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Regular modes in a mixed-dynamics-based optical fiber
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A multimode optical fiber with a truncated transverse cross section acts as a powerful versatile support to
investigate the wave features of complex ray dynamics. In this paper, we concentrate on the case of a geometry
inducing mixed dynamics. We highlight that regular modes associated with stable periodic orbits present an
enhanced spatial intensity localization. We report the statistics of the inverse participation ratio whose features
are analogous to those of Anderson localized modes. Our study is supported by both numerical and experimental
results on the spatial localization and spectral regularity of the regular modes.
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I. INTRODUCTION

Mixed-dynamical based systems are more and more used in
applications, especially in optics [1]. These systems, whose ge-
ometry induces complex ray dynamics, bring a new kind of so-
lutions for practical purposes through their singular wave prop-
erties [2]. The common attribute of mixed systems is the coex-
istence of both chaotic and regular dynamics leading to a large
wealth for the corresponding wave behavior (wave chaos). This
duality manifests itself on the spatial properties of the modes
by exhibiting on the one hand a generic statistically uniform
distribution, that is, ergodicity [3], and on the other hand
specific patterns along regular trajectories [4]. Dielectric mi-
crocavities stand as the typical example of the exploitation of
wave chaos as an improvement of existing devices. Indeed, mi-
crocavity lasers with mixed geometry allow low-threshold and
highly directional outputs [5,6] and are a very useful solution
for integrated optics. Recently microcavity-based gyroscopes
in which a deformed cavity enhances the rotation sensitivity
[7] have been investigated. The ergodic and regular twofold
feature gives also rise to much more subtle phenomena. As an
illustration, a diffractive free regime of light propagation has
been observed in a segmented optical waveguide presenting a
mixed ray dynamics [8]. In this case, the absence of diffraction
results from the superposition of modes constructed on a stable
periodic trajectory. Moreover, dynamical tunneling, namely a
passage between the chaotic and regular regions by coupling
one to another [9–12], is one of the main manifestation of this
duality. This effect has been used in deformed microdisks in
which light is coupled to a bus waveguide through the tunneling
effect acting as a resonant dynamical filter [13].

A highly multimode optical fiber whose transverse cross
section presents a truncated-circle shape allows us to explore
different regimes of the dynamics by changing the size of the
truncation [e.g., changing d in Fig. 1(a)]. Over the past few
years we studied experimentally manifestations of ergodicity
as well as deviations from this universal behavior due to scar
modes in passive and active fully chaotic optical fibers [14–17].
The ergodicity features of modes in a chaotic fiber have already
been proposed as an optimized solution for applications
in telecommunications (e.g., in double-clad fiber amplifiers
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[18–20]). We keep exploiting the potential of complex-
dynamical-based multimode optical fibers, but now for mode
division multiplexing (MDM) [21]. In this context we show
that a mixed optical fiber presents singular wave features
allowing the control of individual modes in a highly multimode
system.

In this paper, we report an exhaustive study on the properties
of the modes of a mixed-dynamics-based multimode optical
fiber, and in particular modes that are associated to the regular
part of the dynamics. These regular modes present strong spa-
tial and spectral signatures through a localization of the field
along stable trajectories and a regularly distributed spectrum
respectively. This localization is triggered by the stability of the
dynamics and is studied by means of the inverse participation
ratio (IPR) and its statistics. We show that, unlike ergodic
modes whose statistics follow a universal behavior, the regular
modes induce some deviations that are analogous to those
resulting from localized modes in disordered systems [22].
We present a characteristic structuring of the IPR with respect
to modes families that makes them easily traceable. We use an
analysis based on Gaussian beams in cavity in order to analyti-
cally describe the structuring of the IPR for the regular modes.

In a context of a growing exploitation of multimode fibers,
in telecommunications devices as well as in imaging processes,
both description and control of individual modes are of great
importance. This study reports on a detailed analysis of
highly distinguishable modes with singular spatial and spectral
properties. We develop an experiment that, based on these
modes features, allows us to isolate them among thousands of
modes. These results highlight the ability of the regular modes
to be used as individual communication channels. Protected
from other modes by the stability of their dynamics, they may
offer a solution to prevent mode coupling in MDM.

In Sec. II we present our experimental system and its main
geometrical and modal characteristics, specifically its localiza-
tion features. In Sec. III we develop the analysis of the spatial
properties of the regular modes of the fiber using the analogy
with the Gaussian modes of an optical resonator. In Sec. IV
we propose a characterization of the spatial localization of the
modes through tools commonly used to measure deviations
from a uniform distribution (i.e., the IPR), and we point out
a way to distinguish specific families of regular modes. A
spectral analysis of the regular modes of the optical fiber
based on an experimental selective excitation and on numerical
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FIG. 1. Presentation of the experimental system. (a) Scheme of
the fiber with γ < 1; (b) picture of the cross section of the optical fiber
for γ = 0.95 taken with a standard microscope in the transmission
mode.

results is reported in Sec. V. Then, in Sec. VI, we conclude
and suggest some potential applications in an open discussion.

II. THE OPTICAL FIBER AS A VERSATILE OPTICAL
COUNTERPART OF A DYNAMICAL SYSTEM

Our experimental system is a nonstandard silica multimode
optical fiber, whose cross section is a truncated disk. The
length of the fiber is 10 cm, and the diameter of its core is
2a = 125 μm. The truncated diameter is denoted d = γ a,
with γ ∈ ]0 ; 2]. The core is surrounded by a silicon cladding
of diameter 250 μm [Fig. 1(b)]. The optical indexes are nco =
1.458 and ncl = 1.41 for the core and the cladding respectively
at the vacuum wavelength λ0 = 632 nm. As the wavelength
is small compared to the characteristic size a of our system,
one can consider a semiclassical approach. The longitudinal
evolution of a ray along the fiber (a three-dimensional system)
is formally equivalent to the time evolution of a trajectory in
the transverse cross section of the fiber. It is thus analogous to a
two-dimensional (2D) bounded cavity, which is a well-known
paradigm of a Hamiltonian dynamical system (2D billiard)
[2]. In the following, we will consider the propagation modes

of the fiber as the modes of a 2D cavity and thus refer to the
transverse cross section of the optical fiber as a “cavity.” It
is worth mentioning that an optical fiber is a very low lossy
system, and as we restrict our study to less than the first third
of the total number of modes, the approximation of a closed
system is valid.

