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Solitons riding on solitons and the quantum Newton’s cradle
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The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation
is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin
the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case
of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling
hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study
the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark
soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the
other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process.
This periodic evolution is an analog of the classical Newton’s cradle.
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I. INTRODUCTION

Bose-Einstein condensation occurs when a dilute gas of
bosonic atoms is cooled below a critical temperature where a
considerable fraction of the atoms occupy the same quantum
state according to Bose-Einstein statistics. Bose-Einstein
condensates (BECs) were first theorized by Bose and Einstein
in the 1920s [1] but not experimentally realized until 1995
[2–4]. Typically, rubidium or sodium atoms are used and are
cooled to nanokelvin temperatures using a combination of laser
and evaporative cooling. The condensate is held in position by
a combination of magnetic and optical traps. For sufficiently
low temperatures, the mean field dynamics of BECs in a
quasi-one-dimensional (1D) trap can be accurately described
by the so-called Gross-Pitaevskii (GP) equation that is a variant
of the nonlinear Schrödinger (NLS) equation incorporating the
external trapping potential [5]. By appropriately adimension-
alizing time, length, and energy (see Ref. [5] for details), it is
possible to cast the 1D GP equation as

iut = − 1
2uxx + g|u|2u + VMTu, (1)

where the rescaled condensate wave function is given by
u(x,t), VMT(x) is the effective 1D (magnetic) trapping potential
confining the BEC, and g = ±1 indicates whether the atoms
have an attractive (g = −1) or repulsive (g = +1) scattering
length. This 1D reduction of the system is achieved by the
so-called cigar-shaped external trapping potential for which
two transverse directions are tightly confining (such that,
effectively, only the ground state along these direction is
possible), while the longitudinal (in our case x) direction is
loosely trapped allowing for the dynamics of Eq. (1) to evolve
along this direction.
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Since the experimental realization of Bose-Einstein con-
densation, the study of this new form of matter has been
the focus of intensive theoretical and experimental efforts
[5–7]. BECs continue to be a test bed for accessing quantum
mechanics at a macroscopic level, allowing for direct obser-
vation of matter-wave solitons [5,8]. Under strong transverse
confinement in two spatial directions, a BEC can be rendered
effectively quasi-1D [5]. In this case, depending on the sign
of the scattering length between the BEC entities (usually
alkali-metal atoms), it is possible to observe bright [9–11]
(for attractive interactions) and dark [12–15] (for repulsive
interactions) solitons. In the present work, we are interested
in studying the collective dynamics of chains of these 1D
solitons and, specifically, the possibility of stable solutions
that coherently propagate compression waves along the soliton
chain.

Solitons are ubiquitous nonlinear waves that occur in a
wide range of physical systems such as plasmas, molecular
chains, optical fibers, and long water waves [16]. In many
physically relevant setups solitons are extremely robust (with
respect to parametric perturbations) and stable (with respect
to configuration perturbations). They can interact elastically
with other solitons, travel long distances, and travel through
inhomogeneities with minimal deformation and dispersion.
This striking stability relies on the balance between dispersion
and nonlinearity. For instance, in the absence of external
trapping (VMT = 0) and for the case of an attractive condensate
(g = −1), the homogeneous background GP (1) accepts exact
bright soliton (BS) solutions of the form [5,17]

ubs = asech{a[x − ξ (t)]}ei[vx+φbs(t)], (2)

where a is the amplitude (and inverse width) of the soliton,
ξ (t) = vt + ξ0 is its position (ξ0 being its initial location), and
its phase is given by φbs(t) = (a2 − v2)t/2 + φ0 (φ0 being its
initial phase). On the other hand, in the case of a repulsive
condensate, for a homogeneous and stationary background
density, the GP equation (1) accepts exact dark soliton (DS)
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solutions of the form [18,19]

uds = √
n0[Btanh{√n0B[x − ξ (t)]} + iA] eiφds(t), (3)

where n0 is the density of the constant background that
supports the DS, ξ (t) is its position as defined above for a
BS, and its phase is given by φds(t) = −n0t + φ0 (φ0 being
its initial phase). The parameters of the DS are related by the
following expressions: A2 + B2 = 1 and v = A

√
n0.

In this work we study the collective dynamics of chains of
interacting bright and dark solitons. The paper is organized
as follows. The next section is devoted to summarizing the
dynamical reduction where the evolution of a chain of well
separated and nearly identical solitons can be reduced, for both
BSs and DSs, to a chain of effective particles connected with
nonlinear springs modeled by the fundamental Toda lattice on
the soliton’s positions. Section III is devoted to constructing
appropriate initial conditions for the original GP equation to
support Toda lattice solitons riding on chains of BSs and DSs,
aka hypersolitons. We present numerical results from direct
integration of the GP equation which very closely match
the solutions of the corresponding Toda lattice prediction.
We describe the robustness of the constructed hypersoliton
solutions and present some typical collision scenarios. Also, in
this section, motivated by the presence of harmonic trapping in
typical BEC experiments, we study the effects of considering a
finite soliton chain that is confined at the bottom of the external
potential. Specifically, we present numerical results for a finite
chain of DSs held together by an external harmonic trap giving
rise to dynamics that are akin to the oscillations of the classical
Newton’s cradle. Finally, in Sec. IV we summarize our results
and present possible avenues for further research.

II. DYNAMICAL REDUCTION FOR SOLITON CHAINS

For completeness, in this section we summarize established
results on the dynamical reduction for chains of BSs and DSs.
As is known, under suitable conditions, both systems reduce to
a Toda lattice on the position of the solitons. Hence, as shown
below, by initializing the soliton train’s positions and velocities
according to the Toda lattice soliton, a traveling compression
pulse can be sustained. We also present in this section some
numerical results elucidating the stability properties of such
chains and contrast the corresponding dynamical stability
between BS and DS chains.

