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Anomalously slow relaxation of interacting liquid nanoclusters confined in a porous medium
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Anomalously slow relaxation of clusters of a liquid confined in a disordered system of pores has been studied
for the (water-L23 nanoporous medium) system. The evolution of the system of confined liquid clusters consists
of a fast formation stage followed by slow relaxation of the system and its decay. The characteristic time
for the formation of the initial state is τp ∼ 10 s after the reduction of excess pressure after complete filling.
Anomalously slow relaxation has been observed for times of 101–105 s, and decay has been observed at times
of >105 s. The time dependence of the volume fraction θ of pores filled with the confined liquid is described
by a power law θ ∼ t−α with the exponent α < 0.15. The exponent α and temperature dependence α(T ) are
qualitatively described theoretically for the case of a slightly polydisperse medium in a mean-field approximation
with the inclusion of the interaction of liquid clusters and averaging over various degenerate local configurations
of clusters. In this approximation, slow relaxation is represented as a continuous transition through a sequence
of metastable states of the system of clusters with a decreasing barrier.
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I. INTRODUCTION

In recent years, to describe the state of relaxation of
disordered media such as glasses, colloids, polymers, and
other granular media, different phenomenological models
have been actively used. Such models include the shear
transformation zone (STZ) [1–5], dynamic heterogeneity
(DH) [6–8], random first-order transition theory (RFOT),
topological bond-oriented local configuration [1,9–14], etc.
(see, e.g., [1,6,15–18]). These models involve local structures
(configurations), and they are used to describe states and
relaxation of glasses, colloids, polymers, and loose media,
as well as liquid-glass transitions and the sol-gel process
resulting in the appearance of random order. According to
[1,19,20], these media are nonergodic and are characterized
by an anomalously slow relaxation of local nonequilibrium
states, which is phenomenologically described by a stretched
exponential relaxation law [1,13,21,22]. Anomalously slow
relaxation means that the system cannot necessarily reach an
arbitrary point in the phase space during a large observation
time smaller than the lifetime of the states [1]. Anomalously
slow (power-law) relaxation in phenomenological models of
disordered media is attributed to the formation and decay of
metastable states.

Disordered porous media constitute a particular case of
disordered media. Their structure is studied by gas adsorption-
desorption and mercury porometry methods. In this work, it is
shown that the properties of disordered porous media can be
investigated through the states of a nonwetting liquid confined
in the disordered structure of pores after the removal of excess
pressure [23–25].

A porous medium immersed in a nonwetting liquid can be
filled with this liquid only with an excess pressure above a
certain critical value, which can be estimated by the Laplace
formula. After the subsequent removal of excess pressure,
such a system can be in an unstable state, because surface
forces tend to push a nonwetting liquid out. These phenomena
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are identified in numerous studies of the intrusion-extrusion
hysteresis [26–37].

On the other hand, confinement of a fraction of the liquid or
the entire liquid volume after the removal of excess pressure
is observed for many nonwetting liquids and disordered
porous media. The confinement of the liquid was detected
when studying intrusion-extrusion for water, aqueous solutions
of salts and organic substances, mercury and other metals,
Wood’s alloy, hydrophobized silica gels KSK-G, PEP 100,
PEP 300, Fluka 60, Fluka 100, C8W (Waters), and Vycor
and PG porous glasses [26–40]. These media differ in the
degree of hydrophobicity, porosity, average pore size (in
the range 0.5–20 nm), and average granule size (in the range
10–100 μm), and the width of the pore size distribution. The
confinement effect is not related to a phase change. Indeed,
according to [41,42], at the radius of pores R > 1 nm and
T > 273 K, the properties of the liquid in confinement do
not differ from the properties of the bulk liquid. The confined
liquid can remain in a porous medium for hours, days, and
months. For the (mercury-porous glass) system, the weight of
porous glass samples with confined mercury and the results
of neutron scattering experiments did not change over several
months [41]. For other systems consisting of mercury and
Vycor and PG porous glasses and silica gels, the volume of
the confined liquid depends on the extrusion time and the size
of granules [43].

