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Dynamics of a passively mode-locked semiconductor laser subject to dual-cavity optical feedback
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We study the influence of dual-cavity optical feedback on the emission dynamics and timing stability of
a passively mode-locked semiconductor laser using a delay differential equation model and verify the timing
stability results by an initial experiment. By bifurcation analysis in dependence of the feedback delay times
and feedback strength bistability, quasiperiodic and chaotic dynamics, as well as fundamental mode-locking are
investigated, yielding a comprehensive overview on the nonlinear emission dynamics arising due to dual-cavity
optical feedback. Optimum self-locking ranges for improving the timing stability by dual-cavity optical feedback
are identified. A timing jitter reduction and an increase of the repetition rate tuning range of up to a factor
of three, compared with single-cavity feedback, are predicted for the parameter ranges investigated. Improved
timing stability on short and long timescales is predicted for dual-cavity feedback through the suppression
of noise-induced fluctuations. Based on the numerical predictions, experimentally, a maximum timing jitter
reduction up to a factor of 180 is found, accompanied by a side-band reduction by a factor of 58 dB, when both
feedback cavities are resonant.
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I. INTRODUCTION

Passively mode-locked semiconductor lasers have been the
subject of extensive research over the past 30 years [1–14].
This has been motivated by the wide range of potential applica-
tions, including optical data communication, optical clocking,
and nonlinear microscopy [15–17]. A substantial portion of
this research has gone into overcoming the large temporal pulse
train instabilities, compared to solid-state lasers. Passively
mode-locked semiconductor lasers exhibit large fluctuations
in the arrival times between pulses, referred to as timing jitter,
due to the absence of an external reference clock. Methods of
reducing the timing jitter, that have been investigated thus
far, include optical feedback, optical injection, and hybrid
mode-locking. Hybrid mode-locking involves the external
modulation of the absorber bias voltage. If the frequency
of this modulation is within a certain range of the repetition
rate of the mode-locked pulses a reduction in the timing jitter
can be observed due to the imposed external frequency [18].
In the optical injection experiments, continuous wave light
was injected into a passively mode-locked laser. Using this
technique, timing jitter reduction and repetition rate tuning,
which is important for compensating for cleaving tolerances
when a precise repetition rate is required, has been achieved
within a small locking range of the injected laser frequency
[19]. Optical injection, however, has the disadvantage that a
second laser is required, making the technique expensive and
the setup more complicated. Optical feedback has been proven
to be an effective means of timing jitter reduction [4–6,20,21],
and has the advantage that no external modulation or injection
source is needed.

In this work we study the influence of optical feedback, with
a second optical fine-tunable feedback cavity, on the nonlinear
emission dynamics of a two-section passively mode-locked
laser. This is motivated by the frequency pulling that is
observed for short feedback cavities and the timing jitter
reduction that can be achieved with long feedback cavities [14].

We investigate the dynamics of such a system numerically,
including repetition rate tunability, using a delay differential
equation model. Subsequently, timing jitter reduction is inves-
tigated both theoretically and by an initial experiment.

This paper is divided into the following sections. In Sec. II
we introduce the model used to study this system. In Sec. III
we present results of numerical simulations, then in Sec. IV
experimental results are presented. Conclusions are presented
in Sec. V.

II. DELAY DIFFERENTIAL EQUATION MODEL

Based on the model proposed in Refs. [8,22], we model
the passively mode-locked laser using a two-section ring
cavity described by a set of three delay differential equations.
The optical feedback and laser configuration considered in
the model is depicted schematically in Fig. 1(a). The ring
cavity geometry is used to be able to simplify the differential
equations used to describe semiconductor passively mode-
locked lasers. Despite the difference in geometry this model
can be used to gain an understanding of the dynamics of
a Fabry-Perot cavity mode-locked laser [Fig. 1(b)], as the
dynamics are primarily determined by the total gain and
losses integrated over the gain and absorber sections. Optical
feedback is introduced by coupling the laser cavity to two
passive feedback cavities. Dual cavity feedback is included
in the delay differential equation model in the same manner
as single-cavity feedback in Refs. [9] and [10]. A detailed
description and derivation of the model with one feedback
cavity can be found in Ref. [9]. The final set of three coupled
delay differential equations is

γ −1Ė(t) + E(t) = R(t − T )e−i��T E(t − T ) +
√

Dξ (t)

+
∞∑

l=1

KlkeilC1R(t − T − lτ1)e−i��(T +lτ1)
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FIG. 1. Schematic of the dual-cavity optical feedback configu-
ration studied numerically. (a) Ring cavity laser subject to optical
feedback from two external cavities (EC). (b) Fabry-Perot laser cavity
subject to optical feedback from two external cavities.

