram in a parameter space
of g2 and γ1 obtained by numerical simulations of Eq. (4).

FIG. 5. (a) Time evolutions of S1(t) (solid curve) and S2(t) (dashed curve) at K = 0.04 for ω1 = 0.7, ω2 = 0.01, g1 = 0.3, and g2 = −0.005
in Eq. (1). The initial condition is φ1i(0) = φ2i(0) = 0. (b) Time evolutions of S1(t) (solid curve) and S2(t) (dashed curve) calculated using
Eq. (4) at the same parameters. (c) Magnitude r1 (solid line) and r2 (dashed line) of the oscillation as functions of K .
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FIG. 6. Time evolutions of S1 (solid line) and S2 (dashed line) at (a) γ1 = 0.02, g2 = −0.25, (b) γ1 = 0.02, g2 = −0.2, (c) γ1 = 0.02,
g2 = −0.145, (d) γ1 = 0.006, g2 = −0.25, (e) γ1 = 0.006, g2 = −0.2, and (f) γ1 = 0.006, g2 = −0.145 obtained by the numerical simulation
of Eq. (1). The initial condition is φ1i(0) = φ2i(0) = 0. In Figs. 4–7, the other parameter values are ω01 = 1, ω02 = 0.1, K1 = K2 = 0.025, and
γ2 = 0.01.

There are four kinds of macroscopic states: stationary state,
slow oscillation, fast oscillation, and quasiperiodic motion.
They are denoted by “S,” “SO,” “FO,” and “QP,” respectively.
This phase diagram is constructed by varying the parameters
g2 and γ1 near the phase boundaries using Eq. (4). The initial
conditions are fixed to Re A1 = 0.1, Im A1 = 0, Re A2 = 0.1,
Im A2 = 0, and the control parameters are changed stepwise.

The macroscopic state is determined for each parameter set by
the time evolutions of S1(t) and S2(t), and observing that the
attractor of Eq. (4) is a fixed point, a limit cycle, or a torus. We
have performed numerical simulations using several different
initial values and obtained the same results. Figure 8(b) shows
the phase θ2 of the slow oscillation in the stationary state as
a function of g2 for γ1 = 0.02. The phase θ2 changes from

FIG. 7. Time evolutions of S1 (solid line) and S2 (dashed line) at (a) γ1 = 0.02, g2 = −0.25, (b) γ1 = 0.02, g2 = −0.2, (c) γ1 = 0.02,
g2 = −0.145, (d) γ1 = 0.006, g2 = −0.25, (e) γ1 = 0.006, g2 = −0.2, and (f) γ1 = 0.006, g2 = −0.145 obtained by the numerical simulation
of Eq. (4).
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FIG. 8. (a) Phase diagram in a parameter space of g2 and γ1. Here, “S” denotes the stationary state, “SO” slow oscillation, “FO” fast
oscillation, and “QP” quasiperiodic motion. (b) Phase θ2 of the slow oscillation as a function of g2 at γ1 = 0.02. (c) Period T of the slow
oscillations as a function of g2 − g2c near the saddle-node bifurcation point g2c = −0.1683 at γ1 = 0.02. (d) Maximum value of X = Re A1 as
a function of γ1 at g2 = −0.2.

π/2 to 3π/2 as g2 increases. Transitions from the stationary
state to slow oscillations occur at g2 = g21c ∼ −0.1683 and
g2 = g22c ∼ −0.2307 for large values of γ1. The transitions are
saddle-node bifurcations, where sin θ2 takes ±1 and stationary
solutions disappear for g < g22c and g > g21c. Figure 8(c)
shows the period T of slow oscillations as a function of g2 −
g21c near the transition point g = g21c for γ1 = 0.02 in a double
logarithmic plot. The period increases as T ∼ 1/|g2 − g21c|1/2

near the transition point, which is characteristic of the saddle-
node bifurcation. The transition from the stationary state to
the fast oscillation state is a supercritical Hopf bifurcation.
Figure 8(d) shows the peak amplitude of the oscillation of
Re A1 as a function of γ1 for g2 = −0.2. The amplitude of the
fast oscillation increases continuously from 0 at γ1 = 0.0125.
At the Hopf bifurcation, the stationary state changes into a
fast oscillation state. Quasiperiodic motion appears at nearly
vertical bifurcation lines of g = g21c ∼ −0.1683 and g =
g22c ∼ −0.2307 from the fast oscillation state. Slow oscillation
with a very long period overlaps with fast oscillation in the
quasiperiodic state near the transition lines. This appears to
be a kind of saddle-node bifurcation of the fast oscillation.
The transitions from slow oscillation to quasiperiodic motion
occur near γ1 ∼ 0.007 for g2 < −0.2307 and γ1 ∼ 0.0085
for g2 > −0.1683. The transitions are the Hopf bifurcation
of a limit cycle corresponding to slow oscillation, or the
bifurcation from a limit cycle to a torus. This is interpreted
as a synchronization-desynchronization transition of fast
oscillators under the influence of slow oscillation.