Investigations indicate that the volume fraction of the
confined liquid θ can be from a few percent to 100%
[26,27,34,37,38,40,44,45]. In particular, the L23-water system
has close to 100% liquid confinement at T = 279 K, which is
reduced to only 5% for a small temperature change of �T ≈
10 K. If the fraction of filled pores is above the percolation
threshold θc (θc = 0.15–0.35, depending on the model of the
porous medium [46,47]), the confined liquid can remain in the
porous medium for an observation time of 10–105 s, although
the liquid can be extruded from the sample through filled
pores, which form an “infinite” percolation cluster at θ > θc.
If θ is below the percolation threshold, θ < θc, only isolated
clusters of filled pores are formed in the porous medium.
Then, there are no paths for extrusion of liquid from most
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clusters through filled pores to the boundary of the sample.
A possible mechanism for extrusion of liquid from clusters
is recondensation, i.e., capillary evaporation and subsequent
capillary condensation at the (porous medium–surrounding
liquid) interface. Capillary condensation and capillary evap-
oration constitute a mechanism considered as responsible for
transport in experiments on adsorption-desorption of gases in
porous media [48]. In such experiments, a porous medium is
placed in a gas atmosphere and the mass of the adsorbed
gas is measured as a function of pressure near saturated
vapor pressure. In view of a low density of the gas as
compared to the density of the liquid [ρg ∼ (10−4–10−3)ρl],
under equal conditions otherwise, the flux of the gas is much
smaller and the characteristic adsorption-desorption time in
such experiments is much larger than the respective values in
the case of the transport of liquid through liquid-filled pores
forming an “infinite” percolation cluster. The characteristic
time in experiments on the adsorption-desorption of gaseous
nitrogen at T = 77 K is of the order 104–105 s, whereas for
intrusion-extrusion of the nonconfined fraction of the liquid it
is ∼0.1 s [49].

Thus, it can be expected that there are two different
scenarios of relaxation after the filling of the porous medium
and the subsequent removal of excess pressure. In the first
scenario, most of the liquid is in an unstable state and can
be extruded from the porous medium at a characteristic
hydrodynamic time of ∼0.1 s. The remaining part with the
fraction of filled pores below the percolation threshold θ < θc

forms clusters of filled pores surrounded by empty pores. The
characteristic time of the extrusion of the liquid from these
pore clusters should be determined by the process of capillary
evaporation of the liquid from the surface of menisci in filled
pores and capillary condensation on the surface of menisci
with nearly identical curvature at the interface between the
porous medium and the bulk liquid. Consequently, the mass
flow in this process is expected to be much smaller and the time
is expected to be much larger than for a hydrodynamic flow of
liquid through filled pores. In the second scenario, a fraction
of the liquid can be in an unstable state and can be extruded in
a hydrodynamic time of ∼0.1–1 s through filled pores of the
“infinite” percolation cluster. In this work, we study the process
of extrusion of the confined liquid for the degree of filling θ

above the percolation threshold θc. Relaxation at θ < θc can
be described within the evaporation-condensation mechanism
considered in Ref. [45].

In Refs. [23,25], it was found that the volume of the
confined liquid in the systems consisting of water and the
L23 or Fluka 100 C18 porous medium depends critically
both on the initial degree of filling and the temperature
(dispersion transition). These properties cannot be explained
through intrusion-extrusion of the liquid from individual pores
based on the Laplace relation and a phenomenological contact
angle [40,50]. These dependences mean that the behavior
of a fraction of the nonwetting liquid can be attributed to
the interaction between liquid clusters in neighboring pores
[51]. The lattice-gas model was used in Refs. [52,53] to
describe the state and relaxation of an ensemble of liquid
clusters in pores. Such a model allows the inclusion of
interaction between clusters for a random distribution of
neighboring pores. Transport in such a model is considered

as diffusion transport of a vapor from a filled pore to a
neighboring empty pore. This approach describes states and
relaxation at the adsorption-desorption of the gas in terms
of capillary condensation and capillary evaporation in the
porous medium immersed in a gas atmosphere [54]. The
slowing down of the process of desorption in the hysteresis
region observed in Ref. [55] for the system of cyclohexane in
a Vycor porous medium is explained within the lattice-gas
model by the slowing down of the diffusion of the vapor
as a result of the fragmentation of the condensed liquid.
The numerical Monte Carlo study of the lattice-gas model
with the Glauber-Kawasaki algorithm under the assumption
of diffusion transport of the vapor through neighboring empty
pores showed that the volume of the remaining liquid increases
with a decrease in the observation time [26].