A. Bright soliton chains

The BS solution (2) describes the coherent evolution of a
density heap on a zero background in an attractive quasi-1D
BEC in the absence of an external confining potential. When an
external trapping potential is included and/or in the presence
of other BSs, the BS is perturbed inducing a deformation of
its shape. However, under small perturbations, and noting that
BSs are robust, it is possible to approximately describe the
dynamics of the BS by the ansatz (2) as long as its amplitude,
width, position, velocity, and phase are dynamically adjusted
to follow accurately the actual solution of the system. For
instance, in the presence of a magnetic trap of the form

VMT(x) = 1
2�2x2, (4)

where the strength of the trap � is small (compared to the
soliton width), a single BS solution will undergo left-to-right
periodic oscillations of frequency � [20–23]. On the other
hand, the presence of another BS, provided that both solitons
have similar amplitudes and velocities and that their separation
is large compared to their widths [ensuring that their shape can
still be approximated by Eq. (2)], their interaction dynamics
can be reduced to a set of coupled ordinary differential
equations (ODEs) [24–29]. These reduced ODEs depend on
all the parameters of the solitons. Namely, defining a vector of
time-dependent parameters Pi = (ai,ξi,vi,φi) for the ith soli-
ton containing, respectively, its amplitude, position, velocity,
and phase, the dynamics for the BSs can be approximately
described (under the above mentioned conditions) by a set of
coupled ODEs on the parameters Pi as [24–27]

ȧj = 4a2
j (Sj,j−1 − Sj,j+1),

v̇j = −4a2
j (Cj,j−1 − Cj,j+1),

ξ̇j = vj − 2(Sj,j−1 + Sj,j+1), (5)

δ̇j = a2
j + v2

j

2
− 2vj (Sj,j−1 + Sj,j+1)

+ 6 νj (Cj,j−1 + Cj,j+1),

where

Sj,n = e−|an(ξj −ξn)|an sin(sj,nφj,n),

Cj,n = e−|an(ξj −ξn)|an cos(φj,n),

φj,n = δj − δn − vn(ξj − ξn),

sj,j−1 = 1 = −sj,j+1. (6)

It is important to mention that for the above reduction to be
valid it is necessary that the following conditions are satisfied.
(a) All BSs must have similar amplitudes and velocities;
specifically, it is required that |aj − an| � ā and |vj − vn| �
v̄, where ā and v̄ are, respectively, the average amplitude and
velocity of the solitons in the chain. (b) All contiguous BSs
have to be well separated; specifically it is required that ā|ξj −
ξn| � 1. (c) All BSs satisfy the height-separation constraint:
|aj − an||ξj − ξn| � 1. For our particular consideration, we
are interested in a chain of well-separated, almost identical
(ai ≈ a), BSs. Under these conditions, the equations of motion
for an infinite chain of ordered (ξi < ξi+1) BSs can be further
simplified to (see Ref. [30] and references therein)

ξ̈i = σi−1,i 4a3 e−a(ξi−ξi−1) − σi,i+1 4a3 e−a(ξi+1−ξi ), (7)

where σi,j = ±1 is determined by the relative phase of
consecutive (|i − j | = 1) BSs. Namely, σi,j > 0 corresponds
to out-of-phase (OOP) BSs (|φj − φi | = π ) and σi,j < 0
corresponds to in-phase (IP) BSs (φj − φi = 0). This means
that OOP BSs experience mutual repulsion, while IP BSs
experience mutual attraction. It is evident that a homogeneous,
equidistant chain of BSs described by Eq. (7) is a fixed point of
the system. Furthermore, it is straightforward to prove that this
fixed point in the reduced model is unstable in the case of IP
BSs and it is neutrally stable for OOP BSs. However, stability
of the fixed point in the reduced model does not imply stability
of the steady state of the original GP system. In fact, stability of

022202-2



SOLITONS RIDING ON SOLITONS AND THE QUANTUM . . . PHYSICAL REVIEW E 93, 022202 (2016)

FIG. 1. Dynamics of a slightly perturbed equidistant chain of
12 BSs of amplitude ai = 1 in the periodic domain x ∈ [−54,54],
namely with a separation of r0 = 9. The top-left and top-right panels
depict, respectively, the spatiotemporal evolution of the (square root
of the) density |u(x,t)| for the IP and OOP initial chains. The initial
conditions are set as the numerically exact steady states found by
Newton iterations and then the BSs positions are perturbed with
randomly distributed displacements between −r0/18 and r0/18. The
dashed lines represents the orbits obtained from the corresponding
reduced Toda lattice model (9) (for the IP case this model can
only be integrated until the first collision time for t � 50). The
bottom two panels depict the phase difference between consecutive
density maxima. These correspond to the relative phases 	φ

between consecutive BSs (top and bottom subpanels corresponding,
respectively, to the IP and OOP cases).

the reduced model is a necessary, but not sufficient, condition
for stability of the original GP system.

Since we are interested in excitations of the homogeneous
chain, let us first study their stability. In Fig. 1, we depict
typical time evolutions corresponding to an IP (top-left)
and OOP (top-right) BS chain. The system is initialized
using the numerical steady state of the GP system with
periodic boundary conditions—found using a standard fixed-
point iteration algorithm (Newton’s method)—with a small
perturbation. As can be seen in the figure, both the IP and the
OOP cases are unstable. The nature of the instability seems,
however, different. The IP case, which we know that even
in the reduced ODE model is unstable due to the mutual
attraction between BSs, seems to be strongly unstable. The
instability is manifested by two neighboring BSs coalescing
as early as t ≈ 50. This instability is easy to understand since

a small perturbation will induce two neighboring BSs to be
slightly closer than its other neighbors, thus accelerating the
process of attraction and hence leading to a rapid collision
between these two BSs. On the other hand, in the OOP case,
the reduced chain is neutrally stable and, thus, perturbations
with respect to the positions of the BSs from the equidistant
chain should not cause instabilities. As shown in the top-right
panel of Fig. 1, this is the case for intermediate times (t < 500)
where the mutual repulsion between BSs is responsible for
collision avoidance between neighboring BSs. Nonetheless,
as the panel shows, for later times, t ≈ 575, a collision
between neighboring BSs does indeed occur. The presence
of a collision is unequivocal evidence that the involved BSs
were not OOP when they collided. In fact, the loss of the OOP
property between consecutive BSs is precisely what induces
the instability of the otherwise OOP initial BS chain. The
desynchronization between the phases can be clearly seen
in the bottom two subpanels of Fig. 1. The panels depict
the time evolution of the relative phase between consecutive
BSs that initially start in the IP (top subpanel) and the OOP
(bottom subpanel) configurations. It is clear that the OOP
property between consecutive BSs is approximately held for
intermediate times (see t < 500 in the bottom subpanel),
ensuring the mutual repulsion between consecutive BSs and,
thus, stability for the chain. However, it is also clear that
the OOP property gets progressively worse until a pair of
consecutive BSs have a zero relative phase between them;
i.e., they are IP around t = 575, inexorably leading to their
collision.