The information of each oscillator, such as the average
frequency, is obtained by direct numerical simulation of

Eq. (1). Figures 9(a)–9(d) show the relationship between
ω02 + δω2i and ω2i for g2 = −0.25, γ1 = 0.02 [Fig. 9(a)],
g2 = −0.2, γ1 = 0.02 [Fig. 9(b)], g2 = −0.15, γ1 = 0.02
[Fig. 9(c)], and g2 = −0.2, γ1 = 0.006 [Fig. 9(d)] calculated
using Eq. (1) with N = 1000. Flat regions of ω2i imply
macroscopic mutual synchronization. The frequencies of the
flat region in Figs. 9(a)–9(d) are ω = −0.0221, 0, 0.0184,
and 0, respectively. The entrainment frequency is negative
for slow oscillations for g2 < −0.2307 and the entrainment
frequency is positive for g2 > −0.1683. The entrainment
frequency approaches 0 near the saddle-node bifurcation lines
and becomes zero. The stationary state is different from the
desynchonized state for K/2 < γ2 in which no flat region
appears in the plot of ω2 + δω2i and ω2i . The entrainment
frequency of the slow oscillators is 0 even for the case of γ1 <

0.008, where the fast oscillations appear as shown in Fig. 6(e).
The macroscopic slow oscillation seems to be entrained to the
zero-frequency state for −0.2307 < g2 < −0.1683.

The bifurcation of the macroscopic entrainment of slow
oscillation by the interaction with fast oscillation can be
studied in greater detail for γ1 = 0. At γ1 = 0, μ1 = K/2 =
c1, and therefore R1 = 1 in Eq. (5). As the parameters b1 and
b2 are set to be b1 = 1 and b2 = 0, Eq. (5) is reduced to be

dθ1

dt
= ω1 + g1(1 − R2 sin θ2) − sin θ1, (6)

dθ2

dt
= ω2 + g2(1 − sin θ1), (7)

where R2 = √
μ2/c2. If the time evolution of θ1 is fast and

θ2(t) is sufficiently slow, then θ2 is assumed to be a constant

FIG. 9. Relationships between ω02 + δω2i and ω2i for (a) g2 = −0.25, γ1 = 0.02, (b) g2 = −0.2, γ1 = 0.02, (c) g2 = −0.15, γ1 = 0.02,
and (d) g2 = −0.2, γ1 = 0.006 obtained using the numerical simulation of Eq. (1) with N = 1000.
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in the time evolution of Eq. (6). In this case, the probability
distribution P (θ1) is expressed as

P (θ1) ∝ 1

|dθ1/dt | = 1

ω1 + g1(1 − R2 sin θ2) − sin θ1
. (8)

The temporal average of sin θ1 in Eq. (7) with respect to the
fast oscillation is evaluated using the probability distribution
(8) as

〈sin θ1〉 =
∫ π/2
−π/2 sin θ1P (θ1)dθ1∫ π/2

−π/2 P (θ1)dθ1

= ω1 + g1(1 − R2 sin θ2)

−
√

{ω1 + g1(1 − R2 sin θ2)}2 − 1. (9)

The slowly varying component of θ2(t) in Eq. (7) therefore
obeys

dθ2

dt
= ω2 + g2[1 − ω1 − g1(1 − R2 sin θ2)

+
√

{ω1 + g1(1 − R2 sin θ2)}2 − 1]. (10)

Thus, sin θ2 takes the value 1 at g2 = g22c, and −1 at
g2 = g21c. The saddle-node bifurcations therefore occur at

g22c = ω2

ω1 + g1(1 − R2) −
√

{ω1 + g1(1 − R2)}2 − 1 − 1
,

g21c = ω2

ω1 + g1(1 + R2) −
√

{ω1 + g1(1 + R2)}2 − 1 − 1
.