The confinement of the nonwetting liquid in the disordered
structure of pores and the kinetics of the dispersion transition
were described in Ref. [56]. Within such an approach, the con-
finement and (possible) extrusion of the liquid were described
for what may be called the ground state of the disordered
porous medium-water system, which is characterized by the
formation of the “infinite” fractal percolation cluster of filled
pores. The observed confinement of the liquid is explained by
the transition of a fraction of the liquid to a metastable state at
excess pressure and the subsequent removal of excess pressure.
The energy barrier of the metastable state is determined as the
difference between the surface energy of a liquid cluster in
a pore with the frame of the medium, which “extrudes” the
nonwetting liquid, and the surface energy liquid cluster in the
pore with liquid clusters in neighboring pores (multiparticle
interaction).

For the disordered porous medium partially filled with
liquid, the arrangement of filled and empty pores is random
both on the fractal shell of the percolation cluster of filled pores
and inside the percolation cluster. Consequently, the energy
barrier of the metastable state forms a random potential profile
in the space of the porous medium on the shell and in the
volume of the percolation cluster of filled pores. The extrusion
of the liquid from pores is the process of overcoming a set of
maxima of the potential profile. During the process of extrusion
of the liquid, the degree of filling of pores decreases and the
percolation cluster “is contracted.” This can accelerate the
extrusion of the confined liquid because of a decrease in Ref.
θ (a decrease in the number of neighboring filled pores) and a
decrease in the energy of the “multiparticle interaction.”

A description of the relaxation of the metastable state of
the confined liquid based on the distribution function of filled
pores was proposed in Ref. [56]. This description of relaxation
is used in this work for a porous medium with a narrow pore
size distribution with relative width �R/R � 1.

The experiments described below were performed in order
to test the mechanism proposed in Ref. [56] for the relaxation
of the liquid confined in a porous medium immersed in
the same liquid at degrees of filling above the percolation
threshold. The problem was formulated as follows. We chose
the system of water in the Libersorb 23 (L23) disordered
nanoporous medium. After complete filling at excess pressure
and subsequent removal of excess pressure in this system, two
states of the confined liquid are observed at temperatures above
and below a dispersion transition temperature Td ≈ 284 K. In
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one of them, the degree of filling with the confined liquid θ

at T < Td = 284 K is higher than the percolation threshold
θc, and the liquid can be extruded. In the other state, the
degree of filling with the confined liquid at T > Td = 284 K
is θ < θc, isolated clusters of filled pores are in the metastable
state, and the extrusion of liquid is only possible through
capillary evaporation-condensation at the boundary of the
porous medium.

When measuring the time dependence θ (t), it was necessary
to avoid systematic error during continuous determination of
θ over long times up to 105 s. We have developed and used a
method of step-by-step determination of θ at different times
(Sec. II). This method made it possible to reproduce and to
control the initial state of the confined liquid at times t > 10 s
larger than the time of spontaneous, barrierless extrusion of a
fraction of the liquid at θ > θc.

We have detected an anomalously slow extrusion with the
confined liquid fraction θ both above and below the percolation
threshold (Sec. II C). In the observation time of this slow
relaxation, the experimental data at θ > θc are described by
an inverse power dependence with exponent α < 0.1. The
exponent α depends on the temperature, reaching a maximum
near the dispersion transition temperature Td = 284 K. This
can indicate a change in the transport mechanism.