The versatility of our system relies on its ability to explore
different types of dynamics from regular to chaotic by varying
the factor γ . The qualification of the dynamics is commonly
studied through a stroboscopic phase-space representation,
well known as the Poincaré surface of section (PSS). It
consists in plotting at each impact of the ray on the boundary
the curvilinear abscissa s measured through the angle θ = s/a

and the sine of the incidence angle, α [Fig. 2(a)]. As shown in
Fig. 2(c)–2(e) and as pointed out by Ree et al. [23], the PSS
presents the characteristic behaviors related to different types
of dynamics while varying γ . For 0 < γ < 1, the dynamics
is mixed, and the PSS presents a complex combination of
stochastic and regular regions. The optical fiber used in
the experiment has a truncated diameter corresponding to
γ = 0.95. In the PSS reported in Fig. 2(c) for this value,
regular islands coexist with diffuse points associated to the
so-called chaotic sea [23,24]. Each regular island corresponds
to quasiperiodic trajectories in the vicinity of a stable periodic
orbit (PO) at the center of the island. A large fraction of PSS
is occupied by the main central resonance that corresponds
to the two-bounce PO (2-PO). As d reaches the value of the
radius a (γ = 1, half circle), the PSS demonstrates the regular
nature of the dynamics [Fig. 2(d)]. In this case, the angle of
reflection |α| is conserved for any given initial condition. Note
that the PSS of a circular billiard (γ = 2) has the same aspect
due to angle conservation. When d becomes greater than a

(1 < γ < 2), regular islands no longer exist, and all the POs
become unstable. Then the PSS is densely covered by diffuse
points, and the dynamics is fully chaotic [Fig. 2(e)]. It is worth
mentioning that the latter geometry has also been extensively
investigated in optical fibers over the past few years
[14–17,25]. In particular, the authors experimentally

FIG. 2. (a) Curvilinear abscissa s = aθ and angle of reflection α used for the calculation of the PSS and Husimi representations. (b) Three
examples of stable periodic orbits of the mixed billiard (γ = 0.95): in continuous pink line the 2-PO, in dashed blue line the 5-PO and in dotted
green line the 6-PO. (c–e) PSS representation for three different values of γ . (c) γ = 0.95, mixed dynamics with a coexistence of regular and
chaotic trajectories; the pink star marks the two-bounce stable periodic orbit, the blue squares correspond to the central point of the stability
islands of the five-bounce stable periodic orbit, and the green triangles the six-bounce stable periodic orbit. (d) γ = 1, regular dynamics for
which one sees the conservation of the angle of reflection, whatever the initial condition is. (e) γ = 2/3, chaotic dynamics, no stability regions,
all the periodic orbits are unstable.
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demonstrated that some specific scarred modes of a chaotic
optical fiber, spatially localized along the least unstable
periodic orbits, can be selectively enhanced through an
optical amplification process [17,25]. Moreover, as the
pump absorption is clearly improved by the use of a chaotic
double-clad fiber amplifier, the device has been proposed as
an optimization of existing amplifiers [18,26].

Here we devote our study to the mixed dynamics, using a
D-shaped optical fiber with γ = 0.95. The length of the fiber
is greater than the “Heisenberg length”[14] zh = 8.3 cm for
which the modes are resolved ensuring the validity of a modal
description of light propagation. The number of modes of the
fiber is given by the usual formula [27] and is evaluated to
approximatively N = 6000 at λ0. The 2000 first modes are
calculated numerically using a finite element method. In the
paraxial approximation, the Hemholtz equation is equivalent
to the 2D Schrödinger equation [14]. One thus has access
to the spatial distribution of the modes (eigenvectors), as
well as their corresponding frequencies (eigenenergies). As
shown in four examples in Fig. 3, the modes exhibit some
signatures of the underlying classical mixed dynamics [28].
The spatial distribution of intensity [near-field (NF)] of the
mode in Fig. 3(a) is located on the 2-PO represented by
a continuous pink line in Fig. 2(b). Figure 3(b) shows the
far-field (FF) of the same mode. The FF is the square modulus
of the spatial Fourier transform of the field distribution. It
indicates the direction �κ and modulus κ of the transverse wave
vectors. For Fig. 3(b) two maxima of intensity are localized
along the direction of the 2-PO at at an equal distance κ of the
center of the Fourier space. This directivity in the FF evidences
the signature of the underlying 2-PO (see Fig. 2). Strong
correspondences between some particular modes and their
associated classical trajectories in the semiclassical regime
are established through the Husimi representation, which is
commonly used as a wave equivalent to the classical PSS
[29]. In the case of 2D cavities with Dirichlet boundary
conditions, the Husimi function is evaluated through the
normal derivative of the eigenfunction on the boundaries of
the cavity [23,30–32]. The Husimi function is calculated for
the modes of the optical fiber and is represented in the 2D space
(θ, sin α). Here sin α represents the projection of the transverse
wave vector �κ along the tangential direction to the boundary,
normalized by the modulus κ = |�κ| of the mode. Figure 3(c)
displays the Husimi representation of the mode shown in
Fig. 3(a) with the PSS of the 2-PO superimposed. The localized
pattern of the intensity in the Husimi representation means
that the mode is strongly confined along the x direction. This
confinement as well as the very good agreement between both
this representation and the PSS confirms that this mode builds
on constructive interferences along the 2-PO. In the same way,
Figs. 3(d)–3(f) and 3(g)–3(i) show the NF, FF, and Husimi
representations of modes built in the vicinity of the five-bounce
[Fig. 2(b), dashed blue line] and six-bounce [Fig. 2(b), dotted
green line] stable periodic orbits, respectively. As before, the
agreement between the Husimi and PSS representation reflects
the fact that the ray dynamics is the skeleton of the modal
behavior. Figures 3(j)–3(l) present the NF, FF, and Husimi
representations of a chaotic mode of the fiber. The FF is
isotropically distributed and the Husimi representation is no
longer confined in small areas delimited by the corresponding