× E(t − T − lτ1) +
∞∑

l=1

Kl(1 − k)eilC2

×R(t−T −lτ2)e−i��(T +lτ2)E(t−T −lτ2),

(1)

Ġ(t) = Jg − γgG(t) − e−Q(t)(eG(t) − 1)|E(t)|2, (2)

Q̇(t) = Jq − γqQ(t) − rse
−Q(t)(eQ(t) − 1)|E(t)|2, (3)

with

R(t) ≡ √
κe

1
2 [(1−iαg )G(t)−(1−iαq )Q(t)]. (4)

The dynamical variables are the slowly varying electric field
amplitude E , the saturable gain G, and the saturable loss Q.
The saturable gain G and saturable loss Q are related to the
carrier inversion in the gain and absorber sections, respectively
[9]. In Eq. (2), Jg is the excess (above transparency) current
pumped into the gain section and Jq in Eq. (3) is the unsaturated
absorption, which is related to the carrier losses due to
the reverse bias applied to the absorber section. The carrier
lifetimes in the gain and absorber sections are given by 1/γg

and 1/γq , respectively. The factor rs is proportional to the ratio
of the saturation energies in the gain and absorber sections. The
three delay times in this system are the cold cavity round-trip
time T and the external cavity round-trip times (delay time) τ1

and τ2. The cold cavity round-trip time is defined as T ≡ v/L,
where L is the length of the ring cavity. The bandwidth of the
laser is limited by the finite width of the gain spectrum, which is
taken into account by a Lorentzian-shaped filter function with
full-width at half maximum γ . The possibility of detuning
between the frequency of the maximum of the gain spectrum
and the frequency of the nearest cavity mode is allowed for
by the inclusion of ��. The optical feedback is described
by the two sums in Eq. (1). Here l is the number of round
trips in the external cavity, Kl is the round-trip-dependent

TABLE I. Parameter values used in numerical simulations, unless
stated otherwise.

Parameter Value Parameter Value Parameter Value

γ 2.66 ps−1 κ 0.1 T 50 ps
γg 1 ns−1 αg 0 D 0
γq 75 ns−1 αq 0 k 0.5
Jg 0.04 ps−1 rs 25 C1 0
Jq 0.15 ps−1 �� 0 C2 0

feedback strength and C1, C2 are the phases of the light due
to one round trip in the external cavities. Kl = K1

l + K2
l is

the total feedback strength from both external cavities, the
contribution from each cavity is determined by k, K1

l = kKl ,
and K2

l = (1 − k)Kl . Under the assumption of weak feedback,
we will consider feedback contributions only from light that
has made one round trip in the feedback cavities (l = 1,
K1 = K). Spontaneous emission is modeled in Eq. (1) by
a complex Gaussian white-noise term ξ (t) with strength D.

Equation (4) describes the amplification and losses of the
electric field R(t) during one round trip in the ring cavity.
Internal and out-coupling losses are taken into account in the
attenuation factor κ and the line-width enhancement factor (α
factor) in the gain and absorber sections are denoted αg and
αq , respectively.

In the following, parameter values used will be those given
in Table I, unless stated otherwise. The laser cavity round trip
used here, T = 50 ps, corresponds to a 2-mm Fabry-Perot
cavity. Additionally, in what follows we will refer to feedback
cavity one as the long feedback cavity and feedback cavity two
as the short feedback cavity, meaning τ1 > τ2.

III. SIMULATION RESULTS

A. Emission dynamics of a passively mode-locked laser subject
to dual-cavity optical feedback

Passively mode-locked two-section lasers, when operated
in the fundamental mode-locking regime, produce pulses of
light due to a positive net gain window that opens once per
cavity round trip. This positive net-gain window arises due
to the absorber section saturating faster than the gain section
[8,9]. Figure 2(a) shows a time trace depicting this behavior.
Plotted in orange is the electric field amplitude and in black
is the net gain. This time trace depicts the simulated output
of a 20 GHz laser in the fundamental mode-locking regime.
20 GHz corresponds to a cold cavity round-trip time T of
approximately 50 ps. The time between the pulses, referred to
as the interspike interval time TISI, is slightly longer than T , as
for the solitary laser TISI,0 ≈ T + γ −1 [8]. The small positive
net gain window coincides with the pulse, in between pulses
the net gain is negative.

The dynamics of the passively mode-locked laser subject
to optical feedback depends critically on the feedback strength
and feedback delay time. For weak to moderate feedback from
a single external cavity, resonant feedback can be achieved
when

pτ = qTISI,0, (5)
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FIG. 2. (a)–(d) Calculated time traces of the electric-field amplitude (orange), the gain (dashed purple), the total losses Q + |ln κ| (dashed
green), and the net gain G − Q − | ln κ| (dash-dotted black) for τ1 and τ2 values indicated by the red crosses in subplot (e). (e) Number of
pulses in the laser cavity as a function of τ1 and τ2. NP indicates nonperiodic dynamics. Parameters: Jg = 0.08 ps−1, Jq = 0.3 ps−1, K = 0.2,
other parameters as given in Table I.

for p,q ∈ N [9]. The integer p indicates the order of the
resonance and the number of pulses within the laser cavity.
For main resonant feedback (p = 1) the arrival times of the
pulses, from the laser cavity and the feedback cavity, at the out
coupling facet of the laser cavity coincide; hence, there is just
one pulse within the laser cavity. About the main resonances
there is a range of τ values for which self-locking occurs
between the pulses traveling in the laser and feedback cavities.
Within this self-locking range TISI adapts such that the arrival
times of pulses at the laser out coupling facet are synchronized.
For higher-order resonant feedback, small feedback-induced
pulses travel within the laser cavity, along with the main
pulse. For dual-cavity optical feedback, studied here, the same
resonance condition [Eq. (5)] applies, however, now it must
hold for both feedback cavities, and the number of pulses
within the laser cavity has to be determined by a combination
of p1 and p2. When the delay lengths of both feedback cavities
fall within the main resonance self-locking ranges, there is one
pulse within the laser cavity. This situation is depicted in the
time trace of Fig. 2(a), where τ1 ≈ 100TISI,0 and τ2 ≈ 30TISI,0.
In Fig. 2(b) the long cavity is at a main resonance and the
short cavity is at a second-order resonance (τ1 ≈ 100TISI,0

and 2τ2 ≈ 59TISI,0). This means that pulses from the short
cavity arrive at the out coupling facet of the laser in between
internal pulses, causing the small pulse that can be seen in the
time trace. A key difference between the main pulses and the
feedback induced pulses is that the latter are not sustained by
a positive net-gain window. The net-gain profile is, however,
altered by the feedback-induced pulses.

