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We analyze the FitzZHugh-Nagumo equations subject to time-delayed self-feedback in the activator variable.
Parameters are chosen such that the steady state is stable independent of the feedback gain and delay . We
demonstrate that stable large-amplitude 7-periodic oscillations can, however, coexist with a stable steady state
even for small delays, which is mathematically counterintuitive. In order to explore how these solutions appear in
the bifurcation diagram, we propose three different strategies. We first analyze the emergence of periodic solutions
from Hopf bifurcation points for 7 small and show that a subcritical Hopf bifurcation allows the coexistence of
stable t-periodic and stable steady-state solutions. Second, we construct a T-periodic solution by using singular
perturbation techniques appropriate for slow-fast systems. The theory assumes T = O(1) and its validity as
t — 0 is investigated numerically by integrating the original equations. Third, we develop an asymptotic theory
where the delay is scaled with respect to the fast timescale of the activator variable. The theory is applied to the
FitzHugh-Nagumo equations with threshold nonlinearity, and we show that the branch of t-periodic solutions

emerges from a limit point of limit cycles.
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I. INTRODUCTION

The propagation of electrically excitable signals is essential
for the good functioning of the body. In the brain, neurons
transfer information to other parts of the brain and body via
propagation of action potentials along axons, pacemaker cells
ensure proper sequential contraction of parts of the heart
to pump blood to all regions of the body, and pancreatic
cells undergo bursting electrical activity to secrete insulin to
control blood glucose levels [1-3]. The classical example of
an excitable phenomenon is the firing of a nerve. Accord-
ing to observations by Hodgkin and Huxley (HH) [1,4], a
subthreshold depolarization dies away monotonically, but a
super-threshold depolarization is amplified and initiates a spike
potential. In the brain, such a transient pulse is on the order
of milliseconds and can propagate a single neuron to many
receiving neurons. There, incoming signals can collectively
cause the target neuron to “fire.” FitzHugh and Nagumo
(FHN) [5,6] later formulated a two-variable caricature of the
HH model equations that possess many similar dynamical
properties. The FHN model is quite useful as a minimum
system for a systematical analysis of the effects of delayed
feedbacks in neurosystems [7-10].

Delays are inherent in neuronal networks due to finite con-
duction velocities and synaptic transmission times. Neurons
with short axons transmit over small distances of less than
1 mm at velocities below 2 m/s. Long axons transmit over
larger distances (centimeters to meters) at velocities of 10—
100 m/s [11]. Specific synchronization or desynchronization
patterns are essential for neural functioning and have been
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investigated by formulating network models [12,13]. Biolog-
ically realistic network models have been recently explored
showing how time delays affect the structural heterogeneity
of the network [14—17]. While most studies concentrated on
populations of coupled limit-cycle oscillators, work has also
been done on coupled excitable units [18-20]. The case of
two delayed coupled FHN systems has been examined in
detail showing that stable periodic oscillations may coexist
with a stable steady state [21-23]. The delayed coupling
enables the sequential spiking of the two cells by controlling
the timing of each pulse. In this particular configuration, the
period is close to twice the delay t. In Ref. [24], we applied
asymptotic techniques appropriate for slow-fast systems and
constructed periodic solutions of a two delayed-coupled FHN
system. We found that in addition to the 2t-periodic solution,
stable 2t /n-periodic solutions (n = 1,2,...) are possible for the
same parameter values. This raised the fundamental question
of whether stable periodic and steady states may coexist in
the case of a single time-delayed FHN system, which is also
called self-coupled FHN system. We recently investigated this
problem with T = O(1) fixed. We found that indeed stable
t/n-periodic oscillations are possible and emerge from limit
points of limit cycles [25]. Experiments using an electronic
circuit modeled by the same FHN equations showed that they
are robust to noise.

The main objective of this paper is to determine if a
small delay is enough to generate such t-periodic solutions,
which is mathematically counterintuitive (cf. Sec. 4.4, p. 48,
of Ref. [26]). Specifically, we consider the following FHN

equations:
3
g;&:x—?—y—i—c[x(t—T)—X], (1a)

y=x+a, (1b)
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where the variables x and y represent the membrane potential
and an inactivation variable, i.e., an activator and inhibitor,
respectively. The fixed parameter ¢ < 1 implies that x is a
fast variable compared to y, and a is a control parameter. The
last term in the right-hand side of Eq. (1a) models the delayed
synaptic feedback acting as a membrane current. The feedback
gain c¢ is positive (negative), if the synapse is excitatory
(inhibitory). Since the current is ionic, we assume that its
magnitude will be roughly proportional to the difference
x(t — t) — x(¢). Finally, the current will occur after a finite
delay due to the finite conduction velocity of the nerve axons
and due to the synaptic delay.