To further understand the nature of the instability, we
have computed the Bogolyubov-de Gennes (BdG) stability
spectrum for the IP and OOP steady states of the GP system.
The BdG spectrum is computed by considering perturbations
from the steady state u0(x) of Eq. (1) of the form

u(x,t) = {u0(x) + ε[a(x)eλt + b(x)e−λ∗t ]}e−iμt , (8)

where μ is the so-called chemical potential (or [the negative
of] the temporal frequency) of the solution, λ is the eigenvalue
with associated eigenvector {a,b∗}, and (·)∗ stands for complex
conjugation. After applying the perturbation ansatz (8) into
the GP equation (1) and linearizing the ensuing equation,
one obtains an eigenvalue problem with a corresponding
eigenfunction w(x) = a(x) + b∗(x) at t = 0. After computing
the spectrum, any eigenvalue λ = λr + iλi with a positive real
part (λr ) indicates an unstable eigenfunction. The spectrum
associated with the IP and OOP steady states is depicted,
respectively, in the left and right top panels of Fig. 2. As
can be noticed, the OOP spectrum has a handful of complex
eigenvalues with a small (λr < 0.02) real part indicating a
weak instability. In contrast, the IP case reveals a larger (purely
real) instability with max(λr ) ≈ 0.123, indicating a stronger
instability. Closer inspection of the unstable eigenfunctions
(see bottom set of panels in Fig. 2) reveals that the insta-
bilities manifest themselves as local translational modes for
consecutive BSs in the opposite direction and, thus, bringing
them closer to each other. We have checked that the stability
results above (cf. Figs. 1 and 2) are very similar for other
values of the parameters such as amplitude, number, and
separation of the BSs, as well as different domain lengths.
Evidently, as more BSs are included in the system, a higher
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−0.1 0 0.1

−1

0

1

λr

λ
i

IP

−0.02 0 0.02λr

OOP

0
1

u

0
1

w

0
1

w

0
1

w

0
1

w

0
1

w

0
1

w

0
1

w

0
1

w

−20 0 20
−1

0
1

w

x
−20 0 20

x

FIG. 2. BdG stability spectrum for the steady state for a chain of
10 equidistant IP (top left) and OOP (top right) BSs in the periodic
domain x ∈ [−35,35]. The bottom set of panels depict, from top to
bottom, the steady state and the first nine most unstable eigenfunctions
where the real part is depicted by the blue (dark) solid line and the
imaginary part by the red (gray) dashed line.

degeneracy of the eigenvalues arises since all solutions and
eigenfunctions possess translational symmetry. Finally, it is
relevant to mention that the BS chain might be rendered stable
by a suitable choice of periodic lattice potential providing
stabilizing pinning for each BS located at the respective
minimum of the lattice potential [30,31]. However, we do not
explore this avenue further in this paper.

Since the IP BS chain is highly unstable, we focus our
attention on the case of the weakly unstable OOP chain.
Therefore, let us consider the case σi,j = +1 for which the
reduced equation of motion yields

ξ̈i = 4a3e−a(ξi−ξi−1) − 4a3e−a(ξi+1−ξi ), (9)

which has precisely the form of the celebrated Toda lattice [32]
that is further described below. It is important to mention at this
stage that the restriction of locked phases between BSs (IP or
OOP) is not necessary to obtain a Toda lattice-type model. In
fact, by allowing the phase of each BS to dynamically evolve,
the equations of motion (5) reduce to a complex Toda lattice
of the form [27]

q̈j = 2a(e−(qj −qj−1) − e−(qj+1−qj )), (10)

where the corresponding complex variable qj for this complex
Toda lattice is defined through the original BS’s parameters by

qj = aξj − j ln (a2) + i(jπ − vξj + δj + δ), (11)

where a and v are the ensemble average height and velocity
of the BSs, respectively, while ξj is the position of the j th BS
and the δj ’s are the BS phases and δ is their average.

It is relevant to note that more general NLS-type equations
also admit a similar dynamical reduction to the Toda lattice;
see, for example, the work of Ref. [33] on ultrashort light pulses
modeled by a modified NLS equation that includes nonlinear
dispersion. This “universal” reduction for the interaction of
BSs in 1D chains for NLS-type equations stems from the
fact that the BSs, when well separated, interact via their
exponentially decaying tail and hence the interaction terms
between them inherit a Toda lattice potential form. It is also
worth mentioning at this stage that the dynamical reduction of
interacting solitons of a continuous (partial differential equa-
tion) model to a lattice differential equation is not exclusive
to the NLS-type equations. For instance, using perturbation
theory, a chain of fluxons for the sine-Gordon equation can
be reduced to a lattice differential equation possessing, in
turn, localized solutions, or superfluxons, equivalent to the
hypersolitons that we construct in Sec. III [34,35].

B. Dark soliton chains

As was summarized in the previous section for the BS
chain, the case of DS chains is also known to reduce to a set
of ODEs on the DS parameters. This reduction is obtained
through DS perturbation theory, as described in detail in
Refs. [18,19,36–38]. In particular, considering a DS ansatz of
the form (3) for all DSs in a chain supported on a constant
background with density n0, the equations of motion are
approximately reduced to

ξ̈i = 8n
3/2
0 e−2

√
n0(ξi−ξi−1) − 8n

3/2
0 e−2

√
n0(ξi+1−ξi ), (12)

which, as for the BS chain, is a form of the Toda lattice [32]
on the DS positions.