To gain a more complete picture of the feedback-delay
dependence of the laser dynamics Fig. 2(e) shows the number
of pulses in the laser cavity as a function of τ1 and τ2. The
number of pulses is indicated by the color code. Regions
in white, labeled NP, indicate a nonperiodic output. In these
regions the laser can exhibit quasiperiodic or chaotic dynamics.
The time traces in Figs. 2(a)–2(d) correspond to Fig. 2(e) as
indicated by the red crosses. For Fig. 2(c) the feedback is
nonresonant; here the pulses are highly deformed and the pulse

shape varies from one laser cavity round trip to the next. For
Fig. 2(d) both delay times are in a higher-order resonance.
Multiple feedback-induced pulses can be seen in between the
main pulses. As both feedback cavities are contributing to these
pulses, the net-gain profile is more distorted than in Fig. 2(b).
The total number of pulses within the laser cavity that can
be resolved depends on the pulse widths and the cold cavity
round-trip time.

Figure 2(e) displays a periodic resonance structure. The
structure is approximately periodic in τ1 and τ2, with a
periodicity of TISI,0. The main resonances for the two delays
occur at integer multiples of TISI,0. Where these individual
main resonance regions overlap we find the overall main
resonances for the dual feedback system. These regions are
where self-locking occurs between the pulse in the laser cavity
and the pulses in both external cavities, and hence, where
there are no feedback-induced pulses, i.e., one pulse in the
laser cavity indicated by the light blue color code. The main
resonance self-locking regions have a long axis and a short
axis. The width along the long axis is greater because in
this direction pulses from both feedback cavities either arrive
too early or too late and the system can adapt the TISI in
the appropriate direction for self-locking to occur. However,
along the short axis the pulses from one cavity arrive too
early and from the other too late, meaning that synchronization
cannot occur when the delays deviate much in this direction.
Between the main resonances a starlike pattern is formed
by lines connecting resonance regions. The slopes of these
lines depend on the order of the resonances being connected.
This is illustrated by the red lines. Here τ1 = 100TISI,0 and
τ2 = 30TISI,0 is taken as the origin, the lines are then plotted
with the slopes determined by p1 and p2. Line (1) connects the
main resonance region with a first-order resonance in τ1 and
a third-order resonance in τ2; therefore, the slope of this line
is given by p2/p1 = 3/1. Accordingly, the slopes of the other
lines are as indicated in the plot. Similar patterns are found in
dependence of the delay times in systems of coupled neural
oscillators [23].
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FIG. 3. Numerical bifurcation diagrams as a function of the total feedback strength K . Plotted on the y axes are electric field maxima
collected over a time period of 100T for up-sweeps (gray circles) and down-sweeps (blue diamonds) of K . SN1, SN1, and H indicate the critical
K values where saddle-node bifurcations of limit cycles, saddle-node bifurcations of quasiperiodic solutions, and subcritical secondary Hopf
bifurcations occur, respectively. Parameters: Jg = 0.08 ps−1, Jq = 0.3 ps−1; other parameters as given in Table I.

For the results considered thus far the feedback strength
was kept constant. However, as is the case with single-cavity
feedback, the exhibited dynamics with dual feedback depend
strongly on the feedback strength. For single-cavity feedback
it was found that with increasing feedback strength the
self-locking regions of the main resonances increase, whereas
the self-locking regions of higher-order resonances decrease,
forming a Farey treelike dependence [9]. And that, depending
on the feedback delay time, increasing feedback strength can
lead to quasiperiodic and eventually chaotic dynamics. To gain
an understanding of the influence of the total feedback strength
K on the dynamics in the dual feedback case, numerical
bifurcation diagrams are shown in Fig. 3 as a function of
K , for varying feedback delay times. Plotted on the y axes
are maxima in the electric field output, i.e., pulse heights.
These results were obtained by up-sweeping (gray cirles) and
down-sweeping (blue diamonds) K . This means that the delay
differential equation system [Eqs. (1)–(3)] was numerically
integrated for sufficiently long times to avoid transient be-
havior, then |E | maxima were recorded for a simulation time
of 100T and then the history of the current simulation was
used as the initial conditions for the next K step. Here, only
the total feedback strength is varied, the feedback ratio from
the two cavities is kept constant (k = 0.5). The delay times
in Figs. 3(a)–3(f) correspond to Fig. 2(e) as indicated by the
cyan circles. For Fig. 3(a) the delay times are very close to the
exact main resonance. For very small feedback strengths, up
to K ≈ 0.08, there are two pulses in the laser cavity, indicated
by the markers at two different amplitudes. As the feedback
strength is increased, the main resonance regions eventually
extend to include the delay times used for this subplot. The K

value at which this occurs is where the small feedback-induced
pulse disappears. K = 0.2 is past this point, and accordingly

the delay times used here lie within the main resonance
region in Fig. 2(e). In the down-sweep direction a saddle-node
bifurcation occurs at approximately K = 0.6, indicated by
SN1 in the figure. Above this point the fundamental mode-
locked solution (upper solution) is bistable with the second
harmonic mode-locked solution (lower solution).