II. EXPERIMENT

A. Porous medium

The experiments were performed with the Libersorb 23
(L23) nanoporous medium. The L23 nanoporous medium is
produced from the commercially available silica gel (KSK-G),
where the disordered structure of pores is formed in the sol-gel
process. The surface of pores of the KSK-G silica gel was
modified by alkylsilanes in the laboratory, which was headed
by G. V. Lisichkin (Moscow State University), in order to
ensure the hydrophobic properties [50,57]. The characteristics
of the samples of the L23 porous medium were obtained from
the adsorption of nitrogen at an Autosorb IQ (Quantachrome,
USA) analyzer for studying low-temperature sorption and a
Micro-Ultrapyc 1200e helium pycnometer. The density of the
L23 porous medium was ρ = (1.7798 ± 0.0016) g/cm3, the
specific volume of pores was Vp = (0.62 ± 0.02) cm3/g,
the porosity of the material was φ = 0.52, the specific surface
was Sp = (199 ± 7) m2/g, and the mean size of the granules
of the L23 powder was ∼10 μm. The pore volume distribution
function as obtained from the classical Barrett-Joyner-Halenda
(BJH) method is shown in Fig. 1. This function provides only
a qualitative representation of the pore radius distribution.
The mean radius of pores is R = (5.0 ± 0.2) nm, the full
width at half-maximum (FWHM) of the distribution near the
maximum is �R = (0.4 ± 0.1) nm, and �R/R � 0.1. Tails
of the distribution are also observed in the regions of large and
small sizes of pores. Consequently, since �R/R � 1, the L23
porous medium can be used to test the relaxation model [56].
In this model, the random potential field of the barrier of local
metastable states is attributed to the fractality of the “infinite”
percolation cluster of pores filled with the trapped liquid. For
this model, a power law of relaxation of such states should be
observed [56].

FIG. 1. Pore size distribution function for the Libersorb 23 porous
medium according to the BJH method.

B. Measurement procedure

The aim of the performed measurements was to determine
the time dependence of the volume fraction of pores θ filled
with liquid. Liquid flows from pores rapidly when the imposed
pressure is reduced. The extrusion time is less than 1 s [51]. The
relaxation of the liquid confined in the porous medium after
the initial, rapid, extrusion is studied in this work through the
time dependency of θ . The characteristic liquid extrusion time
may vary with the mechanism of liquid transport. Transport
of liquid may occur as flow through filled pores and through
capillary evaporation and subsequent capillary condensation
at the interface between the bulk liquid and porous medium
immersed in this liquid. The latter mechanism can obviously
be efficient in the case of an “infinite” percolation cluster
of empty pores, i.e., θ < θc1 = 0.7–0.85 after the initial,
rapid extrusion. Therefore, the developed method should
ensure the measurement of the volume at the extrusion and
evaporation of the confined liquid captured in porous medium
after the intrusion-extrusion process. In experiments, it was
also necessary to determine the initial state of the confined
liquid, the time and conditions of the beginning of relaxation
of the state and of the extrusion of the confined liquid
from the porous medium, and the possible effect of the
prehistory (the formation of the initial state). A particular
goal is to experimentally confirm that the properties of the
medium remain unchanged under repeated measurements. The
determination of the time scales of extrusion and evaporation
makes it possible to determine the time interval in which,
according to the model [56], the slow extrusion of the liquid
(power-law relaxation) should occur.

The method used to measure the volume of the (nonwetting
liquid-porous medium) system was similar to mercury [48]
or water [50] porometry. A dried and degassed sample of the
L23 porous medium with mass up to 6 g held in a container
permeable for water was placed in a high-pressure chamber.
The remaining free volume of the chamber (28 cm3) was
completely filled with distilled water. A rod was introduced
into the chamber through seals. The chamber was equipped
with a thermostating system, which allowed studies in the
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temperature range from 243 to 393 K. Before the measure-
ments, the chamber was aged at a given temperature for no less
than 1 h. The temperature was maintained with an accuracy
of ±0.2 K. The chamber was mounted on the bench described
in Ref. [27] to allow a given force to be applied to the rod,
with measurement of the force and displacement of the rod.
All pores were filled because of an increased pressure as the
rod was displaced into the chamber. The impermeability of the
chamber filled with water and porous sample was ensured by
seals. The force (F ) acting on the rod was measured by a strain
gauge dynamometer CWH-T2 (Dacell, South Korea), and the
displacements (l) of the rod were measured by a potentiometric
displacement sensor model 8719 (Burster, Germany). The
pressure (p) in the chamber was determined as p = F/Sr ,
where Sr = 0.785 cm2 is the area of the cross section of the
rod. A change in the internal volume of the chamber (V ) was
determined as V = lSr . Data were recorded from gauges with
a frequency of 1 kHz.

The increased pressure resulted in elastic strains of the
chamber, liquid, and porous medium. Filling of pores of
the L23 porous medium with water was observed only at
pressure >120 × 105 Pa. This made it possible to determine
the effective compressibility of the chamber, as well as the
compressibilities of water and the porous medium in additional
experiments at pressure <120 × 105 Pa; the corresponding
data were taken into account when determining the volume of
filled pores at a given pressure.