(11)

The critical values are evaluated at g22c = −0.2307
and g21c = −0.1684 for ω01 = 1, ω02 = 0.1, g1 = 0.3,
K1 = K2 = 0.025, and γ2 = 0.01. These values are consistent
with the numerical results. The macroscopic oscillations
disappear between g22c and g21c, and are locked to the
zero-frequency state. This phenomenon is also interpreted
as a kind of oscillator death of slow oscillators owing to the
interaction with fast oscillators. This oscillator death is a
macroscopic one, or the oscillator death of S2(t). In the level of
individual oscillators, the mutually entrained slow oscillators
stop oscillation in this state, as shown in Figs. 9(b) and 9(d),
while there are many desynchronized oscillators with nonzero
average frequency. This type of oscillator-death phenomenon
is observed for other parameter sets approximately satisfying
Eq. (11). Other types of oscillator-death phenomena have
been studied in various coupled oscillator systems [14,15].

VII. MACROSCOPIC SYNCHRONIZATION
OF ORDER 1 : m

In this section, we study the case of g1 < 0 and g2 > 0. In
this case, mutual synchronization between fast oscillators and
slow oscillators is often observed. Because there is a frequency
difference between fast and slow oscillators, synchronization
of the order n : m occurs. In this section, we present numerical
results for ω01 = 1.4, ω02 = 0.03,g1 = −0.1, g2 = 0.1, and
γ1 = γ2 = 0.005. However, various types of locking were
observed by varying parameters such as ω01 and ω02. (A similar
macroscopic entrainment between fast oscillation and slow
oscillation is often observed in the case of g1 < 0 and g2 < 0.)

Figure 10(a) shows time evolutions of S1(t) and S2(t)
obtained by numerical simulation of Eq. (1) with N = 1000 at

FIG. 10. (a) Time evolutions of S1(t) (solid line) and S2(t) (dashed line) obtained by numerical simulation of Eq. (1) at K = 0.04.
Parameter values are set to be ω01 = 1.4, ω02 = 0.03, g1 = −0.1, g2 = 0.1, and γ1 = γ2 = 0.005. (b) Time evolutions of S1(t) (solid line) and
S2(t) (dashed line) obtained by numerical simulation of Eq. (4) at K = 0.04. (c) Relationships between ω02 + δω2i and ω2i . The horizontal
line is ω2i = 0.0825. (d) Relationships between ω01 + δω1i and ω1i . The horizontal line is ω1i = 0.825. (e) Magnitudes r1 (solid line) and r2

(dashed line) of the oscillation as a function of K . (f) Time evolutions of S1(t) and S2(t) obtained using the numerical simulation of Eq. (4) at
K = 0.014.
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K = 0.04. As an initial condition, φ1i(0),φ2i(0) take random
values between 0 and 2π . Here, S1(t) exhibits ten pulsating
oscillations in a period of S2(t), and S1(t) is slightly depressed
when S2(t) reaches its peak value, because of the inhibitory
interaction of g1 < 0. Figure 10(b) shows the time evolutions
of S1(t) and S2(t) obtained by the numerical simulation of
Eq. (4) for the same parameter set. Figures 10(a) and 10(b)
show again the applicability of the Ott-Antonsen ansatz.

The average frequency of each oscillator can be calculated
using Eq. (1). Figure 10(c) shows a relationships between
ω02 + δω2i and ω2i obtained by the numerical simulations
of Eq. (1) with N = 1000. The horizontal dashed line is
ω2i = 0.0825, which represents the entrainment frequency.
Figure 10(d) shows a relationship between ω01 + δω1i and ω1i .
The horizontal dashed line is ω1i = 0.825. Figures 10(c) and
10(d) imply that synchronization of the order 1:10 occurs. Ten
pulsating oscillations appear for the entrained fast oscillators
in the flat region of Fig. 10(d), after S2(t) reaches a peak value.
That is, macroscopic slow oscillations appear to play the role
of leading the fast oscillators. This may be related to the role
of astrocytes in the respiratory system.

Figure 10(e) shows the magnitudes r1 (solid line) and r2

(dashed line) of the oscillation as a function of K calculated
using Eq. (4). The macroscopic slow oscillation appears at
K = 2γ2 = 0.01, and the macroscopic fast oscillation appears
at K = 0.016. The macroscopic synchronization of the order
1:10 is observed for K > 0.016. Figure 10(f) shows time
evolutions of S1(t) and S2(t) obtained by the numerical
simulation of Eq. (4) at K = 0.014. It is clear that S1(t) exhibits
slow oscillation as an effect of S2 at K = 0.014 < 0.016.

VIII. SUMMARY

We studied synchronization-desynchronization transitions
in coupled systems of fast and slow oscillators. We performed
a direct numerical simulation of the Kuramoto-type phase
oscillator model and a reduced model derived using the
Ott-Antonsen ansatz. Similar time evolutions were observed
for numerical simulations of the Kuramoto-type model and
the reduced model. The good agreement suggests that the
Ott-Antonsen ansatz is applicable to our model system.