For Fig. 3(b) the delay times were chosen to lie on the
long axis of the τ1 = 101TISI,0, τ2 = 30TISI,0 main resonance
in Fig. 2(e). The trend in this plot is similar to that of Fig. 3(a).
For small feedback strengths there are multiple pulses, until
the feedback strength is large enough that the main resonance
self-locking regions extend to these delay times, after which
there is a K range where there is only one pulse in the laser
cavity. There is a region of bistability between the fundamental
mode-locked solution and solution with multiple feedback-
induced pulses, which is bordered by saddle-node bifurcations
of the up- and down-sweep branches. Increasing K further,
there is another saddle-node bifurcation of the down-sweep
branch (K ≈ 0.45), above which this branch is on the second
harmonic mode-locked solution.

To understand what gives rise to the white nonperiodic
regions in Fig. 2(e), the delay times for Fig. 3(c) are chosen in
one of these regions. For small K the solutions are periodic,
with multiple feedback-induced pulses. As K is increased,
a subcritical secondary Hopf (Torus) bifurcation occurs just
above K = 0.2 (indicated by H in the figure) and the solution
jumps to a branch of quasiperiodic solutions. For higher K

values the solution jumps back to a periodic mode-locked
branch, followed by a second subcritical secondary Hopf
bifurcation. The branches of unstable quasiperiodic solutions
generated by the subcritical secondary Hopf bifurcations (not
shown) undergo saddle-node bifurcations at the K values
indicated by SN2 in the figure.
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FIG. 4. Number of pulses in the laser cavity as a function of τ1 and τ2. NP indicates nonperiodic dynamics. Parameters: K = 0.1, (a)
Jg = 0.08 ps−1 and Jq = 0.3 ps−1, (d) k = 0.2; all other parameters as given in Table I.

Figure 3(d) shows the K dependence when both delay times
correspond to a second-order resonance. For large K , after the
system has gone through a subcritical Hopf bifurcation and the
branch of quasiperiodic solutions has become unstable, in the
range K ≈ 0.68–0.8 there are no feedback-induced pulses.
For these K values the delay times used here lie within the
self-locking region of the τ1 = 99TISI,0, τ2 = 29TISI,0 main
resonance.

Figures 3(a) and 3(b) have demonstrated that the main
resonance self-locking regions increase along the long axis.
To determine the behavior, with increasing K , along the short
axis the delay times for Figs. 3(e) and 3(f) are chosen either
side of the resonance region in Fig. 2(e), as indicated. From
Figs. 3(e) and 3(f), one can deduce that the main resonance
regions do not increase along the short axis, as there are no
moderate K values for which the feedback-induced pulses
disappear.

B. Optimization of resonant regions

For practical applications a wide resonance self-locking
region is desirable. Figure 3 shows that the self-locking regions
increase with the feedback strength; however, with increased
K the dynamics can also become quasiperiodic or chaotic.
The widths of the self-locking regions are also affected by
various other parameters, including the feedback delay time
and pulse widths. In Fig. 4 the pulse number is plotted, again as
a function of τ1 and τ2, for various τ1, τ2, k, Jg , and Jq values.
Figure 4(a) corresponds to Fig. 2(e), but with K = 0.1 instead
of K = 0.2. Comparing these plots the change in the length of
the main resonance region, with increasing K , can clearly be

seen. In subplots (a) and (b) of Fig. 4, all parameters are the
same except for Jg and Jq , which are reduced in subplot (b),
resulting in wider pulses. The increased pulse width results
in wider resonance self-locking ranges. Due to the wider self-
locking ranges quasiperiodic dynamics, indicated by the white
regions, appear at lower K values. Thus, also the operation
parameters play a crucial role for the dynamics subject to
feedback. In Fig. 4(c) the laser parameters are the same as
in Fig. 4(b), here only the feedback delay times have been
changed, τ1 is of the order of 500, and τ2 of the order of 10.
Note that the depicted τ2 range is smaller than in Fig. 4(a).
The main resonance self-locking regions in Fig. 4(c) extend
substantially further along the τ1 axis than the τ2 axis. We
know that for single-cavity feedback the width of the main
resonances increase for longer delay times [9]. This can be
understood by considering the sychronization condition,

τ = τq + δτ = qTISI,0 + qδTISI, (6)

for self-locking between pulses in the laser and feedback
cavities, where τq = qTISI,0 is the delay time at the exact qth
main resonance. When τ deviates from τq , the system must
adapt TISI for self-locking to occur. The change in TISI is given
by δTISI = δτ/q. For large q, smaller changes in the interspike
interval time are required, hence the self-locking ranges are
wider for longer delay times. (Note that the self-locking
condition Eq. (6) is not strictly correct as it neglects changes
in the pulse shape, which if included result in slightly smaller
TISI changes.) For dual-cavity feedback the same principles
apply, meaning that the self-locking ranges are greater for the
long cavity compared to the short cavity. This is more obvious
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FIG. 5. (a) Calculated timing jitter as a function of τ1 and τ2. The timing jitter of the solitary laser is indicated by σlt of the color bar. (b)
Repetition rate as a function of τ1 and τ2. Parameters: Jg = 0.08 ps−1, Jq = 0.3 ps−1, K = 0.2, D = 3.2 ns−1; other parameters as given in
Table I.

in Fig. 4(c), compared with Figs. 4(a) and 4(b), due to the
increased difference in the cavity lengths.