The main difference between the reduced dynamics of
bright and dark solitons that is worth pointing at this stage
is that BSs can have mutual interactions that are repulsive
or attractive depending on their relative phases as described
above. On the other hand, DSs are always repulsive with
a decaying strength as their mutual distance is increased.
Therefore, the stationary homogeneous, equidistant, DS chain
is always stable. This is due to the fact that when displacing
a DS to the right, for example, the left neighbor will exert a
weaker repulsive force than that of the right neighbor, thus
providing a stabilizing net force towards the steady state.
This stability observation will be crucial when comparing the
dynamics of BS and DS chains from the GP model (1) and
their respective dynamical reductions (7) and (12).

C. Validation of the Toda lattice reduction

We now validate the dynamics obtained from the dynamical
reduction for both bright and dark soliton chains. In order
to numerically approximate an infinite lattice, we take a
periodic domain in the interval x ∈ [−L,L] and place the
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FIG. 3. Interaction dynamics for 12 DSs initialized at random
positions with random velocities in a periodic domain. The top panel
depicts the spatiotemporal evolution of the (square root of the) density.
The dashed lines represent the orbits obtained from the corresponding
reduced Toda lattice model (12). The middle panel depicts the DS
orbits for the original GP model (lines) and the orbits produced by
the reduced Toda lattice model (small dots). The DS orbits for the
GP model were extracted using a local (piecewise) fitting procedure
to the DS ansatz of Eq. (3). The bottom panel depicts the difference
between the GP and the Toda lattice orbits.

solitons equidistant from each other accounting for the periodic
boundary conditions. Thus, considering N solitons gives a
steady state equidistant configuration such that |ξi+1 − ξi | =
r0 for i = 1, . . . ,N − 1, where the distance | · | is measured in
the periodic domain such that |ξN − ξ1| = 2L − r0.

Let us first consider a BS chain. As we described earlier, the
perturbed equidistant chain evolves as depicted in Fig. 1 where
the top-left and top-right panels correspond, respectively, to the
IP and OOP cases. We have superimposed the corresponding
dynamics of the reduced ODE model of the BSs (9) using
dashed lines. As can be observed from the figure, in the IP
case (top-left panel) before the collision of the BSs (t < 50),
the ODE model very closely follows the BS dynamics. After
collision, the ODE model breaks down as the BS centers
coalesce and, thus, we only show the reduced ODE orbit up
to the first collision time. On the other hand, for intermediate
times, the OOP chain (top-right panel) does not suffer from the
collision of BSs as it assumes that all BSs are always OOP. The
resulting reduced ODE dynamics closely follows the original
GP dynamics for short times, but later deteriorates since,
as explained earlier, the BSs lose the OOP synchronization.
Nonetheless, for intermediate times, while the BSs are kept
separated, the reduced ODE model does reproduce the original
GP dynamics.

In contrast to the BS chain, the DS chain does not suffer
from phase-induced instabilities since DSs always repel each
other. As a result, the reduced ODE model for the DS chain
(12) provides a very robust model for the GP dynamics under
extended time evolutions for any initial condition, provided the
DSs are initially well separated. An example of the dynamics
from the reduced Toda lattice ODE (12) and the original GP
model is depicted in Fig. 3, where a collection of DSs placed
at random locations with random initial velocities evolves in
time. The top panel depicts the Toda lattice orbits overlayed
upon the corresponding GP solution. The middle and bottom
panels depict, respectively, the orbits and their difference
between the original GP and the reduced Toda lattice models.
It is clear from the figure that the Toda lattice model gives
an accurate prediction of the DS positions for the original GP
system for relatively long times.

III. TODA LATTICE SOLITONS

A. Preliminaries

Before constructing Toda lattice solitons on the chains
of bright and dark solitons, let us review the form of these
solutions for completeness. The Toda lattice is one of the
most popular spatio-temporal models in physics since, by
construction, it was designed as to prescribe a chain of
nonlinear oscillators with completely integrable evolution
[32]. As such, the Toda lattice possesses some exact solutions
that are the foundation for building more complex solutions.
In particular, the Toda lattice possesses periodic and localized
solutions [32]. Here we focus on the latter type of solutions
referred to as Toda solitons. The Toda lattice’s equations of
motion,

ÿn = VTL(yn+1 − yn) − VTL(yn − yn−1)

= Ae−b(yn−yn−1) − Ae−b(yn+1−yn), (13)

originate from the interaction of nearest neighbors in a
1D chain of coupled, unit mass, particles at positions yn,
interacting through the potential

VTL(	y) = A

b
e−b 	y + A	y. (14)
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Here 	y is the separation between particles and A and b

are positive parameters prescribing, respectively, the strength
and decay of the interparticle interactions. By following the
evolution of the particles through their mutual separation,

	yn = yn+1 − yn, (15)

and defining sn ≡ d(	yn)/dt , the equations of motion can be
rewritten in term of Sn = ∫

sndt as

ln

(
1 + S̈n

a

)
= b

m
(Sn+1 − 2Sn + Sn−1). (16)

Then it is straightforward to find solitary kink solutions for
this system in the form

sn = ±β

b
tanh (nκ ± βt) + const, (17)

where the kink velocity is c = β/κ and its amplitude β is given
by

β =
√

Ab sinh κ, (18)

where the width of the kink κ is a free parameter. It should
be noticed that this solution is stable and it corresponds to a
compression wave that travels through the lattice [32].