(i)

0

0.4

0.8

-0.4

-0.8 0.1

0.3

0.5

0.7

0.9

0-1 1

(g) (h)

(a) (b)

0.1

0.3

0.5

0.7

0.9

0

0.4

0.8

-0.4

-0.8
0-1 1

(c)

(f)

0

0.4

0.8

-0.4

-0.8 0.1

0.3

0.5

0.7

0.9

0-1 1

(e)(d)

(k)(j) (l)

0

0.4

0.8

-0.4

-0.8 0.1

0.3

0.5

0.7

0.9

0-1 1

FIG. 3. Examples of modes of the mixed fiber with γ = 0.95:
near-field, far-field, and Husimi representation of (a, b, c) a regular
mode of the 2-PO. Superimposed in red is the PSS associated to the
2-PO. (d, e, f) A mode built on the 5-PO. In red, the PSS of the 5-PO.
(g, h, i) A mode built on the 6-PO. In red the PSS of the 6-PO. (j, k,
l) A chaotic mode.

stability islands of the PSS, but spreads over the chaotic
regions.

As conjectured by Percival [28], the duality between chaotic
and regular dynamics is also encountered in the spectral
features. A simple way to quantify the degree of regularity
of a 2D cavity is given by the study of the statistics of energy
level spacing

s�,n = NW(En+1) − NW(En), (1)

where En is the energy of mode n and NW(En) the number
of modes of energy lower or equal to En given by the Weyl
formula [33]

NW(En) = S
2π

En − P
4π

√
2En (2)

with S and P , respectively, the surface and perimeter of the
cross section of the fiber, and the energies given by En =
κ2

n/2. As described in Refs. [34,35], the probability distribution
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FIG. 4. Probability distribution of the energy level spacing for
the symmetric and antisymmetric modes of (a, b) a chaotic cavity
(γ = 3/2) and (c, d) a mixed cavity (γ = 0.95).

P (s�) in a mixed system is given by

P (s�) = d2

ds2
�

{
exp (−Ws�) erfc

[√
π

2
(1 − W )s�

]}
, (3)

where 0 < W < 1 is the density of regular states. A formal
evaluation of W is deduced directly from the PSS, by measur-
ing the area of the regular region, weighted by the lengths of
the associated trajectories. Figure 4 shows the statistics of a
chaotic (γ = 3/2) and a mixed (γ = 0.95) cavity, respectively,
for symmetric [Figs. 4(a), 4(c)] and antisymmetric [Figs. 4(b),
4(d)] modes. The gray scale histograms represent the energy-
level spacing distribution calculated for a sample of 900 modes
for each symmetry, with an avoidance of the first hundred
modes. The red line is a fit of the histograms by the function
P (s�) [Eq. (3)] giving an estimation of the parameter W . For
the chaotic case, W = 0 indicates that the relative size of the
regular region is reduced to zero. This result is consistent with
the typical PSS of a chaotic system [Fig. 2(e)]. Indeed, the
inherent nature of a chaotic dynamics is to avoid any stable
structure. On the contrary, for the mixed system, W � 0.5
corresponds to a PSS half-filled with the regular region. Note
that this is qualitatively coherent with the PSS presented in
Fig. 2(c). The case W = 1 would correspond to the regular
systems γ = 1 (half circle) and γ = 2 (circle).

III. REGULAR MODES AS MODES OF A
PLANO-CONCAVE RESONATOR

As evidenced in detail by Turecci in dielectric microcavities
[24], the modes localized on stable POs can be described in
terms of Gaussian optical theory. Using the standard descrip-
tion of optical resonators, we develop that correspondence for
the 2-PO regular modes as the analogous of the fundamental
longitudinal modes of a plano-concave optical resonator with
dielectric boundaries where x acts as the longitudinal axis of
propagation and y as the transverse direction. Both the stability
of the cavity and the spatial field distribution of the modes of
the fiber are thus analyzed.

First, the ray transfer matrix formalism enables to study
the stability of the cavity by investigating the paraxial ray
evolution in the vicinity of the 2-PO. Let (y,α) be the couple of

quantities describing the position of a ray in the resonator, with
y the position of the ray on the boundary (including the straight
part). In the paraxial approximation, the output quantities are
deduced from the input quantities using the relation(

yout

αout

)
= Mt

(
yin

αin

)
, (4)

where Mt is the ray transfer matrix. The stability of the
resonator is given by the value of the trace of Mt associated
to a periodic sequence of a given ray. When rays are peri-
odically refocused, the sequence is stable and the geometric
characteristics of the resonator obey

0 <

(
1 − d

R1

)(
1 − d

R2

)
< 1, (5)

where d represents the resonator length and R1, R2 are the
radii of curvature of the resonator boundaries. This stability
condition is analogous to the stability analysis of dynamical
systems based on the evolution of a small deviation in the
vicinity of a PO [36]. The transfer matrix is then formally
equivalent to the so-called monodromy matrix.

In our case, R1 = a and R2 = ∞ because of the flat
reflective boundary. From the relation (5), one sees that the
stability of the resonator depends on the value of d and thus
of γ . Case γ = 1 is associated to the hemispheric stable
resonator. For 1 < γ < 2, the resonator is unstable. For γ < 1,
the condition (5) is fulfilled so that the resonator is stable.
Note that the case γ = 2 corresponds to R1 = R2 = a and
is associated to the concentric stable resonator. The mixed
fiber with γ = 0.95 can thus be considered as a stable optical
resonator whereas the chaotic fiber (γ = 3/2) corresponds to
an unstable resonator [23,34,37].