First investigations of Egs. (1) started with Plant [27] who
examined the effect of the feedback term c[x(t — ) — xo],
where xop = —a is the steady-state value. Plant considered
parameters such that the system with no feedback has a stable
equilibrium point (a> > 1) and showed that this stability is
maintained for the system with feedback and sufficiently small
delay. He then showed that when ¢ < 0, i.e., the recurrent feed-
back is inhibitory, there is a Hopf bifurcation at a critical value
of the delay that leads to oscillations. More recently, the de-
layed FHN problem was studied with the feedback function in
the right-hand side of the inhibitor Eq. (1b) instead of Eq. (1a)
and with noise [28-30]. Again, parameters were chosen such
that the system is at a stable resting state without feedback
and noise. Noise-induced oscillations are, however, possible
giving rise to coherence resonance, where the feedback gain
and the delay are able to enhance or diminish this effect.

In this paper, we analyze Eqs. (1) when the steady state is
stable independent of the values of ¢ > 0 and t in the parameter
range a? > 1, that is, in the excitable regime. In Ref. [31],
the authors investigated Eqs. (1) with ¢ < 0 and determined
the possible routes to chaos [32]. But if ¢ < 0, the stable
steady state of the nondelayed FHN system undergoes a Hopf
bifurcation as soon as ¢ # 0 and negative. Here, we exclusively
concentrate on a stable steady stable that remains linearly
stable in the presence of a delayed feedback. Our objective is
to demonstrate both analytically and numerically that a small
delay is enough to induce stable oscillations coexisting with
a stable steady state. We propose three different strategies to
determine these solutions. (i) We analyze the Hopf bifurcations
if a® is less but close to 1 and the time delay T is small.
Stable t-periodic solutions may indeed coexist with a stable
steady state through a subcritical Hopf bifurcation followed by
a limit-point of limit-cycles (or saddle node of limit cycles). If
a® is now slightly increased and passes 1, the Hopf bifurcation
point moves to infinity but we may reasonably expect that the
limit point of limit cycles persists. This idea is explored by
determining the bifurcation diagram of the periodic solutions
using a numerical continuation method. (ii) We construct the
nearly t-periodic solution for a*> > 1, 7 = O(1) in the limit &
small by using a method appropriate for slow-fast systems. It
is not a routine application of singular-perturbation techniques
because we are dealing with delay differential equations
(DDEs). We then investigate the validity of our approximations
as T — 0 by comparing analytical and numerical bifurcation
diagrams. (iii) We propose an asymptotic theory of the periodic
solutions based on the limits ¢ and T = O(¢) being small. Our
goal is to demonstrate that these solutions terminate at a limit
point of limit cycles.
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The paper is organized as follows. In Sec. II, we analyze
the Hopf bifurcations assuming a <1, |a — 1| = O(e),
and T = O(¢) or T = O(y/¢). Combining analytical and
numerical techniques, we show that there is indeed a branch
of stable t-periodic solutions that overlaps a stable steady
state. In Sec. III, we consider a > 1 and determine t-periodic
solutions by direct numerical integration starting from
selected initial conditions. The limit-cycle oscillations are
found to be relaxation oscillations that we explore in the phase
plane by singular-perturbation techniques. The slow outer
solution is relatively simple to determine but the construction
of the inner or fast transition layer solutions is mathematically
difficult. These problems are solved by considering the limit
of large values of the feedback gain c. In Sec. IV, we propose
a full analytical study of the bifurcation diagram based on the
limits € and T = O(e) small. We apply the theory for the FHN
equations with threshold nonlinearity. Finally, we discuss in
Sec. V the physical impact of our results for delayed slow-fast
systems and the interest of developing analytical tools
for DDE:s.