An important feature of Fig. 4(c) is that along the τ1 axis
there is an overlap of main resonance regions, i.e., the width of
the τ1 main resonance is greater than the separation between
main resonances, TISI,0. This is a consequence of the difference
in changes in TISI for long and short cavities. Over the τ2

self-locking range, TISI changes from some minimum to some
maximum value. For the same TISI range to be achieved with
the long cavity, τ1 needs to be varied over a much larger range.
Thus, if the τ2 self-locking range can be increased, then the
τ1 self-locking range increases accordingly. This situation is
depicted in Fig. 4(d), where the relative feedback strengths
have been changed such that the feedback from the short
cavity is stronger, k = 0.2. Due to the increased feedback
strength from the short cavity, the τ2 self-locking range is
increased slightly and the τ1 self-locking range now spans
over three main resonances. For single long cavity feedback
the self-locking range can span over multiple TISI,0; however,
in this case there is a multistability between solutions locked
to neighboring main resonances. Experimentally this typically
leads to abrupt switching to different locked solutions as the
delay is varied [3]. Adding an extra feedback cavity lifts this
multistability. For applications these considerations mean that
the accessible frequency pulling range, i.e., the tunable range
of repetition rates, is larger in the dual feedback case than for
a single long cavity.

C. Timing jitter reduction and frequency pulling

In the study of the dynamics of the mode-locked laser
system, presented in the previous sections, no noise was
included to account for the spontaneous emission that is
present in experiments with lasers. Without noise the emission
dynamics in the mode-locking regimes is perfectly regular.
Introducing noise into the system causes fluctuations in the
arrival times between pulses. These fluctuations are quantified
by the timing jitter and are observed experimentally. For

single-cavity feedback it has been shown that timing jitter re-
ductions can be achieved under resonance conditions [10,13].
A physical explanation for the reduction in timing jitter is
given in Ref. [14]. To investigate the influence of dual-cavity
feedback on the timing jitter we calculate the timing jitter,
using the long-term jitter method [10], in dependence of the
feedback parameters. The long-term timing jitter σlt is related
to the variance of the timing fluctuations, �tn ≡ tn − nTC , by

σlt ≡
√

Var(�tn)/n,

with Var(�tn)(n,τ ) ≡ 〈[�tn(τ )]2〉M , where tn is the arrival
time of the nth pulse and TC is the ideal interspike interval time
[24]. We calculate the interspike interval time for n = 40 000
round trips in the laser cavity and average over M = 50 noise
realizations. Note that for a Gaussian white noise source the
long-term jitter is directly proportional to the root mean square
timing jitter calculated from the von Linde method [10,25].

In Fig. 5(a) the timing jitter is plotted as a function of τ1

and τ2. Regions in blue indicate a decrease in the timing jitter
with respect to the free running laser. The yellow-red regions
indicate an increase in the timing jitter. Aside from the noise
strength, the same parameter values are used for Fig. 5(a) as
were used for the deterministic results presented in Fig. 2(e).
Comparing these two plots, timing-jitter reduction occurs in
the main resonance self-locking regions, and in some of the
higher-order resonant regions. The largest reduction in the
timing jitter is achieved toward the center of the main reso-
nance. The regions of destabilized pulse streams in Fig. 5(a)
(dark-red regions indicating a large timing jitter) correspond
to the nonperiodic regions of Fig. 2(e) (white regions). The
influence of the feedback delay length on the timing jitter
reduction can clearly be seen in this plot. In the first-order
resonant regions of τ1 the timing-jitter reduction is greater
than in the first-order resonant regions of the smaller delay
time τ2. In Fig. 5(b) the repetition rate, 1/TISI, is plotted and it
can be seen that changes in the repetition rate occur across the
resonant regions. The largest deviations in the repetition rate
occur along the long axis of the main resonant regions.
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FIG. 6. (a) Calculated timing jitter (blue) and repetition rate (red) as a function of τ1 for dual (markers) and single (solid lines) cavity
feedback. The gray dashed line indicates the timing jitter of the solitary laser. (b) Timing jitter as a function of τ1 and τ2 for the dual feedback
case. The yellow dotted line indicates the τ1 and τ2 values used in (a). Parameters: K = 0.1, k = 0.2, D = 3.2 ns−1; other parameters as given
in Table I.

As timing-jitter reduction and repetition-rate tuning can
also be achieved with a single feedback cavity we compare the
performance with the dual-cavity case. In Fig. 6(a) comparison
of the long-term timing jitter and the repetition rate tuning is
made between free-running operation, single- and dual-cavity
feedback. In this case, n = 120 000 round trips is used in
the long-term timing jitter calculation, due to the increased
length of the long cavity. Figure 6(a) shows the timing jitter
in blue and the repetition rate in red, as a function of the
long delay time (which in the case of single-cavity feedback
is the only delay time). The solid lines show the results for
single-cavity feedback and the markers depict the dual-cavity
feedback results. The horizontal dashed gray line indicates
the timing jitter of the solitary laser. For dual-cavity feedback
the corresponding short-cavity delay times are indicated by the
yellow dotted line in Fig. 6(b), in which the long-term timing
jitter is plotted as a function of τ1 and τ2 for the parameter
values corresponding to Fig. 4(d).