In the following, we consider the case of the stable resonator
with γ = 0.95, corresponding to the cross section of our actual
optical fiber. We use the Gaussian wave formalism in the (x,y)
plane in order to study the spatial distribution of the modes
built on the 2-PO. The spatial expansion of a beam traveling in
the x direction in the slowly varying envelope approximation
reads

ψ(x,y) = u(x,y) exp (−jκx) (6)

with the phase varying mainly linearly in the x direction and
ψ(x,y) being a solution of the transverse Helmholtz scalar
equation �ψ + κ2ψ = 0. By using expression (6) for ψ(x,y),
one gets the following Fresnel (or parabolic) form for the wave
equation in the paraxial approximation:

∂2u

∂x2
+ ∂2u

∂y2
− 2jκ

∂u

∂x
= 0. (7)

Under the assumption of u(x,y) varying slowly enough with
x so that |∂2u/∂2x| � |2κ∂u/∂x| and taking into account the
curvature of the wave front imposed by the geometry of the
cavity, the solution u(x,y) of (7) is given by [38]

u(x,y) = w0

w(x)
Hm

[√
2

y

w(x)

]

× exp

{
jφt − y2

[
1

w2(x)
+ j

κ

2R(x)

]}
, (8)
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where w(x) is the beam radius, w0 is the minimum beam
diameter, the so-called waist diameter, for which the phase
front is plane, R(x) the radius of curvature of the wavefront
and Hm the Hermite polynomial of order m and φt a global
phase described below. The solution u(x,y) is consistent
with the theory of Gaussian beams along the y direction
[38]. The Gaussian beam profile is characterized by the
beam radius w(x). An initial Gaussian beam of width w0 at
x = 0 experiences a transverse expansion given by w2(x) =
w2

0[1 + (x/xr)2], where the Rayleigh length xr measures the
spatial coherence of the beam along the axis of propagation x.
In our specific case, the relevant wavelength is the transverse
wavelength λ⊥ = 2π/κ . Then, the Rayleigh length xr and
the beam waist w0 are related through xr = κw2

0/2. The
beam propagating along the 2-PO also undergoes a phase
shift which is twofold. First, the reflexion on the dielectric
interface between the core and the cladding interface, governed
by Fresnel reflections laws, implies a phase shift φκ

r which
depends on κ . Second, the Gouy phase φg [38,39] appears
when the beam focuses. It results in a complex total phase
shift φt that reads

φt = φκ
r + φg

= 2 arctan
√(

n2
co − n2

cl

)
k2

0/κ
2 − 1

+ (m + 1) arctan
√

γ

1 − γ
, (9)

where k0 = 2π/λ0 is the modulus of the vacuum wave vector.
Stationary modes occur when the accumulated phase shift
along a round trip in the resonator is a multiple of 2π . From
(8) and (9), this condition of constructive interferences leads
to

κm,p 2d = 2πp + 2φκ
r + 2(m + 1) arctan

√
γ

1 − γ
. (10)

Each mode of the resonator is then defined by the value of its
transverse wave vector κm,p, which depends on two integers,
m and p, running from 0 to maximum values satisfying κm,p <

k0

√
(n2

co − n2
cl) [14]. In the optical resonator analogy, p defines

the number of nodes along the axial direction x, that is the
order of the longitudinal mode along the 2-PO, whereas m is
the transverse mode number associated to the so-called high-
order modes. The fundamental Gaussian mode, namely. the
fundamental mode for the transverse oscillations, corresponds
to m = 0 and p = 0. A few examples of the modes of the fiber
(or resonator) with their corresponding values of (m,p) are
given in Fig. 5.

IV. REGULAR MODES AS LOCALIZED MODES
INDUCED BY THE MIXED DYNAMICS

The ergodic modes of a fully chaotic system stand for the
generic behavior. They are characterized by Gaussian statistics
of the spatial field distribution. Nevertheless, some modes,
exhibiting an “extra density (that) surrounds the region of the
periodic orbit” [40] are constructed along unstable periodic
orbits. They are usually called “scar modes.” Regular modes
of a mixed system also result from constructive interferences
with the main crucial difference that they take place along a

FIG. 5. Spatial distribution of intensity for modes of the mixed
fiber (γ = 0.95) associated to different values of (m,p). (a–d) p = 4
and m = 0,1,4,7; (e–h) p = 12 and m = 0,1,4,7.

stable periodic orbit. This intrinsic distinction in the nature of
the underlying periodic orbit implies, among other features, a
stronger spatial localization of the field [see, for example,
Fig. 5(a) and 5(e)]. This localization implies a substantial
deviation in the statistics compared to the homogeneous field
distribution. The IPR and its statistics, which are commonly
used tools in the characterization of the spatial signatures
of chaotic or disordered systems, highlight this localization
feature. The IPR, which is the second order moment I2 of the
intensity, is also defined as

I2 =
1
S

∫∫
S I 2(x,y) dS[

1
S

∫∫
S I (x,y) dS

]2 , (11)

where I (x,y) = |u(x,y)|2 is the field intensity and S the
surface of the transverse cross section of the fiber. The
distribution of the IPR (Fig. 6) for the modes of the chaotic
and mixed fibers exhibit some specific features. For the chaotic
fiber (γ = 3/2), P (I2) presents a peaked distribution around
the value I2 = 3 [42,43] as expected by the universal properties
of ergodicity of the generic modes of a chaotic system [14].
Even if scar modes present some enhancement of intensity,
this is marginal enough not to appear in the distribution of
the IPR [Fig. 6(a)]. The random matrix theory (RMT) predicts
that there should be no fluctuations around three, but as the
system is bounded, fluctuations appear [41]. On the contrary,
the distribution of IPR calculated for the modes of the mixed
fiber shows an asymmetric profile with values higher than
twice the actual mean value 〈I2〉 � 4.5. This points out that
a large number of modes contribute to this deviation by
presenting highly localized intensities. In disordered systems,
this behavior is currently associated to the presence of so-
called “localized modes” [22]: some theoretical studies based
on the supersymmetry method [44] predict the asymmetry of
the IPR distribution in the (Anderson) localization regime. The
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FIG. 6. Probability distribution of the inverse participation ratio.
(a) Chaotic cavity (γ = 3/2). The probability distribution is centered
around the value IPR = 3. (b) Mixed cavity (γ = 0.95) presenting
some larger values of the IPR. The continuous line is a fit based on a
nonlinear sigma model [41]. Inset: Same as (b) in logarithmic scale.

distribution of the IPR is then expected to follow

P (I2) = C

√
g

I2
exp

(
−π

6
gI2

)
(12)

for I2 � 〈I2〉 where 〈I2〉 is the mean value of the IPR and C

is a normalization constant. In disordered systems, g is the
conductivity that depends on the system size, on 〈I2〉, and on
the mean-free path [41]. The high values of I2 in Fig. 6(b)
present a very good agreement with Eq. (12) with g = 0.94
and C = 0.88. This is confirmed by the inset of Fig. 6(b),
which shows P (I2) in logarithmic scale. Thus, we get the
same signature of spatial localization as the one encountered
for localized modes of disordered systems. Here localization
is the result of the stable dynamics.