B. Toda lattice solitons: Hypersolitons

We now seek to use the soliton solution for the Toda lattice
(see previous section) to construct a Toda lattice soliton on the
reduced lattice equations for the bright and dark soliton chains.
Let us consider an equilibrium configuration consisting of a
chain of N equidistant solitons with separation r0 = 2L/N in
the periodic domain x ∈ [−L,L]. Both OOP [39] BS and DS
chains are reduced, respectively, to the Toda lattice chains (9)
and (12), where the Toda lattice potential parameters are given
in terms of soliton amplitude a for the BS chain and in terms
of the background density n0 for the DS chain. It is worth
mentioning that the uniform precompression experienced by
the periodic chain effectively corresponds to a rescaling on
the strength of the Toda lattice potential A. This is evident
when rescaling the soliton positions by a factor γ , yn = γ ỹn;
then the exponential interaction terms become Ae−b(yn−yn−1) =
Ae−bγ (ỹn−ỹn−1) = Ãe−b(ỹn−ỹn−1) where Ã = Ae−bγ .

Let us start by initializing the chain of BSs such that the
initial positions and initial velocities satisfy the corresponding
Toda soliton (17). An example of this case is depicted in Fig. 4
for N = 10 BSs in the periodic chain x ∈ [−43,43]. The top
panels depict the initial condition for the displacements from
equilibrium between solitons rn = ξn − ξn−1 − r0 (top left)
and their respective initial velocities ṙn (top right). As evident
from these panels, the kink (17) corresponds to a localized
compression wave for the soliton’s positions. It is worth
mentioning at this stage that, contrary to the homogeneous,
equidistant chain where 2L = N r0, for the chain initialized
with the Toda lattice solitons the length of the domain has to
be adjusted since we are introducing a compression wave to the
initial condition. Thus, we compute the length of the domain
by adding all the separations between consecutive solitons.
The bottom row of panels in Fig. 4 depicts the evolution of the
density after seeding the original GP equation with the Toda
lattice soliton initial conditions on a precompressed BS chain.

5 10

−2
−1

0

r n
(0

)

n 5 10
−0.1

0

0.1

n

ṙ n
(0

)

FIG. 4. Toda lattice soliton riding on a chain of N = 10 BSs in
the periodic domain x ∈ [−43,43]. The top panels depict the initial
conditions in terms of the relative displacements from equilibrium
rn(t = 0) (top left) and their corresponding velocities ṙn(t = 0) (top
right). The bottom-left and bottom-right panels depict the evolution
of the (square root of the) density of the original GP model initialized
with the Toda lattice soliton for, respectively, a total time equivalent
to two and ten cycles of the Toda lattice soliton around the periodic
domain. The dashed lines correspond to the reduced ODE model of
the Toda lattice (9).

As can be observed from the bottom left panel, the initialized
compression wave travels at the prescribed speed; for this panel
we set the final time to precisely 2L/(2c), namely, the time
needed by a Toda soliton to perform exactly two complete
cycles through the lattice. In the figure, the dashed lines
correspond to the Toda lattice soliton from the reduced ODE
model (9) which, for short times, accurately approximates the
full GP dynamics. However, as we have described before, the
BSs will eventually lose their OOP synchronization, leading
to the coalescence of two consecutive solitons. The first
coalescence occurs approximately at t = 125 for the rightmost
two solitons of the lattice. Nonetheless, after this coalescence,
the Toda lattice soliton seems to reform again, which, in turn,
suffers from the coalescence of more BSs as time progresses.
It is interesting to note that, although the reduced ODE should
fail after a BS pair loses its OOP synchronization and, as noted
in Ref. [27], for OOP initial conditions, the reduced ODE
model still captures the dynamics of the interacting chain for
some time. Nonetheless, as can be seen in the bottom-right
panel of Fig. 4, after longer integration times (ten full cycles
around the lattice), the Toda soliton does not preserve its shape
and other excitations start populating the dynamics, including
Toda solitons that apparently move in the opposite direction
to the original Toda soliton. By the same token, it is also
evident that the ODE description (see the dashed line) fails
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FIG. 5. Toda lattice soliton riding in a chain of N = 12 DSs on
a periodic domain. The top two rows of panels depict the initial
conditions in terms of the relative displacement from equilibrium
of the mutual distances rn(0) (top panels) and their corresponding
velocities (bottom panels). The middle and bottom rows of panels
depict, respectively, the evolution of the (square root of the)
density |u(x,t)| and its time derivative for the original GP model
initialized with the Toda lattice soliton. The left, middle, and right
columns correspond to increasingly large Toda lattice velocities for a
background density n0 = 1 and, from left to right, r0 = 6, r0 = 5, and
r0 = 4, which correspond, respectively, to c = 0.0180, c = 0.0489,
and c = 0.1329. The dashed lines correspond to the reduced ODE
model of the Toda lattice (12).

to capture the long term dynamics of the original GP system.
This is evidence that the unstable character of the BS chain due
to the desynchronization of the phases precludes satisfactory
modeling of the full GP system with the reduced ODE (9),
where all BSs are assumed to be OOP.

Let us now turn our attention to the DS case. Here the
problem of the desynchronization of the phases is naturally
avoided and thus it should be possible to observe Toda
solitons traveling stably through the DS chain. In fact, this is
precisely what we observe in our numerics for a wide range of
parameters for the DSs themselves and of the Toda soliton.
Figure 5 depicts three of such examples corresponding to
three difference Toda soliton initial velocities. The different
velocities are computed from the Toda lattice soliton solution
(17) corresponding to the reduced Toda model for the DSs (12)
for n0 = 1 and unperturbed initial separations r0 = 6, 5, and

4. The top panels in the figure depict the initial compression
wave (rn) and its initial velocity (ṙn). The middle row of panels
depicts the dynamics on the (square root of the) density (|u|)
together with the reduced ODE Toda model (12) superimposed
to it. The bottom row of panels depicts the time derivative of
the (square root of the) density (|u|t ), illustrating that outside
of the region of localization of the Toda soliton, there are no
perturbations indicating a stable, radiationless, propagation of
the Toda soliton. From now on, we dub such a solution a
hypersoliton as it is a (Toda lattice) soliton riding on a chain
of (dark) solitons. As shown in Fig. 5, the reduced Toda lattice
and, in particular, its Toda lattice solution, accurately describes
the behavior of the original GP model.