The single-cavity feedback results in Fig. 6(a) show timing
jitter reduction at the main resonances (blue line). In between
the main resonances there is a narrow τ range where the timing
jitter is increased. These regions correspond to where the
solution jumps from one main resonance self-locking region
to the next. This can also be seen in the repetition rate (red
line). Within one main resonance self-locking region there is
an approximately linear change in the repetition rate, followed
by sudden jumps at the transition between resonance regions.
In the dual-cavity feedback case, through the addition of the
short cavity, the τ1 self-locking range for a main resonance is
greatly increased. This is seen clearly by the linear change in
the repetition rate over nearly the entire depicted τ1 range (red
markers), resulting in a three-fold increase in the repetition rate
tuning range, as compared with single-cavity feedback. Over
this entire range a substantial reduction in the timing jitter is
also achieved (blue markers).

For the feedback parameters used in Fig. 6(a) the reduction
of the long-term timing jitter is not as good in the dual-cavity

feedback case as in the resonant single-cavity feedback case.
Several factors contribute to this. First, for the comparison
between single- and dual-cavity feedback the total feedback
strength was chosen to be the same, K = 0.1, meaning that in
the dual-cavity feedback case the contribution from the long
cavity, which has the greatest effect on long-term timing jitter
reduction, is only Kk = 0.02. If the feedback strength of the
longer cavity is increased, better timing jitter reduction can
be achieved. Second, the long-term timing jitter does not fully
describe the timing stability of the system. It gives an indication
of the timing stability over many thousands of round trips in the
laser cavity, but contains no information on timing fluctuations
on short timescales. However, short timescale fluctuations are
important to consider when implementing optical feedback, as
noise can excite resonant oscillations in the feedback cavities.
These manifest themselves as periodic fluctuations in the
amplitude and interspike interval time of the mode-locked
pulses, the frequency of which is determined by the feedback
delay time (1/τ ). The damping of such fluctuations depends on
the feedback strength, the delay time, and, in the dual-cavity
feedback case, on the length of the second cavity, as will be
discussed next.

In Fig. 7(a) power spectra are shown for the single- and
dual-cavity feedback cases corresponding to the delay times
marked by the vertical dotted line in Fig. 6(a). The main
peak in the spectra is at the repetition frequency of the pulsed
output. The noise-induced resonant oscillations in the feedback
cavities manifest themselves as peaks in the sidebands of the
main peak. These can clearly be seen in the single-cavity
feedback case (blue line). The separation of the side peaks
is approximately 1/τ ≈ 40 MHz. The presence of these side
peaks means that the interspike interval time oscillates even
though the long-term timing jitter is relatively small. In the
dual-cavity feedback case these oscillations are suppressed
due to the presence of the short cavity. The damping of these
oscillations occurs because they are not resonant with the short
cavity; i.e., the fundamental frequency of the short cavity
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is 1/τ2 ≈ 2 GHz, which is much greater than the 40-GHz
fundamental frequency of the long cavity. Therefore, the pulse
train is more regular on short to intermediate timescales in the
dual-cavity feedback case as compared with the single-cavity
feedback case.

Depicted in Fig. 7(b) are the corresponding phase noise
spectra. These are calculated from the power spectra in Fig.
7(a) by dividing them by the power integrated over the main
peak. The frequency axis gives the offset from the main
peak. In experiments, such as those discussed in the next
section, the phase noise spectra are used to determine the
root-mean-square timing jitter.

The dual-cavity configuration can be chosen in such a
way that the long-term timing jitter reduction is greater than
in the single long-feedback-cavity case. This is achieved by
increasing the length of the short cavity and selecting a
resonance that is not a factor of the long cavity. In such a
configuration, the suppression of the resonant oscillations,
combined with the increased contribution to the timing-jitter
reduction from the short cavity (due to its increased length),
leads to a lower long-term timing jitter than with a single long
cavity with the same total feedback strength. This is verified
numerically, e.g., for the single-cavity feedback case, with
τ = 500 TISI and K = 0.1, σlt = 0.23 fs is calculated and in
the dual-cavity case, with τ1 = 500 TISI, τ2 = 270 TISI, k = 0.5
and K = 0.1, σlt = 0.18 fs is calculated (all other simulation
parameters as in Table I).

In the experimental results section following below, the
predicted behavior of timing-jitter reduction and side-peak
suppression with dual-cavity feedback are verified by an initial
experimental investigation.

D. Influence of amplitude-phase coupling and feedback-phase
dependence

In the results presented thus far the amplitude-phase
coupling and feedback phase-shifts were set to zero. Here
we address the influence of these parameters. Similar to the
case of single-cavity feedback all the general behavior of the
modeled mode-locked laser are the same when amplitude-

phase coupling is included [10]. Figure 8 shows a map of
the number of pulses in the laser cavity as a function of τ1

and τ2 for α1 = α2 = 1. We have chosen low values for the
amplitude-phase coupling, as these are typical of quantum-dot
materials [26–28], and in the following section experimental
results for a quantum-dot mode-locked laser are presented.
Comparing Fig. 8 with Fig. 2(e), the same general patterns are
present, i.e., when both feedback cavities are resonant there is
one pulse in the laser cavity and at higherorder resonances there
can be multiple feedback-induced pulses. However, the main
resonance self-locking regions are smaller and not as regular in
shape and size. This is partly due to the phase sensitivity of the
system. Due to the nonzero amplitude-phase coupling there
is a carrier-induced shift in the optical frequency of the laser.
This shift is affected by all laser and feedback parameters.
Therefore, because Eqs. (1)–(3) are in the rotating frame of
the carrier frequency for zero-amplitude phase coupling, there
is a dynamical shift in the phase difference between the laser
and feedback cavities, and this phase difference changes with
τ1 and τ2.