To investigate the origin of this deviation in the tail of
the IPR distribution, we report in Figs. 7 and 8 the value
of the IPR of each individual mode as a function of κ a for
the chaotic (Fig. 7) and mixed (Fig. 8) fibers. As expected
for the chaotic case, the IPR tends to an asymptotic value of
three for most of the modes. As exemplified by the ergodic
mode presented in inset B of Fig. 7, the wave function is
statistically uniformly distributed over the fiber’s cross section,
thus resulting in Gaussian spatial statistics and an expected
value of three for the IPR. The modes presenting larger values
of the IPR (Fig. 7) are some specific spatially localized modes
that concentrate on a region of the PSS surrounding continuous
families of marginally unstable PO. These “bouncing ball”
modes do not follow the standard Gaussian statistics and take
place along the full diameter of the fiber (see inset A in
Fig. 7).

2

4

6

8

10

0

AA

B

0 50 100

FIG. 7. IPR as a function of the transverse wave number κ a for
the chaotic case (γ = 3/2). As expected, the IPR concentrates in the
vicinity of IPR = 3 except for the modes built on neutral orbits (upper
inset, A). Inset B shows a generic ergodic mode.

Figure 8 presents the IPR as a function of κ a for the modes
of the mixed fiber. The main observation one can make at the
first glance is a striking structuration of the values of the IPR
for individual modes. More thoroughly, we have identified
families of modes following a monotonous behavior. The
upper red circles all correspond to the family of regular modes
along the 2-PO. The high values of the IPR confirm a strong
spatial localization of intensity of these modes, also labeled as
the fundamental Gaussian modes u0,p. The dashed and dotted
lines correspond to the IPR calculated for the higher order
modes um,p with m varying from m = 1 to m = 9 from the
top to the bottom. The regularity of the IPR as a function of κ a

is also observed for higher values of m whose maximum value
mmax is given by κmmax,0 = k0

√
(n2

co − n2
cl). Nevertheless, they

are not pointed out in the figure for the sake of clarity. The plus
and star symbols correspond, as pointed out by the inset images
labeled from A to E, to whispering gallery modes (WGMs)
built upon quasiperiodic marginally stable orbits. The WGMs
are localized on the boundaries of the cavity, so their IPR is
expectedly higher than three. The bold light blue plus symbols
correspond to WGMs with a single crown (A), as the medium
blue plus and the stars symbols correspond, respectively, to
WGMs with double (B) and triple (D) crowns. When the curves
intersect, the corresponding WGMs are degenerated as shown
for the modes C and E. The purple crosses correspond to the
modes localized in the vicinity of the six-bounce PO and follow
a well-distinguished behavior as well. It is worth noting that
for low values of κ a, the WGMs and the modes built upon
the 6-PO are undistinguishable, which is visible for κ a < 50
as the medium blue and purple crosses are following the same
evolution. All these modes contribute to the deviation of the
IPR observed in Fig. 6(b). The parameter g = 0.94, evaluated
by a fit of Eq. (12) implies a “mean-free path” l � 50 μm.
This value is consistent with the order of magnitude of the
distance between successive bounces of trajectories underlying
the modes responsible for the deviation.
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FIG. 8. IPR as a function of the transverse wave number κ a for the mixed case (γ = 0.95); Families of modes are distinguishable as shown
by the different markers: red circles correspond to 2-PO regular modes, from red to green dotted and dashed lines ( to ) correspond to
higher order regular modes denoted from m = 1 to m = 9, purple crosses ( ) correspond to modes built on the 6-PO, light and medium plus
symbols ( , ) and dark blue stars ( ) correspond to whispering gallery modes (insets A to E).

The modes corresponding to the lower IPRs, marked in
black, right above IPR = 3 (red dashed line), correspond
to chaotic modes that present an ergodic behavior. The
density of points around IPR = 3 is much less important than
above, which confirms that ergodic modes are a minority
in a mixed system characterized by the parameter γ =
0.95. This behavior of strong deviation from the standard
value IPR = 3 is commonly encountered is systems pre-
senting a strong enough disorder to promote the existence
of (Anderson-) localized modes. Here the order, by means
of the regular modes, is responsible for the deviation of
the IPR.

By use of a heuristic model, we derive an analytic
expression for the value of the IPR for the 2-PO regular modes
with respect to κ . We assume that the modes are spatially
localized on a surface Sloc. Thus, the intensity of each mode
equals I0 on Sloc, and 0 elsewhere. Then, with I0 = S/Sloc and
using Eq. (11), one gets

I2 = S
Sloc

. (13)

Using the analogy of these modes with the fundamental
Gaussian modes u0,p of the stable resonator (see Sec. III),

we derive an analytic expression for Sloc:

Sloc = 2
∫ d

0
w(x) dx

= 2w0xr

⎡
⎣ d

xr

√
1 +

(
d

xr

)2

+ arcsinh

(
d

xr

)⎤
⎦

= w0Leff, (14)

where Leff is an effective length associated to the regular
modes. Finally, using the relation between xr and κ one gets

I2 = S√
κ

Leff
√

2xr
. (15)

In our system, we evaluated xr for the 2-PO regular (or
fundamental Gaussian) modes and checked that it does not
depend on κ . So the IPR varies proportionnally with

√
κ . We

obtain a perfect agreement between expression (15) and the
values of IPR for the 2-PO regular modes um=0,p (large red
circles and red continuous line in Fig. 9).