Initially, the porous medium was dried and degassed. We
used a step-by-step method to determine the time (t) depen-
dence of the degree of filling (θ ) of pores with the confined
liquid. The degree θ was determined after the observation time
(ti). Then, the (porous medium–liquid) system was returned
to the initial state, and θ (tj ) was determined at different
times tj , both larger and smaller than ti . The dependence
θ (t) was obtained by multiple repetition of such a procedure
with various ti values. Each step of the procedure consisted
of two successive intrusion-extrusion cycles performed after
time ti . The pressure variations that result from changes in
the volume of the L23-water system at T = 286 K for two
successive cycles at the first step of the measurement are
shown in Fig. 2. Changes in the volume of the system because
of the compressibility of the liquid, the frame of the porous
medium, and the chamber have been subtracted. Dependence
I corresponds to a decrease in the volume of the empty porous
medium at an increase in the pressure in the first cycle.
Dependence I′ corresponds to an increase in the volume at a
decrease in the pressure. Three sections can be identified in the
dependence V (p). Section 0-1 corresponds to the compression
of the empty porous sample, and the slope of this linear section
is determined by the compressibility of the empty porous
medium. Filling of pores was observed neither in the initial
state at atmospheric pressure, p = (1.00 ± 0.05) × 105 Pa,
when empty pores can contain saturated water vapor, nor at
high pressures up to 120 × 105 Pa at point 1 in section 0-1 when
the observation time is smaller than 15 h. Section 1-2 of depen-
dence I corresponds to filling of available pores of the empty
porous medium. At pressure P = 450 × 105 Pa, ≈99.8% of
pores are filled. The volume of all filled pores of the sample is
equal to the difference |V2 − V1|. When the pressure decreases
below point 3 in dependence I′, V decreases, corresponding to

FIG. 2. Pressure as a function of volume change for the L23-water
system at T = 286 K for two successive cycles. An explanation is
given in the main text.

the extrusion of the liquid from pores, which is described by
dependence I′. The main decrease in the quantity V is observed
at low pressures comparable with the error of the measurement
of the pressure, and the volume of the confined liquid can be
determined from the intersection of the dependence V (p) with
the y axis only with the accuracy δV/V ∼ 1. For this reason,
in the experiments, we determined the volume of pores in two
successive intrusion-extrusion cycles.

Before repeated filling in the second cycle, some pores
contain the confined liquid and, when the pressure in the
second cycle increases above point 4 in dependence II,
only a fraction of empty pores are filled. The volume of
these empty pores is |V2 − V4|, and the difference between
the volumes of filled pores in the first and second cycles
determines the volume of filled pores after the first cycle, Vt =
(|V2 − V1| − |V2 − V4|). Correspondingly, θ = Vt/|V2 − V1|.
The relative compressibilities in the sections of filling of the
empty porous medium and the partially filled porous medium
are almost the same, (7.5 ± 0.9) × 10−9 Pa−1, within the
error of measurements. After the complete filling, the system
“forgets” the prehistory of the formation of the preceding
initial state and its relaxation, and the initial state of the
confined liquid is formed again after the extrusion of a fraction
of the liquid (dependence II′). Thus, the volume of all empty
pores can be determined during the subsequent filling. The
volume of pores that remain empty after the extrusion of the
liquid in the time interval from the beginning of extrusion in
the first cycle (point 3) to the time of the beginning of filling
at the repeated increase in the pressure (point 4) is determined
at repeated filling.