In order to further study the stability and robustness of the
crafted hypersolitons, we proceed to initialize the lattice with
an initial condition corresponding to a perturbed hypersoliton.
For instance, Fig. 6 shows the dynamical evolution after using
increasingly larger perturbations on the initial conditions.
Specifically, we chose the perturbation as follows. We extract
the maximum absolute value of the unperturbed displacements
rn given by Md = max(|rn|). Then each soliton’s initial
position is perturbed by a quantity chosen from a standard uni-
form set of random variables on the interval [−p Md,p Md ],
where p is a fixed proportion factor. The velocities are
perturbed in the same manner by defining Mv = max(|ṙn|)
from the unperturbed velocities ṙn and using uniform random
variables chosen on the interval [−p Mv,p Mv]. Figure 6
shows the evolution for the perturbed hypersoliton when
using a proportion factor p to be 30%, 50%, and 80%, from
left to right. It is remarkable that the addition of such high
levels of perturbation to the initial conditions (see top panels
in Fig. 6) does not destroy the hypersoliton. Instead, these
perturbations seem to just provide some background noise
over which the hypersoliton rides with minimal interaction.
This background noise is more clearly visible in the bottom
row of panels depicting the time derivative of the (square root
of the) density. This remarkable robustness of the hypersoliton
even after the addition of such large perturbations to the initial
conditions—that, in turn, develop into perturbations along the
whole domain—is due to two independent facts: (a) on the
one hand, DSs for the GP equation are very robust, a property
owing from their topological charge, and (b) the structural
stability of Toda solitons of the Toda lattice. These two stability
properties, at two distinct levels of the model, combine to give
the hypersoliton on the original GP model its robustness.

C. Toda lattice solitons: Hypersoliton collisions

Now that we have established the existence and stability of
the hypersoliton solutions in DS chains, it is possible to study
several dynamical aspects arising at this higher structural level.
For example, one can initialize the DS chain with two (or more)
hypersolitons and allow them to interact. It is expected that the
dynamics governing the interactions between hypersolitons
will be prescribed by the corresponding dynamics on the Toda
lattice. In particular, Toda lattice solitons collide elastically
without energy loss during the collision process. This is
precisely what we observe for a wide range of cases when
seeding two hypersolitons at different locations with different
initial speeds (if they have the same velocity, they will chase
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FIG. 6. Stability of the hypersoliton. The layout of the different
panels is the same as in Fig. 5. The initial condition corresponds to the
case of the middle column of panels of Fig. 5 (r0 = 5) with random
perturbations added to the initial condition. The initial condition is
perturbed by adding a random perturbation of size, from left to right,
30%, 50%, and 80% on the initial separations and velocities of the
DSs in the chain.

each other indefinitely). Figure 7 shows typical examples of
hypersoliton collisions. Specifically, the left, middle, and right
cases correspond, respectively, to (a) a head-on collision for
opposite velocities with the same magnitude, (b) a head-on
collision for velocities with different magnitudes, and (c) two
chasing hypersolitons where a faster one chases a slower
one until they collide. As the bottom panels show, all these

−1
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n

ṙ n
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FIG. 7. Hypersoliton collisions. The left, middle, and right
columns depict, respectively, the collision for (a) a head-on collision
with equal but opposite velocities, (b) a head-on collision with dif-
ferent speeds, and (c) a chasing collision where a faster hypersoliton
(seeded on the left) chases a slower hypersoliton (seeded on the right)
until they collide in a nonlinear fashion. All panels have the same
meaning and layout as previous figures.

collisions, as expected, are elastic (i.e., no energy is lost
from the traveling hypersolitons before or after the collisions).
It is interesting to note, as per the “particle” nature of the
hypersoliton structures, owed to their nonlinear character, there
is a shift in their paths when comparing their straight line
trajectories [in the (x,t) plane] before and after collision. This
effect is clearly visible in the last case of Fig. 7, where the
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fast soliton is advanced after collision while the slow one is
delayed after collision. This effect will be important as we
construct a quantum analog of the classical Newton’s cradle
using hypersolitons in a chain of DS trapped inside a confining
potential in the next section.

D. Quantum Newton’s cradle

We now proceed to study the effects of adding a confining
external potential [i.e., VMT 	= 0 in Eq. (1)], relevant to the
modeling of magnetically trapped BECs, on the dynamics of
hypersolitons supported by a finite DS chain. In the presence
of the external parabolic potential (4), a single DS exhibits
approximately harmonic oscillations with a frequency ω =
�/

√
2 (see Refs. [18,19,40–42] and references therein). This

result is valid in the so-called Thomas-Fermi limit correspond-
ing to the high density limit. Therefore, combining—through
perturbation theory—the mutual interactions between DSs and
the force exerted by the external trap yields [18,19]

ξ̈i = 8n
3/2
0 e−2

√
n0(ξi−ξi−1) − 8n

3/2
0 e−2

√
n0(ξi+1−ξi ) − ω2ξi, (19)

corresponding to the Toda lattice described by Eq. (12) with
an added on-site force generated by the external potential on
each of the DSs of the chain. The above model has not only
been validated numerically, but it has been used to predict the
normal modes of vibration for a small number of DSs in actual
experiments [43,44]. In fact, the Toda lattice with the on-site
potential (19) possesses a steady-state solution emerging from
the balance of the mutual repulsions between the DSs and
the attraction of the external trap towards the trap’s center.
This compressed steady state train of N DSs has N distinct
normal modes of vibration corresponding to the normal modes
of vibration of N coupled masses through (linear) springs with
springs at each end attached to rigid walls. For example, for
N = 2 there exist 2 normal modes of vibration corresponding
to the IP and OOP modes of vibration of the DSs [44].