II. HOPF BIFURCATION

The FHN model described by Egs. (1) has one single steady
state x = —a and y = —a + a/3, and from the linearized
theory, we determine the following characteristic equation

er? — Al —a*+ce™™ -]+ 1=0. 2)

By considering A = io, we obtain the two following Hopf
conditions by separating Eq. (2) in real and imaginary part:

— o —ocsin(or)+1=0, (3a)

1 —a* —2csin*(o7/2) = 0. (3b)

Equation (3b) indicates that a Hopf bifurcation is only

possible if a*> < 1 and ¢ > 0. The three first Hopf bifurcation

lines in the (z,a) plane are shown in Fig. 1 as ty,, ty,, and
7y,. These curves will be discussed in detail next.
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FIG. 1. Hopf bifurcation curves for small v and a close to 1.
Only the cross-hatched region corresponds to a stable steady state.
Parameters: ¢ = 0.03 and ¢ = 10.
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We wish to determine asymptotic approximations of
the Hopf bifurcation lines in the (a,t) parameter plane,
assuming |a — 1| = O(¢) and 7 = O(¢?), where p > 0. If
la — 1| = O(¢), Eq. (3b) implies that | sin(oc7/2)| = 0(e'?).
The obvious case is to consider o7/2 = O(g'/?). All three
terms in Eq. (3a) are then of the same order of magnitude
if o = O(e~'/?). This defines a first limit. There is, however,
another limit that is much more subtle to detect. | sin(o7/2)| =
O(g'/?) in Eq. (3b) is again verified if 0 7/2 = wn + O(e'/?),
where n = 1,2,... The first and last terms in Eq. (3a) still
motivates the scaling o = O(¢~!/?). It defines the second limit.
The determination of the leading approximations for the two
cases is detailed in the Appendix. In summary, the first Hopf
bifurcation satisfies

2
I: a—l=—Manda= /;, “4)
4(1 +ct/e) e(1+ct/e)

with t /e = O(1). Itis the line that emerges from (a,t) = (1,0)
and labeled by tj, in Fig. 1. Other Hopf bifurcations, which
are labeled by 7y, (displayed for n = 1,2), occur for
2
moa—1=-079%" 4o = (5)
dogc JE

with o9 = 2nm./e/t (n =1,2,...) and t/4/e = O(1). They
are shown as the hyperbolic lines in Fig. 1 for n =1,2. A
similar analysis of the solutions of the characteristic Eq. (2)
for small ¢, |a — 1| = O(¢), and T = O(¢) or T = O( /¢)
indicates that the steady state is linearly stable only in the
cross-hatched region bounded by ty, and ty, in Fig. 1.

We investigate the stability diagram by perturbing the
steady state in two different ways:

(i) x=—a for

y(0) = —a +a*/3 4+ 1073, (6b)

—17 <t <0, (6a)

and

(i) x@)=15cos2n(t +1)/7] for —17 <t <0, (72)

y(0) = —a+a®/3+1073. (7b)

We fix a = 0.99 and consider different values of 7. We
integrate the FHN equations for a time interval of 16000z.
We find that (x, y) trajectory approaches the stable steady state
under conditions (i) if tyo < T < ty;. If 7 is slightly below
THo, the steady state is unstable [point (a) in Fig. 1] and the
system approaches a low-frequency periodic solution as shown
in Fig. 2(a). On the other hand, if we consider the second
set of initial conditions, we observe that slow-fast oscillation
of period close to t coexist with the stable steady state as
depicted, e.g., in Fig. 2(b) for parameters marked by point b
(a=0.99, 7 =0.2)in Fig. 1.

In order to explore the bifurcation diagram of the periodic
solutions in more detail, we use the continuation method
DDE-BIFTOOL varying the time delay [33]; see Fig. 3. The
bifurcation at tj, is clearly supercritical and the amplitude
grows parabolically as T decreased from tg,. Close to T = 0,
the amplitude increases dramatically. This can be anticipated
since the delay has no effects if ct < O(¢) and the DDE
problem reduces to an ordinary differential FHN equation
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FIG. 2. Stable long-time periodic solution. Panel (a) shows nearly
harmonic oscillations with a period proportional to £'/? in units of
time ¢ (¢~'/? in units of time /7). Panel (b) shows a large-amplitude
periodic solution of period t (of period 1 in units of time 7/7).
Parameters as marked by points a and b in Fig. 1.
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FIG. 3. Bifurcation diagram of the periodic solutions. The ex-
trema of x are shown as a function of 7. Dashed and solid lines
correspond to unstable and stable solutions, respectively. Parameters:
a=0.99,¢=0.03,and c = 10.
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admitting relaxation oscillations. On the other hand, the
bifurcation at T = vy, is subcritical and leads to stable high-
amplitude, pulsating solutions after the branch of periodic
solutions folds back. DDE-BIFTOOL also provides the period
of the solutions. The upper branch starting near = 0.1 shows
a period almost equal to 7.