Moreover, for large values of κ , the IPR appears to structure
itself by presenting a regular evolution for each family of
modes um,p with different m. The dotted dashed lines in shades
of colors from red to green are the IPRs of high-order modes
for m ranging from 0 to 9 as shown in Fig. 8. The IPR for the
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FIG. 9. IPR as a function of κ a for the regular modes and for high
values of κ . The dots and circles correspond to the points presented
in Fig. 8, and the continuous lines correspond to the expression (16).
The full circles mark the IPR for a fixed value of p, while m varies
from 0 to 9. Three values of p are marked.

modes of a given m value are following a monotonous curve,
which is perfectly adjusted by the empirical expression:

I
um,p

2 (κ) = cmκξm, (16)

where cm is different for each m. The exponent ξm has a linear
dependance with m which is ξm = −0.017 m + 1/2. For m =
0, one recognizes the

√
κ dependance predicted by Eq. (15).

In Fig. 9 we mark the evolution of the IPR with m for three
fixed p values (full blue circles). The IPR follows a decreasing
curve as m increases, and this behavior is encountered for all
p values (even if we marked only three values in the figure for
sake of clarity). Thus, we can assume that it exists a relation
between the comportment of the IPR and the p and m integers
that characterize the whole family of regular modes. Both this
behavior and the previous empirical ansatz point out the tight
relationship of the IPR for the family of the regular modes
with the Gaussian modes and will be the subject of further
investigations.

V. EXPERIMENTAL OBSERVATION AND MANIPULATION
OF THE REGULAR MODES OF THE MIXED FIBER

In order to study experimentally the light propagation into
a mixed fiber, we manufactured a multimode optical fiber
whose transverse shape is a truncated disk with γ = 0.95.
The experimental setup is showed in Fig. 10. The illumination
is made with a 2 mW HeNe cw laser (λ0 = 633 nm). The
polarization is controlled through a polarizer and a λ/2
wave plate. The transverse wave number of the initial beam
with respect to the optical axis is controlled via the relation
κ = k0 sin 
 with 
 the angle of the beam with respect to the
optical axes. It fixes the average transverse wave number of the
range of excited modes and thus to select the modes. Another
way to control the modes’ excitation is performed through
the utilization of a spatial light modulator (SLM, amplitude
only). A spatial modulation can be imposed through the SLM
in order to shape the spatial distribution of the field intensity

HeNe

M
M

M

P

SLM LP
Fiber

CCD

FIG. 10. Experimental setup. P: polarizer; M: mirror; λ/2: half-
wavelength wave plate; ×10, ×20, ×40: microscope objectives;
SLM: spatial light modulator; L: lens needed to collect the FF; CCD:
CCD camera.

and then select a family of excited modes. At the output of the
fiber, the intensity is collected by a microscope objective and
imaged on a CCD camera. The NF is then directly collected.
A supplementary lens is needed in order to collect the FF.

A. Rough selection of 2-PO regular modes by a focused beam

At first, we did not use the SLM, and we only control the
illumination by the position and the angle of a focused beam
in front of the input end of the fiber. Figures 11(a) and 11(g)
show two typical illuminations. A Gaussian beam on the fiber
input is obtained at the focal point of a microscope objective,
and a tilt is given in order to select the range of transverse
wave vectors propagating into the fiber. Figure 11(b) presents
the NF measured at the fiber’s output for the first illumination
[Fig. 11(a)]. The spatial distribution of the NF is characteristic
of a superposition of regular modes of the 2-PO. One can
observe both a concentration of intensity near the straight
boundary and a confinement of intensity close to the 2-PO,
which are a signature of the 2-PO regular modes. Indeed, all
the regular modes along the 2-PO present such an enhancement
of intensity in the vicinity of the x axis. Moreover, one can
note the circular arclike pattern also present on Figs. 5(a)
and 5(e). Figure 11(c) exposes the FF intensity pattern of
the outgoing waves. The anisotropic configuration along the
κx axis confirms that the field builds up on the 2-PO. The
κx broadening testifies that numerous Gaussian-like modes
of the type u0,p(x,y) have been excited. We note also that
unlike the FF of an individual 2-PO regular mode, the figure
is asymmetric along κy . This is due to a slight displacement of
the initial beam along the y axis.

Figures 11(d) and 11(e) show the NF and FF resulting from
numerical simulations. Using a standard beam propagation
method algorithm [45], we simulate the propagation of an
initial Gaussian beam along the optical fiber. The parameters
here are given in order to reproduce the experimental initial
condition. As one can see, the resulting patterns reproduce in
the NF as well as in the FF the experimental observations and
validate our description of the experiments. Moreover, it per-
mits one to get more information on the modes that contribute
to the observed field. Figure 11(f) presents the numerical
spatial frequency spectrum |C̃(κ)| calculated through the
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sciremuNstnemirepxE

FIG. 11. Initial illumination beams, NF and FF observed at the output of the fiber, corresponding numerical simulations and numerical
calculated spectra, for an illumination favorable to the excitation of a family of (a–f) regular modes and (g–l) superposition of modes with no
2-PO regular modes.

standard method [46]. More precisely, |C(κ)| is the modulus of
the Fourier transform of the correlation function C̃(z) defined as
the overlap between the outgoing field and the initial condition.
First, the observed Fabry-Perot-like spectrum confirms that the
analogy between the 2-PO regular modes of the mixed fiber and
the Gaussian modes of a stable optical cavity is relevant. Each
peak corresponds to a value of κ associated to a 2-PO regular
modes and can be labeled by different p values. We measure
a free spectral range δ ≈ 3.3 which is consistent with the
theoretical free spectral range for the modes along the 2-PO,
δ = (�κ) a = πa/d = π/γ where �κ = κm,p+1 − κm,p as
defined in Eq. (10). In Fig. 12 we perform a zoom on the

73 75 770

0.05

0.1

0.15

0.2

m=0
p=21

m=4
p=20

m=2
p=21

m=0
p=22

FIG. 12. Zoom of the spectrum of Fig. 11(f) between two peaks
p = 21 and p = 22. Inset: The intensity of the modes corresponding
to u4,20 and u2,21.

spectrum between two adjacent peaks associated to p = 21
and p + 1 = 22. Secondary peaks appear systematically close
to each primary peaks associated to 2-PO regular modes. They
correspond to high-order transverse modes that have a good
overlap with the initial beam focused along the symmetry axis
of the fiber in the vicinity of the truncation.