Consequently, V in such a method is determined for the time
t passing from the beginning of the extrusion of the liquid in
the first cycle when the pressure decreases below point 3. The
time t includes the time t1 for reaching “zero” excess pressure
[i.e., p = patm = (1.00 ± 0.05) × 105 Pa] and the time ti to the
beginning of the repeated filling at point 4 in the second cycle.
According to [56], spontaneous barrierless extrusion of the
unconfined liquid from some pores, as well as extrusion from
pores in which the liquid is in a loosely bound state with a low
barrier comparable to the temperature, can occur during the
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time t1. The height of this barrier can be estimated assuming
that t ∼ τ0 exp(E/T ). At t1 ∼ 10 s and τ0 ∼ 0.1 s, E/T � 5.
As follows from the estimate given below (see Sec. III C), the
volume fraction of pores with the liquid in loosely bound states
is several percent. Since the pressure decreasing time t1 = 10 s
is much larger than the time of hydrodynamic extrusion of a
fraction of the liquid at θ > θc, the decrease in the volume
follows the decrease in the pressure. Thus, the initial state of
the system is formed in the time fixed in all measurements
as t1 = 10 s, and the relaxation of the metastable state of the
confined liquid begins after the time t1. The volume of the
confined liquid in the metastable state Vt in the experiments is
obtained after the observation time of relaxation (extrusion of
the liquid) t = ti . This volume includes the volume V of the
liquid remaining after the extrusion in the time interval t = ti ,
and it does not include the volume of the liquid in these loosely
bound states.

To test the reproducibility of the initial state, we performed
additional experiments, with multiple measurements of θ at the
chosen time t = t1 + ti = 1 min. It was found that the spread of
the measured θ values at t = 1 min is smaller than the error of
the measurements. Other additional experiments indicated that
θ (ti) values and the θ value at different time tj are independent
of the sequence of these measurements. Multiple intrusion-
extrusion-confinement experiments with the nonwetting liquid
at temperatures T = 277–293 K including the subsequent
removal of the confined water from the L23 porous medium by
evacuation drying at T = 343 K performed before and after the
measurements of θ (t) confirm that the properties of the porous
medium did not change. The specific volume of pores, the pres-
sure at point 1 in Fig. 2, and the pressure at point 3 remained
unchanged within the error of measurements after more than
100 identical cycles. This confirms the stability of the hy-
drophobizing layer on the surface of the L23 porous medium.

C. Experimental results

The dependences θ (t) for seven temperatures from 277
to 293 K are shown as a log-normal plot in Fig. 3. These
experimental values of θ were obtained by the step-by-step

FIG. 3. Dependences θ (t) at seven temperatures from 277 to
293 K in the time interval from 10 to 105 s. Experimental points
in comparison with the power-law approximations θ ∼ t−α shown by
solid lines in the time interval from 60 to 6 × 103 s.

method in two intrusion-extrusion cycles with variation in
observation time t from 10 to 105 s at each step. Points in
Fig. 3 represent the results from at least three measurements
of θ at each value of time t . The spread of θ values does
not exceed the error of the measurement. This confirms the
reproducibility of the initial state of the (liquid-disordered
porous medium) system at “losing memory” of the preceding
states after complete filling in the first and second cycles. The
coincidence of θ values can be attributed to the fact that, after
complete filling and subsequent removal of excess pressure,
the system was in one of the numerous degenerate states with
the formation of the “infinite” percolation cluster of filled pores
at θ > θc or empty pores at θ < θc1. The degree of filling is
the same for all these states.

The (water-L23 porous medium) system undergoes a
dispersion transition. With an increase in temperature, the
transition from an almost total nonextrusion of the liquid at
T = 277 K to an almost total extrusion at T = 293 K occurs
in a narrow temperature range (�T ≈ 10 K) near a critical
temperature.

At temperatures T = 277 and 279 K and time of relaxation
from 13 to 3 × 104 s, the degree of filling decreases from 0.82
to 0.45 and from 0.65 to 0.35, respectively (see Fig. 3). In this
case, θ > θc, where θc = 0.15–0.3 is the percolation threshold,
and time relaxation occurs in an “infinite” percolation cluster
of filled pores. Consequently, the liquid can leave the porous
medium via the mechanism of extrusion through filled pores.

At temperatures T = 289 and 293 K in the time interval
from 13 to 3 × 104 s and from 13 to 105 s, respectively, the
degree of filling θ of pores with the liquid varies from 0.16
to 0.04 and from 0.08 to 0.02, respectively. At such degrees
of filling below the percolation threshold θc, the confined
liquid is located in pores that form clusters surrounded by
empty pores. Therefore, the volume of the confined liquid
can decrease via capillary evaporation from the surface of
the liquid in clusters of filled pores, diffusion of vapor in the
residual gas in the infinite percolation cluster of empty pores,
and capillary condensation at the interface between the bulk
liquid and granules of the porous medium. Fluxes in such a
transport mechanism are small compared to the hydrodynamic
flow of the liquid because the density of vapor is much lower
(by a factor of 103–104).