If a < 1 is now increased and passes 1, tyo and its Hopf
bifurcation branch disappear from the diagram and 7y, moves
to infinity. We may, however, reasonably expect that the limit
point of limit cycles persists for a > 1. In summary, the
determination of the bifurcation diagram for a slightly less
than a = 1 provides insights on the diagram for a slightly
larger than a = 1 by exhibiting a limit point of limit cycles.

III. RELAXATION OSCILLATIONS

We now consider @ > 1 and seek a stable t-periodic
solution coexisting with the stable steady state. Using a cosine
function of period 7 as the initial function for x in the interval
(=7 £t < 0), we obtain a stable limit-cycle solution in the
phase plane (x,y); see Fig. 4(a). Although the limit cycle is
symmetric with respect to the line y = 0, the time spent along
the left and right branches of the S-shaped nullcline,

%3
y=f@)Ex—§n (®)
is different; see Fig. 4(b) for T = 2. As we progressively
decrease 7, the extrema of y, denoted by y, and y; in Fig. 4(a),
approach the line y = 0. We wish to determine the bifurcation
diagram of these oscillations as T approaches zero. To this end,
we look for a T-periodic solution with T as close to T as

T =1+ &6, &)

where § = O(1) if ¢ — 0. The limit cycle in the phase plane
y versus x follows the right and left branches of the slow
manifold y = f(x) defined by Eq. (8). These slowly varying
parts are connected by fast-transition layers located at y =
y1 and y = y,, (¥ < y2). Using Eq. (1b) and the fact that
y = f(x) along the slow manifold, we compute the leading
contribution of the period 7' = 7. Specifically, we determine
the travel times along the left and right branches of y = f(x)

! @] [hx b)

Y oo o-x\

1 WL

-2
-2 -1 0 1 2 4000 4005
X2 X11 X13 X230 X21 X12 1

FIG. 4. Panel (a): Periodic orbit in the phase plane. The limit
cycle is the long time solution of Eqgs. (1). The red S-shaped curve is
the slow manifold y = f(x) and the dot is the stable steady state. The
initial conditions are x = cos(2wt/7) for —t < ¢ < 0 and y(0) = 0.
Panel (b): Time evolution of x and y. The period is nearly equal to 7.
Parameters: @ = 1.1,& = 0.03,6 =5 x 1073, ¢ = 10, and 7 = 2.
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FIG. 5. Minimum of y as function of t. The solid black line
is the approximation Eq. (12). The red (gray) dots are obtained by
numerical integration of Egs. (1). Parameters: a = 1.1, ¢ = 10, and
e =0.03.

and formulate the condition

2 f(x)dx
X12 X+a X22

e f(x)dx
x+a

T=1= (10
Note that the real roots of y — f(x) = 0 can be determined
using Viete’s trigonometric expression of the roots in the three-
real-roots case (y? < 2/3). They are given by (g = u; > u),

1 3 2
up = 2cos | = arccos _ —k— |, (11
3 2 3
with —m < arccos(u) < 7 and k = 0,1,2. We next anticipate
our analysis of the transition layers and assume that y; = —y,.
Since f(x) is an odd function, we realize that x,; = —x; =
—uy and xp = —x1p = —up. We calculate the integrals in
Eq. (10) and find
2_ .2
r::ug—ug—(az—lnn<a2 ”g). (12)
a* — ug

Figure 5 compares the function t = 7(y;) with numerical
estimates obtained from direct simulations of Eqgs. (1) added as
dots. There is a critical value of t, denoted by 7., below which
no limit cycles have been found numerically. The slow-fast
construction of the limit cycle fails in the limit T — 0 because
there is no more a clear separation of time scales. We observe
that the minimum decreases slightly before t approaches
7. >~ 0.13. On the other hand, we find y; — f(—a) >~ —0.66
as T — oo, which can be expected since the limit-cycle
oscillations will spent more and more time near the stable
steady state (x,y) = (—a, f(—a)) before jumping to the right
branch of the slow manifold.