We indicate a peak associated to the 2-PO regular mode
u0,21 in Fig. 12. At a distance � of this peak, we note a peak
with lower amplitude which corresponds to a transverse mode
with the same p but with m = 2, u2,21. As the value of κ2,p >

κ0,p, this peak is actually closer to the peak corresponding to
the 2-PO mode u0,p+1=22 than u0,21. We measure the interval
� between the values of κ a for u0,21 and u2,21. Following
Eq. (10), we expect to get

� = 2

γ
arctan

√
γ

1 − γ
+ δφr = 2.84, (17)

where δφr is the difference between the phase shift φ
κ0,p

r

and φ
κ2,p

r , which is negligible. The measured value � = 2.84
confirmed the identification of the peaks.

The peak with lower amplitude on the left of the u2,21

peak corresponds to m = 4 but for p − 1 = 20. In the
same way, we measure �′ = κ4,20 a − κ0,20 a = 5.69, which
is in agreement with the expected theoretical value �′ =
4/γ arctan

√
γ /(1 − γ ) + δφ′

r = 5.68, with δφ′
r = φ

κ4,20
r −

φ
κ0,20
r .

These secondary peaks correspond to transverse modes
with even m. The maximum of intensity of modes with even
m > 2 is not along the x axis; therefore their weights in the
spectrum is very low. However, the modes with odd m present
a zero of intensity along the symmetry axis and consequently
have a poor overlap with the given illumination [see Figs. 5(b),
5(f), 5(d), and 5(h)].
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Figure 11(h) presents the NF collected for the second
illumination [Fig. 11(g)] that is for a beam focused far from
the location of the 2-PO regular modes. Here the pattern is
completely different, and the spatial distribution of intensity
is statistically uniform, made of grains of light of random
amplitude and size. This speckle-like pattern results from the
superposition of a great number of modes including ergodic
modes [see Fig. 3(j)]. The FF [Fig. 11(i)] confirms this assump-
tion, by presenting an isotropic distribution of wave vectors
whose moduli are radially confined around an average wave
number κ̄ . The associated numerical simulations [Figs. 11(j)
and 11(k)] reproduce the experimental results. The numerical
spatial frequency spectrum [Fig. 11(l)] does not present any
predominant structuration: all the modes in the range of κ cor-
responding to the illumination are excited. The three regularly
spaced peaks one can see around κ a = 90 are a reminiscence
of a regular modes along a periodic orbit that have been
excited. The presence of zero-intensity area visible in Fig. 11(j)
underlines the fact that no 2-PO regular modes are excited (as
those modes present a maximum of intensity in this location).

From the transverse wave number spectra, we aim to extract
some information on the underlying geometrical signature of
the excited modes. A relevant way to characterize the presence
or not of any regularity in the underlying ray dynamics is to
calculate the Fourier transform of |C̃(κ)|:

L(�) =
∫ κmax

0
dκ |C̃(κ)| exp (−jκ�). (18)

This length spectrum L(�) will display peaks at the corre-
sponding orbit length. Thus, the geometrical length of the
periodic orbits can be directly extracted from the measure of
the spectrum |C̃(κ)| which is calculated independently from
the knowledge of the underlying periodic orbits [47].

Figure 13(a) presents the length spectrum calculated from
Fig. 11(f). The first peak corresponds to the length of the 2-PO
(pointed out by the red arrow), that is, �/a = 2 γ = 1.9 (the
factor 2 appearing for the round trip) and the other peaks being
the harmonics. It is thus obvious that the only contribution to
the spatial distribution of the field is due to a superposition of
regular modes along the 2-PO. Figure 13(b) shows the length
spectrum associated to the spectrum of Fig. 11(l) with the same
scale as the latter. As shown in the inset, some peaks still appear
as residual resonances not predominant in the dynamics. We
point a peak corresponding to the 5-PO. The three regularly
spaced peaks on the spectrum [Fig. 11(l)] are associated to the
5-PO regular modes [see Fig. 3(d)]. We also report the position
of the 2-PO length and note that no peak appears. The 2-PO
does not contribute to the modes excited out of the symmetry
axis of the fiber.

B. Fine selection of 2-PO regular modes by a modulated beam

As shown right above, a beam focused close to the
truncation leads to the excitation of 2-PO regular modes due
to a maximized overlap with the location of the Gaussian
transverse mode waists. The width of the spectrum (the number
of excited modes) then depends on the size of the illumination
beam. To control the excitation of 2-PO regular modes, we use
a SLM to obtain a fine tuning of the illumination. We add a
spatial modulation along the x axis to select a direction of the
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FIG. 13. Length spectra corresponding to spectra presented in (a)
Fig. 11(f): one can see the regularly distributed peaks corresponding
for the first to the length of the 2-PO and for the others to the
harmonics; and in (b) Fig. 11(l) one can see that no specific length
exists (see inset) even if a zoom shows some peaks distributed in a
disordered way. The arrows mark the 2-PO and 5-PO.

transverse wave vector that matches those of the 2-PO regular
modes. Moreover, we stretch the beam’s transverse profile
along the x direction to optimize the overlap with the desired
modes. Indeed, the propagating field ψ(x,y,z) is the result of
a superposition of the individual modes φn(x,y) written as

ψ(x,y,z) =
∑

n

cnφn(x,y) exp (−jβnz), (19)

where βn =
√

k2
0 − κ2

n is the constant of propagation of mode
φn and cn = ∫∫

dS φn(x,y)ψ∗(x,y,z = 0) is the weight of
each individual mode in the superposition. Figures 14(a) and
14(b) show examples of the FF for two slightly different
modulations, fixed via the SLM, associated to transverse
wave numbers κ of successive regular modes u0,p and u0,p+1.
To get rough information on the transverse wave numbers
characterizing the propagated field, we calculate the angular
integration of the far field |ψ̃(κ,ϕ,z)|2 [Fig. 14(c)]:

Iκ (κ,z) = 1

2π

∫ 2π

0
dϕ |ψ̃(κ,ϕ,z)|2. (20)
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FIG. 14. (a, b) Experimental FF measured for two different
spatial modulations of the illumination beam. (c) Angular integrated
FFs. Blue dashed line corresponds to case (a) and red line to
case (b).