29.5 30.0 30.5 31.0

τ2 (TISI,0)

99.5

100.0

100.5

101.0

τ 1
(T

I
S

I
,0
) P

u
lses

1

2

3

4

5

6

7

8

9 − 14

NP

FIG. 8. Number of pulses in the laser cavity as a function of τ1 and
τ2. NP indicates nonperiodic dynamics. Parameters: Jg = 0.08 ps−1,
Jq = 0.3 ps−1, αg = αq = 1; all other parameters as given in Table I.
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Figure 9 shows the timing jitter as a function of the feedback
phase of the short cavity C2 for up- and down-sweeps of
the initial conditions. For all delay lengths depicted a clear
phase dependence can be seen, changes in the phase over a
range of 2π can lead to large increases in the timing jitter.
Figures 9(a) and 9(b) also show hysteresis. As with single-
cavity feedback the phase dependence seems to decrease with
increasing feedback delay times [9]. In Fig. 9 this is shown
by the increased C2 ranges over which the timing jitter is
constant as τ2 is increased. However, the system appears to
be more sensitive to the phases of the feedback cavities than
in the single-cavity feedback case. Experimentally, this might
make tuning the repetition rate difficult; however, as will be
shown in the subsequent section, dual feedback configurations
that lead to a substantial improvement in the timing jitter
reduction can be found. It should also be noted that factors that
lead to fluctuations in the feedback phases in an experiment
can affect both feedback cavities. In Fig. 9 C1 was kept
constant. Changing both phases in some consistent way may
led to improved results. Last, these results do not exclude
the possibility of solutions or parameter regimes in which
less phase sensitivity is exhibited, as the system is highly
multistable and solutions found numerically depend strongly
on the initial conditions.

IV. EXPERIMENTAL RESULTS

The passively mode-locked laser under investigation is a
2-mm-long two-section InAs/InGaAs quantum dot laser with
a 10% absorber section and cleaved facets. The laser emits
an optical pulse train with picosecond-short optical pulses at
wavelengths around 1250 nm, with a repetition rate of 20 GHz,
corresponding to the repetition rate of the simulated laser in
the previous sections. The gain section current is 57 mA and
a reverse-bias voltage of 4 V has been used. The developed
experimental setup is depicted in Fig. 10. This setup allows
for fine-delay tuning of both external cavity lengths. The laser
light is collimated by an aspheric lens and a part of the beam
is reflected by a 50/50 beam splitter (BS1) onto a mirror
(M1), which is mounted on a fine-delay translation stage. The

BS1 BS2

PML QDL

Mirror 1

Mirror 2

Isolator

Power 
meter

Detector

Fiber coupler
Optical spectrum

analyzer

ESA

NDF NDF

FIG. 10. Sketch of the experimental setup used to study the
influence of dual-cavity optical on the timing jitter and emission
dynamics of a two-section quantum dot mode-locked laser. BS1 and
BS2, 50/50 beam splitters; M1 and M2, feedback mirrors; NDF,
neutral density filters.

transmitted light is again split by a 50/50 beam splitter (BS2)
and directed to the second mirror (M2), which is also mounted
on a translation stage. The beam is directed through an optical
isolator (60-dB isolation) to suppress possible back-reflections
from the fiber coupling. Emission analysis is performed using
a high-frequency photodetector (50 GHz) with an amplifier
and electrical spectrum analyzer (50 GHz), and an optical
spectrum analyzer (resolution 20 pm).

The chosen dual-cavity feedback delay lengths are 15.9
m for the short cavity and 33.4 m for the long cavity, which
correspond to pulse round-trip frequencies of 9.4 and 4.5 MHz,
respectively. The feedback strengths are 0.22 % of the output
power for the short cavity and 1.7 % for the long cavity.

As in the simulations, the timing jitter is quantified by
the long-term timing jitter σlt, which is calculated from the
experimentally measured root-mean-square timing jitter σrms,
for an integration range from 100 kHz to 1 GHz, according to
Ref. [10]. The measured radio frequency spectra used for this,
for free-running operation, short-cavity feedback, long-cavity
feedback, and dual-cavity feedback, are depicted in Fig. 11(a).
For the dual-cavity feedback measurement the fine-delay of
each cavity was adjusted for maximum timing-jitter reduction.
Comparing with the theoretical results, this corresponds to
moving the operation point to the main resonance region. The
single-cavity feedback measurements were then carried out
with exactly the same delay lengths by blocking the light from
the second cavity. As a first experimental measure to quantify
the improvement of timing jitter, the line widths �f of the
measured power spectra are considered. In the free-running
operation, a Lorentzian line shape is observed with �f =
1.24 MHz (purple line). When single-cavity short feedback
is applied to the laser, a reduction in line width to 391 kHz
is observed together with the appearance of noise resonances
at multiples of the short-feedback round-trip frequency (green
line). For single-cavity long feedback, a further reduction in the
line width to 3.8 kHz is measured (blue line). For dual-cavity
feedback, �f amounts to less than 1 kHz (orange line).
For both single-cavity feedback configurations the expected
noise resonances at the respective round-trip frequencies are
visible. In contrast, for dual-cavity feedback only a single but
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highly reduced noise resonance at 9.4 MHz is apparent. The
reduction of the noise resonances in the dual-cavity feedback
configuration amount to 58 dB at frequencies corresponding to
the long cavity and 37 dB for the frequencies corresponding to
the short cavity. In Fig. 11(b) the measured timing-phase noise
power spectral density is plotted as a function of the offset
frequency from the fundamental mode-locked frequency. For
the laser without feedback an integrated root-mean-square
timing jitter of σrms = 1.94 ps is obtained, corresponding to a
σlt of 13.5 fs. Applying single-cavity short feedback, the timing
jitter is increased to σlt = 13.8 fs (σrms = 1.98 ps). This slight
increase in the timing jitter is due to the delay length having
been optimized for the dual-cavity feedback configuration,
since the feedback contribution from the short cavity is
very small the delay length is not simultaneously optimized
for the single-cavity feedback case (i.e., the total feedback
strength effects the repetition rate and hence the resonant
feedback delay lengths). For long-cavity feedback a timing-
jitter reduction is measured, with a σlt of 5.2 fs (σrms = 739 fs).
For the dual-cavity feedback, we observe a substantially
reduced timing jitter, with σlt = 0.07 fs (σrms = 10.5 fs). These
results are in agreement with the trends reported in Ref. [29]
and with the calculations presented in the previous section.