Note that our analysis of the slowly varying parts does not
provide &4, i.e., the correction of the main period T = 7. To
calculate this correction, we need to consider the fast-transition
layer near y = yy, y,. To this end, we rescale Eqs. (1) by

s=t/e (13)
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and note that
x(t—1)=x@t —T+ed) =x(t+eb) =x(s+35). (14)

The transition-layer equation is then given by

x'= f(x) =y +clx(s +8) — x],
Y =ex +a,

(15a)
(15b)

where prime refers to differentiation with respect to time s.
The limit ¢ — 0 yields y’ = 0 implying that y = y, y, are
constants in first approximation. Equation (15a) thus becomes

x'= f(x) —y; + clx(s +8) — x], (16)

with j = 1,2. This equation must satisfy the boundary condi-
tions

lim x(s) = x; and lim x(s) = x,. a7
§—>—00 §—>00

Equation (16) is an equation that contains x(s + §), where &
is the unknown correction of the period. We assume that there
exists a unique value of § such that Eq. (16) admits a solution
satisfying the boundary conditions Eq. (17). For y = yj, the
transition layer solution goes from x = x;; < 0tox = x| >
0, while for y = y, > 0, the transition layer solution starts
from x = x,; > 0 and moves to x,; < 0; see Fig. 4. Under the
assumption of a symmetry in the inhibitor levels,

Y2 ==y, (18)
the two transition layer equations are identical due to xp; =
—x11 and xpp = —x;. This is consistent with the fact that §

appears in both transition layer equations.

We cannot solve Eq. (16) analytically because of the
advance argument, but we may look for an asymptotic
solution in the limit of large values of c. The idea is to
reduce the transition layer equation to a second-order ordinary
differential equation that we can solve. A similar idea has been
successfully used in another delay differential problem [20].
Specifically, we assume that § — 0 as ¢ — oo and expand
x(s +6)as

(32
x@+w)=x+aV+§q”+ow%W) (19)

Inserting expansion Eq. (19) into Eq. (16) with y = y;, we
obtain after some simplifications

52
0= %x” + (8 — DX’ + f(x) — yi + 0(c83x").  (20)

We eliminate the coefficient multiplying x” by introducing a
new, rescaled time variable,

A
82/2

:

¢ @21)

Equation (20) then becomes
N (c6—1)
Vc82/2

where prime now means differentiation with respect to ¢. We
now seek a solution for § of the form

s=c 4L 4 (23)

V2

3

)
X'+ fx)=yi2+ O((CBCZWX/”) (22)
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FIG. 6. Correction § to the period in dependence on the inverse
coupling strength c. The red (gray) diagonal line § = 1/c is added as
a guide to the eye. Same parameters as described in the caption of
Fig. 5.

where o = O(1) needs to be determined. The leading behavior
of § = ¢! as ¢ — oo has been checked by accurate numerical
simulations; see Fig. 6, where the value of § is determined
numerically by first obtaining the correction of the period
from v (¢ = T — t) and then by dividing this correction by
e. The data progressively approach the straight line as 1/c
decreases, i.e., for increasing coupling strength. This motivates
the asymptotic analysis of Eq. (16) for ¢ — oo.

Inserting Eq. (23) into Eq. (22) then leads to

x4 ax’ + f(x) =y + 0 V). (24)
In the limit ¢ — oo, we neglect the ¢~!/2 correction term and
verify that ¢ defined by Eq. (21) reduces to ¢ = +/2cs, which
is still a fast time variable as ¢ — 00. Equation (24) is now
a second-order nonlinear ordinary differential equation. The
challenge now is to determine « so that Eq. (24) admits a
heteroclinic trajectory connecting xj; at { = —oo to xp at
¢ = oo. Equation (24) admits a solution of the form

X12 — X11
I+ exp(A¢)’

where A < 0. Inserting this expression into Eq. (24), we find

1
A= —\/;|X11 — X2 (26)

1
a= \/;(xn + x12 — 2x13). 27)

X =x+ (25)

and

In summary, we have determined an asymptotic approxi-
mation of the limit cycle for T = O(1) by exploring the limit
& — 0. The approximation is in excellent agreement with
the solutions obtained numerically even if v < 1. It fails if
T = O(¢), which can be expected because the assumption of
two distinct time scales, namely 73 = O(r) and T, = O(¢)
is no more valid. Figure 7 shows the numerical limit cycles
close to their limit point located at t. = 0.13. We note that

022208-5
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FIG. 7. Limit cycles close to the critical delay where the stable
steady state is the only solution. The value of t is indicated in the
figure. Other parameters are the same as described in the caption of
Fig. 5.

their orbits are losing contact with the right branch of the slow
manifold and that they become asymmetric with respect to the
line y = 0.