It is equivalent to a low-resolution spatial frequency
spectrum due to smoothing induced by the Fourier transform
of the individual modes and the interferences between the
modes. The dashed line (resp. red line) corresponds to the FF
presented in Fig. 14(a) [resp. (b)].

In Fig. 14 regularly spaced circle arcs clearly appear in the
κx direction in the FFs and correspond to the peaks observed
in their angular integrations. It points out that only 2-PO
modes have been selected. The highest peaks around κ a = 76
correspond to the value of κ fixed by the modulation. They are
associated to two successive 2-PO regular modes with p = 22
for the red curve and p = 23 for the blue one. The peaks
located around κ a = 60 testify on the excitation of lower
order 2-PO regular modes as well, due to their good overlap
with the initial condition. For low κ a values, we observe some
peaks that can be understood within the angular integration of
the FF of individual regular modes.

In Fig. 15 we report the angular integrated far-fields for two
calculated individual 2-PO regular modes with consecutive p

values, p = 12 and p = 13. To begin, we observe that the
curves present a peak at the expected position of the κ that are
κ0,12 a = 42.12 and κ0,13 a = 45.54. We note also the presence
of peaks with reduced amplitudes at the location of lower κ a

corresponding 2-PO regular modes. The occurrence of these
peaks is a consequence of the Gaussian beam nature of the
2-PO regular modes along the stable trajectory. Those peaks
would not appear for instance in the angular integration of the
FF of the ergodic modes [such as the one shown in Fig. 3(j)].

FIG. 15. (a, b) Numerical FF calculated for two different 2-PO
regular modes with p = 12 and p = 13, respectively. (c) Angular
integrated FFs. Blue dashed line corresponds to case (a) and red line
to case (b). The vertical dashed lines correspond to the value of the
wave number of the u0,p modes.

We perform numerical simulations to analyze the experi-
mental angular far-field integration of Fig. 14. First an initial
beam analogous to the one used in the experiment, that is an
asymmetric Gaussian beam stretched and modulated in the
x direction, is used on the one hand as initial illumination
condition in the BPM algorithm. On the other hand, we
evaluate the spatial overlap of this initial condition with the
calculated modes to get the weights cn of each individual
mode in the propagating field ψ(x,y,z). Numerically, we
superimpose the angular integrated far field resulting from the
BPM simulation with the calculated weights |cn| of each mode.
Figure 16(a) shows a behavior analogous to the experimental
angular integrated far field [Fig. 14(c), red curve]. For low
values of κ a, we observe some peaks pointed by the vertical
arrows also detected on the experimental figure (see Fig. 14)
that correspond to values of κ a for p = 2,4,6. They constitute
a direct signature of the Gaussian modes as shown in the
integrated far field of individual modes (Fig. 15). We also
observe two broad peaks in the integrated FF around κ a = 40
and κ a = 50. These large peaks result from the interferences
between the excited modes preferentially being 2-PO regular
modes. Indeed, by considering the value of |cn|, we notice that
modes with highest value of |cn| are the 2-PO modes (marked
by dashed vertical lines).

Finally, we report in Fig. 16(b), the angular integrated
far field for an initial modulated beam out of the 2-PO
direction (precisely, in the upper part of the fiber, with a
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FIG. 16. Angular integrated FF obtained by numerical simula-
tions. (a) For an illumination favorable to the excitation of regular
modes. The vertical dashed lines correspond to the value of the wave
number of the u0,p modes; (b) for a modulation along the y direction,
so that no regular mode is being excited. The |cn|2 are represented by
continuous vertical lines in both cases. Insets show the corresponding
FF.

modulation having the same κ value but along the y direction
to avoid the 2-PO). We observe the disappearance of the first
peaks associated to the characteristic signature of the 2-PO
regular modes and an enlarged peak that corresponds to a
superposition of a great number of arbitrary excited modes
around the main κ value. The reported |cn| values show that a
large amount of not identifiable modes are effectively excited.

VI. CONCLUSION AND DISCUSSION

In this paper we have presented numerical and experimental
investigations of the modes of a highly multimode fiber whose
transverse cross section is designed to induce complex ray
dynamics. This system is versatile in the sense that a slight
change in the level of the truncation leads to the exploration
of different types of dynamics. One thus has access, with the
same experimental system, to mixed, regular as well as chaotic
dynamics. Here we focused our work on the study of a mixed
dynamics. After a brief review of the basics of dynamical
systems as well as the analogy between the fiber’s modes and
Gaussian modes of an optical resonator, we concentrated our
study on the deviation of the statistics of some family of modes
from the generic behavior. The strong spatial localization of
the regular modes finds remarkable signatures in the study of
the IPR. By largely exceeding the value of the IPR predicted
by the Random Matrix Theory, the regular modes of the
mixed optical fiber present features commonly encountered
in disordered systems exhibiting Anderson localized modes.
Moreover, coupling these results with the analogy with the
Gaussian modes allowed us to derive an analytic expression
for the IPR as a function of the wave number for the regular
modes.

With a suitable shaping of the initial beam, we experi-
mentally demonstrated that these modes can be selectively
excited, and that they are robust to mode coupling. We analyze
our results by means of the spectra, length spectra, and
angular integration of the output far field, for any given initial
illumination. This ease of shielding the other modes opens the
way to multiple applications in optical telecommunications.
For instance, the regular modes of the mixed optical fiber
appear to be suitable for mode division multiplexing and
would increase the number of transmission channels compared
to the actual achievement available in conventional devices.
Moreover, these modes can benefit from a selective optical
amplification, by optimizing the spatial overlap with a gain
medium. To do so, one simply has to locate the active medium
in the vicinity of the truncation, where the regular modes have
their maximum of intensity [17]. In a more fundamental point
of view, a nonlinear mixed optical fiber would promote an
enhancement of the phenomenon of optical thermalization and
condensation of classical waves, as the spatial overlap between
the modes is an important parameter [48].
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