Instead of studying further the normal modes mentioned
above, we opt here to emulate the dynamics of a classical
Newton’s cradle using a chain of solitons. The idea is to start
with an initial stationary chain of N DSs at the bottom of
the parabolic trap and then drop a single, outer, DS from a
position higher up in the trapping potential. This outer DS will
experience the force of the trapping potential and ride down
the external trap to collide with the stationary DS chain. The
collision excites a moving hypersoliton within the inner DS
chain. When the hypersoliton reaches the opposite extreme
of the inner DS chain, a single DS is expelled outward. This
new outer DS will ride up and down the trap until it hits the
inner DS chain, thus repeating the process of a soliton analog
of the classical Newton’s cradle. It is relevant to note at this
stage that a similar idea was experimentally achieved in a 1D
Bose gas of 87Rb atoms by initially splitting a wave packet
into two wave packets with opposite velocities. These packets
then evolve by going up and down the trap and periodically
colliding at the center [45]. Also, in Ref. [46], the authors
propose another quantum analog of a Newton’s cradle using a
BEC by partitioning the wave function using a periodic optical
lattice potential. In contrast, our method to create a Newton’s
cradle is based on the effective nonlinearity of the GP model
and the repulsive interaction dynamics between DSs.

It is also worth mentioning that there is some volume
of work that has studied the concept of hypersolitons and
Newton’s cradles in settings similar to the one we present
here. For instance, the work of Ref. [47] showed that in
an NLS model with third order dispersion, an initial large
bright spot (i.e., the coalescence of multiple solitons into a
single hump) “melts” into a chain of approximately equidistant
solitons for which a dominant one traverses the chain in a
manner akin to the hypersolitons hereby presented. A similar
study was presented more recently in Ref. [48] in the context
of PT -symmetric nonlinear couplers. However, in these two
works [47,48] the absence of an external potential, confining
the motion of the hypersolitons, precluded the observation of
multiple periodic collisions as in the classic Newton’s cradle
and only allowed for the hypersoliton to traverse once through
the soliton chain. Furthermore, in these works, the authors
used BSs for the chain and thus, as described above, obtained
only transient behavior as eventually the BS chain becomes
unstable. Perhaps closer in spirit to the Newton cradle that we
describe below is the work of Ref. [49], where the authors
propose a setting equivalent to ours that includes an external
harmonic trap but with BSs which, again, leads to instabilities
that preclude the observation of the desired cradle oscillations
for extended periods of time. In contrasts, as we show below,
by using the stable DS chain inside a harmonic trap, we are
able to produce dynamics akin to the classic Newton’s cradle
that persists for long times.

Figure 8 depicts three different attempts at recreating
a Newton’s cradle-type evolution with our setup. In these
examples, we use a stationary DS chain of N = 12 DSs placed
at the center of a magnetic trap of strength � = 0.01, namely
ω = 0.01/

√
2 [see Eq. (19)]. The stationary inner DS chain is

obtained by a standard fixed-point iteration (Newton’s) method
initialized with a chain of DSs with zero velocities positioned
at the steady state locations. Once the stationary inner lattice
is found, an extra, outer, DS is seeded away from it. The
distance of the outer DS to the inner DS chain is varied and
the resulting evolution is analyzed. The three cases depicted
in Fig. 8 correspond to, from left to right, an initial distance of
the outer DS of (a) 3r0, (b) 12r0, and (c) 20r0, where r0 is the
distance between the two innermost DSs of the central chain.
For case (a), corresponding to a short dropping distance of the
DS, the Newton’s cradle dynamics is observed for a couple
of periods but apparently the outer DS is “absorbed” by the
inner chain, resulting in a larger inner chain (i.e., N + 1 DSs)
that simply oscillates in the IP normal mode. The mechanism
whereby the outer DS is absorbed by the inner lattice hinges
on the fact that, although DS collisions are elastic, there is a
shift in the path of the DSs with respect to the before and after
collision trajectories, as was shown before (see discussion on
the last collision depicted in Fig. 7). The details of the outer DS
“absorption,” or rather the energy exchange between the outer
DS dynamics and the inner DS chain, is explained in Fig. 9.
This energy transfer is more clearly visible in the left-bottom
panel of Fig. 8 depicting the time derivative of the (square root
of the) density. In this panel, it is clear that during the first
hypersoliton excursion through the inner DS chain, there is
practically no scattering of energy in the inner chain. However,
as explained in Fig. 9, just after the hypersoliton ejects the
first DS, the inner chain has an extra DS on the left and is
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FIG. 8. Hypersoliton Newton’s cradle. A DS soliton (leftmost
one) is released at various distances away from a stationary lattice
of 12 DSs placed at the center of the parabolic trapping potential (4)
with � = 0.01. The DS is released at a distance equivalent to (a) 3r0

(left column of panels), (b) 12r0 (middle column of panels), and (c)
20r0 (right column of panels), where r0 is the separation between the
central DSs. All panels have the same meaning and layout as previous
figures.

missing one DS on the right and, thus, it is no longer close to
equilibrium and starts to oscillate. This is clearly visible in the
bottom-left panel of Fig. 8 for 300 < t < 500, where the inner
chain moves synchronously. This energy transfer mechanism
continues until all the energy of the outer DS is completely
depleted and the outer DS is absorbed by the inner lattice that
oscillates with its IP normal mode (results not shown here).

In order to avoid, or minimize, the energy transfer between
the outer DS and the inner DS chain, it is necessary to decouple
the dynamics of the outer DS and the inner DS chain. This is
achieved by increasing the dropping distance of the outer DS.
As can be seen in the case depicted in the middle column of

FIG. 9. Schematic of the mechanism for the loss of the hyper-
soliton Newton’s cradle through the synchronization of the outer DS
[see red (gray) circle] with the central DS chain [see black circles].
(a) Release of a DS from the left with a stationary DS chain in the
central region. (b) After the hypersoliton travels through the chain, the
rightmost DS is ejected to the right. The remaining central DS chain
is now asymmetric with respect to the center (see vertical dashed
line) and starts moving to the right. (c) Both outer DS and central DS
chains perform half an oscillation after their respective excursion up
the trap. (d) After the DS collides and transfers its energy (through a
propagating hypersoliton through the central DS chain) the leftmost
DS is ejected. The central DS chain still has the extra energy of
moving towards the left. (e) Both the DS and the central chain now
oscillate in the same direction (although slightly OOP). This process
continues until the energy of the outer DS is completely transferred
to the central chain and all that remains is a central chain undergoing
left-to-right oscillations in the IP normal mode.