IV. ASYMPTOTIC THEORY WITH 7 = O(¢) AND e — 0
Equations (1) belong to the family of FHN systems of the
form
(28a)
(28b)

ex' = fx,x(t—1)—y,
y = g(x.a),

where the function y = f(x,x) is S shaped and g(x,a) is
monotone in the phase plane (x,y). Introducing the fast time

s and the rescaled time delay y defined as
s=t/t and y=c¢l1, 29)

Eq. (28) can be rewritten as

y X = flox(s — 1) —y,
y =ey(x+a),

(30a)
(30b)

where prime now means differentiation with respect to time s.
We next seek a periodic solution of the form

x = xo(s) + exi(s) + ...,
Y = yo(s) + eyi(s) + ...

Inserting Eqgs. (31) into Egs. (30) and equating to zero
the coefficients of each power of ¢ lead to a sequence of
problems for the unknown functions xg, x1, Yo, ¥1,... The first
three problems are given by

(31a)
(31b)

O(l): y~'xg = f(xo,x0(s — 1)) — yo, (32a)
Yo =0, (32b)
0(e) 1 y; = y(xo + a). (320)
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Equation (32b) implies that y, is an unknown constant.
We then determine a P-periodic solution for xy by solving
Eq. (32a). The period P is a function of y;, and we need
an additional equation for its determination. Equation (32c)
admits a bounded solution for y; provided that the right-hand
side satisfies the solvability condition

P
/ (xo +a)ds = 0. (33)
0

The problem for x( is a nonlinear DDE, which cannot be
solved analytically. To progress further, we first consider the
approximating case

fx,x(t—1)=—-1—x4+2Hx(t — 1)),
glx,a)=x+a,

(34a)
(34b)

where H(x) is the Heaviside function. Since the function
f(x,x(t — 7)) reduces to two distinct linear functions of x
depending on the sign of x(t — 7), we may solve the equation
for x¢ analytically. We consider a > 0 and the steady state
(x,y) =(—a, — 1 +a) is always stable. Figure 8 shows a
stable periodic solution of Egs. (28) with the functions (34)
coexisting with a stable steady state. The initial conditions
are x = cos2rt/t)(—1 < t/Tt < 0), y(0) = 0. The solution
exhibits a period close to T and because T < 1, the limit cycle
in the phase plane spends little time near the slow manifold,

y=—-1—x4+2H(x), (35)

which is added as straight lines in Figs. 8(a) and 8(b). Similar
to the continuous FHN system, we note that a periodic solution
is no more possible below a critical value of 7.

We now propose to solve Eq. (32a). Figure 9 is an
enlargement of Fig. 8(c) showing both x(s) and x(s — 1).
x(s — 1) is zero at s =0, 57, and s,. x(s) is zero at s = §
and s; + 8. The period is s; = f,/t = 1 + § and the interval
during which x(s — 1) is positive is s = #; /T = 0.486. The
time lag between x(s) and x(s — 1) is 6 = 0.083. We identify
two distinct regions corresponding to the interval 0 < s <
s1, where x(s — 1) > 0, and the interval s; < s < 5o, where
x(s—1)<0.

Next, we solve Eq. (32a) for each part. During the interval
0 < s < s1 with xo(s — 1) > 0, Eq. (32a) reduces to

1

Y~ xg=—yo+1—x, (36)

which admits the solution
xo = Aexp(—ys)+ 1 —yo, 37

where A is an integration constant. During the interval s; <
s < sp with xo(s — 1) < 0, Eq. (32a) simplifies as

Yy 'xy ==y — 1 — xo. (38)

It admits the solution
xo=—1—yo+ Bexp(— y(s — s51)), (39)

where B is a new integration constant. We determine A and B
by requiring that the solution Eqs. (37) and (39) are equal at
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FIG. 8. Stable time-periodic solution of Eqgs. (28) with Egs. (34).
Parameters: ¢ = 0.01, a = 0.1, and 7 = 0.08. (a) Phase plane (x,y)
showing the periodic orbit, the red (gray) piecewise linear nullcline
(35), and the stable steady state at x = —a. (b) Blow up of the limit
cycle shown in (a). Note that the amplitude of y is small but that its
average is slightly negative. (c) Time evolution of x and y.

s = 51 and s = 5,. We obtain the two conditions given by
14+ Aexp(—ys;) =B —1, (40a)
—1 4+ Bexp(—ysy) =1+ A, (40b)
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1.0
X(s-1) x(s)
05
0.0
-0.5
-1.0
0o S1 8140 SH=1+08
s=t/t

FIG. 9. Time evolution of x(s) and x(s — 1) as black and red
(gray) curves, respectively. The interval during which x(s — 1) is
positive is s; = t;/t = 0.486 and the time lag between x(s) and
x(s — 1) is § = 0.083. The period is s, = f,/t = 1 4 §. Parameters
as described in the caption of Fig. 8.

with 551 = s, — 51, respectively. Solving these equations for A
and B, we obtain

=2+ 2exp(—ys)

A= (41a)
1 —exp(—ys2)
_ 2 2explzys) (41b)
I —exp(—ys2)

We next use the fact that x(§) = x(s; + §) = 0. ViaEq. (37)
with x(§) = 0 and Eq. (39) with x(s; 4+ §) = 0, we obtain two
conditions:

1 —yo+ Aexp(—yd) =0,
—1 — yo+ Bexp(—yd) =0.