We found various phenomena in this coupled system of
fast and slow oscillators. A quasiperiodic motion appears as a
result of two-step transitions. In the case where ω1 is smaller
than b1, fast oscillation appears intermittently as a result of
an excitatory interaction with the slow oscillators, which is
similar to the waxing and waning behavior. We also found a
type of oscillator-death phenomenon of slow oscillators due
to the interaction with fast oscillators. The oscillator-death
phenomenon is thought to appear as a result of the saddle-node
bifurcation in the phase equation for slow oscillations obtained
using the temporal average of the fast oscillations. Finally, we
found a macroscopic synchronization of the order 1 : m in the
case where g1 < 0 and g2 > 0.

Various states, such as a stationary state, slow oscillations,
fast oscillations, quasiperiodic motion, and a synchronized
state of the order of 1 : m appear in our coupled system of
fast and slow oscillators. The parameter sets used in this paper
are somewhat restricted. However, these oscillatory states, and
the transitions among the various states, are generic and are
expected to appear in wide parameter ranges.

[1] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer, New York, 1984).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Unified Concept in Nonlinear Sciences (Cambridge University
Press, Cambridge, U.K., 2001).

[3] H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76, 576
(1986).

[4] S. Strogatz, Physica D 143, 1 (2000).
[5] J. A. Acebrón, L. L. Bonilla, C. J. Perez Vincente, F. Ritort, and

R. Spigler, Rev. Mod. Phys. 77, 137 (2005).
[6] E. Ott and T. M. Antonsen, Chaos 18, 037115

(2008).
[7] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and

T. M. Antonsen, Phys. Rev. E 79, 026204 (2009).

[8] C. Schnell, J. Fresemann, and S. Hülsmann, PLoS One 6, e26309
(2011).

[9] Y. Okada, T. Sasaki, Y. Oku, N. Takahashi, M. Seki, S. Ujita,
K. F. Tanaka, M. Matsuki, and Y. Ikegaya, J. Physiol. 590, 4933
(2012).

[10] Y. Oku, J. Fresemann, F. Miwakeichi, and S. Hülsmann
(unpublished).

[11] H. Sakaguchi, Prog. Theor. Phys. 79, 39 (1988).
[12] E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009).
[13] A. Destexhe, D. A. Macormic, and T. J. Sejnowski, Biophys. J.

65, 2473 (1993).
[14] H. Sakaguchi, Prog. Theor. Phys. 80, 743 (1988).
[15] B. Ermentrout and N. Kopell, SIAM J. Appl. Math. 50, 125

(1990).

022212-9

http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1063/1.2973816
http://dx.doi.org/10.1063/1.2973816
http://dx.doi.org/10.1063/1.2973816
http://dx.doi.org/10.1063/1.2973816
http://dx.doi.org/10.1103/PhysRevE.79.026204
http://dx.doi.org/10.1103/PhysRevE.79.026204
http://dx.doi.org/10.1103/PhysRevE.79.026204
http://dx.doi.org/10.1103/PhysRevE.79.026204
http://dx.doi.org/10.1371/journal.pone.0026309
http://dx.doi.org/10.1371/journal.pone.0026309
http://dx.doi.org/10.1371/journal.pone.0026309
http://dx.doi.org/10.1371/journal.pone.0026309
http://dx.doi.org/10.1113/jphysiol.2012.231464
http://dx.doi.org/10.1113/jphysiol.2012.231464
http://dx.doi.org/10.1113/jphysiol.2012.231464
http://dx.doi.org/10.1113/jphysiol.2012.231464
http://dx.doi.org/10.1143/PTP.79.39
http://dx.doi.org/10.1143/PTP.79.39
http://dx.doi.org/10.1143/PTP.79.39
http://dx.doi.org/10.1143/PTP.79.39
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1016/S0006-3495(93)81297-9
http://dx.doi.org/10.1016/S0006-3495(93)81297-9
http://dx.doi.org/10.1016/S0006-3495(93)81297-9
http://dx.doi.org/10.1016/S0006-3495(93)81297-9
http://dx.doi.org/10.1143/PTP.80.743
http://dx.doi.org/10.1143/PTP.80.743
http://dx.doi.org/10.1143/PTP.80.743
http://dx.doi.org/10.1143/PTP.80.743
http://dx.doi.org/10.1137/0150009
http://dx.doi.org/10.1137/0150009
http://dx.doi.org/10.1137/0150009
http://dx.doi.org/10.1137/0150009