panels in Fig. 8, the excursion of the outer DS has very little
effect on the inner chain motion. This can be explained because
in this case the outer DS travels faster through the inner chain
and, thus, the latter has less time to develop its IP normal mode.
Furthermore, as the period of the outer DS is different from the
period of the inner chain IP mode, subsequent excursions of
the outer DS do not synchronize with the IP mode. The outer
DS has a different period in the presence of the inner DS chain
because its trajectory in (x,t) is the concatenation of sinusoids
(when the outer DS is traveling up and down the external
trap on its own) and straight paths (when the hypersoliton
traverses the inner chain) [50]. Therefore, let us effectively
consider the two involved dynamics, namely the outer soliton
oscillations and the inner chain oscillations, as two coupled
oscillators. These oscillators can synchronize provided that
their periods are close to each other and that the coupling is
sufficiently strong [51]. This is precisely what happens for a
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FIG. 10. Long term evolution of the hypersoliton Newton’s cradle
corresponding to the case depicted in the middle column of Fig. 8.
Notice the beating of energy exchange between the outer DS and
the central chain. All panels have the same meaning and layout as
previous figures.

relatively small dropping distance, as depicted in the first case
of Fig. 8. However, as we increase the dropping distance, the
two coupled oscillators have increasingly different frequencies
and, at the same time, the coupling is reduced as the interaction
time between the two, given by the time it takes for the
hypersoliton to traverse the inner chain, is reduced because
of a faster hypersoliton speed. Thus, in principle, there should
be a threshold drop-off distance for which the Newton’s cradle
should be self-maintained. This is what seems to be occurring
in the case depicted in the middle column of Fig. 8, where
apparently a very small amount of energy is transferred to the
inner chain. To ensure that this small transfer does not destroy
the Newton’s cradle, we depict in Fig. 10 the same case as
in the middle column of Fig. 8, but for a longer time. As can
be seen from the figure, there is indeed a transfer of energy
from the outer DS to the inner chain for t < 9000. However,
the roles are inverted after this time and then the inner chain
transfers back the energy to the outer DS. This produces a
beating phenomenon common for coupled oscillators with
different periods. This periodic energy transfer between the
outer DS and the inner chain seems to persists for very long
times (results not shown here), providing a mechanism for a
stable, long-lived Newton’s cradle dynamics.

Finally, the last column of Fig. 8 depicts an example
with an even larger drop-off distance. In this case, the outer
DS also interacts with the edge of the BEC cloud and
produces sound waves that remove energy from the former
and thus finally settling to a Newton’s cradle with slightly
lower oscillation amplitude with some background radiation
(sound waves) prevailing in the condensate for long times
(results not shown here). It is important to mention at this
stage that an experiment capable of reproducing the Newton’s
cradle shown above should require a relatively large extent
(longitudinal Thomas-Fermi radius) of the BEC cloud when
compared to the typical width of the DSs (proportional to the
so-called healing length of the condensate). Breaching this
requirement could induce an inner DS chain with a high level
of precompression—due to the trapping—that would bring the
DSs too close to each other so that the approximations used in
deriving the effective Toda lattice model would no longer hold.

IV. CONCLUSIONS AND OUTLOOK

We construct coherent structures consisting of compression
waves riding on chains of bright (BS) and dark (DS) solitons
of the GP model. Namely, a soliton riding on a chain of
solitons and thus dubbed a hypersoliton. We use the established
reduction for the dynamics of chains of BSs and DSs to a
Toda lattice on the solitons’ positions; i.e., the solitons are
modeled as a chain of nonlinearly coupled masses. Then
the corresponding Toda lattice solitons (compression waves
on the lattice) can be initialized on the original GP model
using the well-known exact Toda lattice soliton solution. We
show how BS chains are inherently unstable due to phase
desynchronization between consecutive BSs and thus are poor
candidates for supporting hypersolitons. In contrast, DS chains
are stable and DSs, being topologically charged, never lose
their phases and thus are always mutually repelled from each
other. We successfully craft hypersoliton solutions riding on
DS chains of the original GP model for a wide range of
parameter values. These hypersolitons are robust and stably
travel at a constant speed without deformation or radiation.
Additionally, we construct multiple hypersolitons and observe
their elastic collisions in different head-on and chasing
collisions scenarios. Finally, inspired by the classical Newton’s
cradle, we study the dynamics of finite DS chains trapped
inside the customary parabolic external potential relevant in
experimental BECs. This is achieved by letting a free, outer
soliton hit a stationary inner DS chain, creating a hypersoliton
wave traveling through the latter. As the hypersoliton reaches
the end of the inner chain, a single DS is expelled and allowed
to rise and fall down the external trap, hitting the inner chain
repeating the process in a manner akin to the classical Newton’s
cradle. We study the effects of the drop-off distance on the
formation of the Newton’s cradle dynamics and argue, in terms
of the theory of coupled oscillators, that a minimal drop-off
distance is required for the creation of self-sustained Newton’s
cradle oscillations.

The present work could be extended in a few interesting
directions. For example, the effects of finite temperatures in
a condensate give rise to dissipation due to coupling with
the thermal (noncondensed) fraction. This dissipation can be
modeled at the level of the GP equation by the so-called
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phenomenological dissipation [18,19] and it is responsible for
antidamping terms in the reduced equations of motion of the
DSs. It would be interesting to analyze the effects of such
a dissipative term on the dynamics of hypersolitons. On the
other hand, condensates can be supported by two or more
coupled components with linear and/or nonlinear coupling
terms between them [5]. These coupled models give rise to
coupled complexes with dark or bright solitons coupled to dark
or bright solitons in the other component(s), thus giving rise to
the so-called dark-dark and dark-bright solitons [52–55]. The
dynamically reduced models for these coupled systems take
the form of coupled Toda lattices [56]. It would be interesting

to explore the possibility to construct hypersolitons and study
their stability in systems with several components.
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