(42a)
(42b)

Inserting the expressions of A and B given by Egs. (41)
into Egs. (42), we obtain the following two equations for s
and §:

24 2exp(— y(1+35—s))

I =+ T —exp(— (1 53) exp(—y8) =0,
(43a)
2 —2exp(—ys1) _
_1_W+d—em(—yu+5»“m_w)_a
(43b)

where we have used s, = 1 + §. Subtracting Eqs. (43) leads
to an equation without y, but relating s; and §. This equation
can be reformulated as a quadratic equation for exp(—y§) of
the form

e MU= 4 o™V DL e 41 =0, (44)

Finally, we consider the integral condition Eq. (33) together
with Eq. (34b) by using the solution Egs. (37) and (39)
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FIG. 10. Analytical solution in parametric form for § = §(s;) and
a = a(sy). The labels in the figures denote the value of y = 7/¢. At
a fixed y, two branches of solutions for a = a(s;) emerge from a
maximum as we decrease a.

for the intervals 0 <s < s; and s; < s < 5,. After some
simplifications, we obtain a simple expression for y, given by

wo=—l+a+ 21 (45)

From Eq. (43b), we eliminate y, using Eq. (45) and obtain an
equation for a as a function of s; and §:

259 2 —2exp(—ysy)

a=—
148 1 —exp(—y(+93))

exp(—y$). (46)

Thereby, we arrive at a solution in parametric form in
dependence on the parameter s;. We fix the delay y and solve
the quadratic Eq. (44) for exp(—y$). This provides § as a
function of s; [see Fig. 10(b)]. We then determine a as a
function of s; using Eq. (46) [see Fig. 10(a)]. Figure 9 depicts
the time series for x(s) and x(s — 1) for a = 0.1, ¢ = 0.01,
and T = 0.08. We find s{"™ = 0.486 and §™™ = 0.083. The
analytical approximation shown in Fig. 10(a) for the line
y =t ! =8anda = 0.1 gives sf“al = 0.486, which agrees
with the numerical estimate.
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FIG. 11. Analytical bifurcation diagram for y, = yo(t/¢). The
parameter a is chosen as 0.01 and 0.1 in the red (gray) and black
curves, respectively.

The analytical approximation shown in Fig. 10(b) for the
line y = 7e~! = 8 and for s; = 0.486 gives saal — ().084,
which is in good agreement with the numerical estimate.

In Fig. 11, we represent y, as a function of y = t/¢ for
two different values of a. If a becomes small, the limit point of
periodic solutions approaches zero and the bifurcation diagram
exhibits a boundary layer connecting two plateaus located at
Yo =0andyo= 1.

The boundary layer equations can be obtained by exploring
the limit y small keeping s; and § fixed. From Eq. (44), we
obtain

0 : 8 +86(1 —s)+st—s51=0 47)
as the leading order equation for y — 0. From Eq. (46), we
then find

VS1

a =

146

or in terms of y for fixed a,

1+ 8)a

Y="——"""% -

S1(1 -6 — S1)
The conditions a > 0, y > 0, § > 0 define the domain in s,
(0 < 51 < 2/3). We solve Eq. (47) and determine § = §(s;) >
0. We then find y using Eq. (49) and y, using Eq. (45). This

boundary layer solution is shown in Fig. 11 by the full line
(a =0.01).