For these initial experimental results the focus was on
timing-jitter reduction and the suppression of the noise-
induced feedback cavity resonances. Therefore, in contrast to
the simulation results given in Fig. 6, the feedback strength of
the long cavity was chosen to be greater than that of the short
cavity. The small contribution to the feedback from the short
cavity effectively suppresses the resonant oscillations, thereby
improving both the short-term and long-term timing stability,
as predicted in the previous section.

In the experimental radio frequency and phase noise spectra
the feedback resonance side peaks are much larger than in
the simulation results. This is because in the experiment
the feedback cavities are substantially longer than in the
simulations, τ1 ≈ 3000 TISI compared with τ1 ≈ 500 TISI (very
long delay lengths are impractical to simulated due to long-
lived transients) and therefore the noise-induced oscillations
are significantly less damped. The shift in the position of the

main peak is due to the varying degrees of frequency pulling
caused by the single- and dual-cavity feedback configurations
[Fig. 11(a)].

V. CONCLUSIONS

The influence of dual-cavity optical feedback on the
emission dynamics of a passively mode-locked laser, emitting
a pulse train at a repetition rate of 20 GHz, has been
numerically investigated. In dependence of the feedback delay
times and feedback strength the system exhibits fundamental
mode-locking, harmonic mode-locking, quasiperiodic and
chaotic dynamics, and feedback-induced satellite pulses. We
find a nearly periodic dependence of the dynamics on the
two delay times and identify main resonance self-locking
regions. We find that the width of the self-locking region
increases for longer feedback delay times and that frequency
pulling occurs along these regions. Within the self-locking
regions fundamental mode-locking occurs and timing-jitter
reduction can be achieved. The greatest timing-jitter reduction
is found toward the center of the main resonance regions. When
both feedback delay lengths are tuned appropriately within
the self-locking range, simultaneous timing-jitter reduction
and repetition rate tuning is found numerically. Based on
the numerical simulations we predict that the repetition rate
tuning ranges can be increased with dual-cavity feedback as
compared with single-cavity feedback, and that by choosing
appropriate resonant feedback delay lengths, improved timing-
jitter reduction can be achieved due to the suppression of noise-
induced oscillations. The suppression of these oscillations
leads to improved timing stability on both short and long
timescales in the dual-cavity feedback case.

Initial experimental investigations have been carried out
using a dual-cavity setup with two fine-delay tunable external
cavity lengths, the results of which are in good agreement with
the theoretically predicted trends. Experimentally, a maximum
root-mean-square timing-jitter reduction up to a factor of 180
has been found with respect to the free-running laser and
up to a factor of 70 as compared to the single long-cavity
configuration. A maximum noise resonance reduction of

022205-10



DYNAMICS OF A PASSIVELY MODE-LOCKED . . . PHYSICAL REVIEW E 93, 022205 (2016)

58 dB, with respect to the single long-cavity case, is observed
when both feedback cavities are resonant.

Thus, we state that dual-cavity optical feedback shows great
promise for ultranarrow line width, passively mode-locked
semiconductor lasers without residual noise resonances at
multiples of the external-cavity round-trip frequencies.
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[6] D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch,
M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisen-
stein, Comparison of dynamic properties of ground- and excited-
state emission in p-doped InAs/GaAs quantum-dot lasers, Appl.
Phys. Lett. 104, 181101 (2014).

[7] M. T. Crowley, David Murrell, Nishant Patel, Magnus Breivik,
Chang-Yi Lin, Yan Li, Bjorn-Ove Fimland, and L. F. Lester, An-
alytical modeling of the temperature performance of monolithic
passively mode-locked quantum dot lasers, IEEE J. Quantum
Electron. 47, 1059 (2011).

[8] A. G. Vladimirov and D. V. Turaev, Model for passive mode
locking in semiconductor lasers, Phys. Rev. A 72, 033808
(2005).
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noise reduction of modelocked quantum-dot lasers by time-
delayed optoelectronic feedback, Electron. Lett. 49, 557
(2013).

[21] E. A. Avrutin and B. M. Russell, Dynamics and spec-
tra of monolithic mode-locked laser diodes under exter-
nal optical feedback, IEEE J. Quantum Electron. 45, 1456
(2009).

[22] A. G. Vladimirov, D. V. Turaev, and G. Kozyreff, Delay
differential equations for mode-locked semiconductor lasers,
Opt. Lett. 29, 1221 (2004).

[23] A. Panchuk, D. P. Rosin, P. Hövel, and E. Schöll, Synchroniza-
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