1 —=06—s1), (48)

(49)

V. DISCUSSION

In this paper, we have considered the FitzHugh-Nagumo model
subject to delayed self-feedback in the parameter range where
it admits a linearly stable steady state. We raised the question
whether a stable limit-cycle solution may coexist with this
stable steady state for low values of the delay t. According
to Chicone [34], small delays do not matter, if the reduced
system (7 = 0) is structurally stable. This is indeed the case,
if the timescale separation parameter &, measuring the fast
changes of activator variable x, is kept fixed. However, the
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limit t — O has to be treated as a singular limit if we consider
the limit ¢ — 0 as we generally do for slow-fast systems. The
perturbation analysis described in Sec. IV suggests that the
coexistence of a stable time-periodic and a stable steady state
appears as soon as T = O(¢) in the limit ¢ — 0. This was
demonstrated analytically for the FHN system with threshold
nonlinearity but still needs to be demonstrated for the original
FHN equations for which we only have numerical evidence.
Our analysis indicates that if T = O(¢), the delayed feedback
has no immediate effects on the inhibitor y but is boosting
the fast changes of the activator x. As a result, sustained t-
periodic oscillations are possible under specific perturbations
of the steady state. Our analysis substantiates the limit-point
mechanism responsible for the birth of the stable limit cycles.
We note from Fig. 11 that the time-averaged value of the
inhibitor y = y, for the upper branch of stable limit-cycles
approaches zero from negative values as we increase 7/¢. This
is consistent with the numerical simulations of the original
FHN equations for low values of t (see Figs. 5 and 7). On the
other hand, the lower branch of unstable limit-cycles exhibits a
time averaged y = y, that approaches y = —1, i.e., is coming
close to the stable steady state (x,y) = (—a, — 1 — a) where
a = 0.1. This is consistent with the analysis in Sec. II, where a
branch of unstable periodic solution is found to closely overlap
the stable steady state.

We need to realize that novel phenomena solely induced
by a delayed feedback are possible for systems as simple
as the FHN equations. Traditionally, we start by determining
bifurcations points of a basic steady state and we then follow
the emerging branches of solutions. For the parameter values
we have considered, there are no bifurcation points, and stable
near t-periodic oscillations were first found accidentally. In
this paper, three distinct strategies have been developed in
order to capture these periodic solutions. Each of them offer
advantages and limitations. The most classical approach is
to explore the bifurcation diagram of periodic solutions for
parameter values close to the values of interest but where
Hopf bifurcation points have been detected. A numerical
continuation method then revealed the limit-point mechanism
generating stable periodic solutions. The second approach is
based on the construction of a limit cycle in the phase plane
(x,y) valid in the limit ¢ — O (r fixed). It is not a routine
application of singular perturbation techniques for slow-fast
systems because some anticipation of the form of the solution
is needed. By assuming that the two fast transitions layers
are located at equal distance from the y = 0 axis, we were
able to determine the bifurcation diagram analytically. This
assumption is, however, no more valid if T approaches its
limit-point value t.. Last, we have proposed a perturbation
analysis, where 7 is scaled with respect to €. The leading
approximation is described by a simpler problem but is still a
nonlinear delay differential equation. We solved it only for a
particular form of the FHN nonlinearity.

Models describing delay-coupled oscillators are popular
tools for studying different forms of neural synchrony (see
Ref. [35] for a recent review). However, the network response
of delayed coupled excitable units or mixed delay coupled
excitable and oscillatory units deserve similar attentions. In
Ref. [25], we stressed the fact that several periodic regimes of
period t/n coexisting with a stable steady state can robustly

PHYSICAL REVIEW E 93, 022208 (2016)

appear in a single cell. Here, we showed that a small delay is
enough to generate these oscillations. Having the alternative to
be steady or oscillatory, we reasonably expect distinct forms
of synchronization for populations of excitable cells compared
to networks of coupled oscillators.
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APPENDIX: APPROXIMATIONS OF THE FIRST
HOPF BIFURCATIONS

In this Appendix, we determine the leading approximations
of the first Hopf bifurcation assuming a < 1 and |a — 1| =
O(¢e), 0 = O(¢'/?), and two distinct scalings for 7.

Case 1. Introducing

1/2

T=¢l,a=1+¢ca, and o =¢ "“w

into Egs. (3a) and (3b) leads to the following simplifications:
—&? — e wce?wd +..)+1=0,
w’6?
2
The leading order equations are given by

—’(14+ch)+1=0,

+..=0.

—2ea + ... — gc

@*62
—2a —c¢ =0,
from which we obtain w? and « as
2 1 62
o'=——ando = ———.
14 co 4(1 + ¢0)

Case 2. Introducing
1=¢"%0,0 = 8_1/2(00 + %0, 4+ ...), and a=1+¢a,
where
090 =2nmw (n = 1,2,...),
now leads to the following equations relating o} and «:

—002 —opcolf+1+..=0,

c26?
—a@—ct— 4. =0,
from which we find
_ (1 — 0p)? _1—002
4002c ’ B opch
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