A transition from the “infinite” cluster of filled pores when
θ > θc to individual clusters of filled pores when θ < θc is
consistent with the behavior θ (t) at temperatures 282, 284, and
286 K. Both the hydrodynamic transport mechanism and the
evaporation-condensation transport mechanism are probably
of importance under these conditions.

As is seen in Fig. 3, a power-law approximation θ ∼ t−α

fits the experimental data only in the range of 60 to 6 × 103 s,
probably due to the existence of either an “infinite” cluster of
filled pores (temperatures 277–286 K) or an “infinite” cluster
of empty pores (temperatures 289 and 293 K) in a given time
interval. The spontaneous outflow of liquid through the system
of filled pores continues at times up to 60 s, and either the
changed transport mechanism or both transport mechanisms
are probably active after 6 × 103 s. The experimental data can
be described within the error of the measurements by a power
law θ ∼ t−α with the exponent α depending on the temperature
only in the time interval from 60 to 6 × 103 s.
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TABLE I. Values of α.

T (K) α �α

277 5.20 × 10−2 6.36 × 10−3

279 6.70 × 10−2 6.72 × 10−3

282 1.13 × 10−1 4.28 × 10−3

284 1.61 × 10−1 2.43 × 10−4

286 1.53 × 10−1 2.88 × 10−3

289 8.42 × 10−2 5.20 × 10−3

293 4.00 × 10−2 3.16 × 10−2

The temperature dependence of the exponent is shown in
Table I. The error �α in the α values corresponds to the
confidence parameter R2 as �α = α(T )[1 − R2(T )] for the
power-law approximation θ ∼ t−α .

The large error �α = 3.16 × 10−2 for T = 293 K can be
due to a change in the relaxation mechanism. Relaxation at θ <

θc occurs via the vapor transport mechanism [36]. In this case,
since the hydrodynamic flow time in a channel is independent
of the radius of the channel for a Knudsen gas, the relaxation
should follow a logarithm rather than a power law because the
Knudsen number in the experiments at p = 105 Pa, R = 4 nm,
and T ≈ 300 K is Kn >10.

The experiments provide the following conclusions. When
the excess pressure was varied from 450 × 105 to ∼120 ×
105 Pa, the extrusion of the liquid from the filled porous
medium was not observed in the time interval t = 5 s for
the entire temperature range under study. Extrusion begins at
the excess pressure p < 120 × 105 Pa. The extrusion of the
confined liquid occurs differently at temperatures above and
below the dispersion transition temperature T = Td ≈ 284 K.
At temperatures T > 289 K, the degree of filling changes to
values below the percolation threshold θc in the time τp = 10 s
after reduction of the pressure from 120 × 105 Pa to zero. In
this case, in the time interval from 10 to 106 s, the degree
of filling θ of pores with the liquid varies from 0.08 to
0.02 according to the power law θ ∼ t−α with the exponent
α � 0.05.

At T < Td , partial extrusion of ∼20% of the liquid is
observed at time τp = 10 s after reduction of the pressure
from 120 × 105 Pa to zero. The degree of filling for the
confined liquid θ is larger than the percolation threshold θ ,
and fast (at time ∼τ0 ∼ 0.1 s [49]) hydrodynamic extrusion
of the liquid through the percolation cluster of filled pores is
possible. However, this process does not occur, and the degree
of filling at a time from 10 to 6 × 103 s decreases from 0.8
to 0.6 according to the power law θ ∼ t−α with the exponent
α � 0.2.

III. STAGES OF RELAXATION

It was argued above that two different relaxation scenarios
are possible after the filling of the porous medium and the
subsequent removal of excess pressure. At temperatures T <

Td , a fraction of the liquid after the removal of excess pressure
can be in an unstable state, and it flows out in about t = 10 s
through filled pores of an “infinite” percolation cluster. Partial
extrusion up to 60% of the liquid occurs during this time
interval. According to [56], the remaining larger (∼80%) part

of the liquid in observation times from 20 to 6 × 103 s is in
a metastable state and only slowly flows out. At temperature
T = 277 K, the degree of filling decreases from 0.8 to 0.6
according to a power law θ ∼ t−α with the exponent α � 0.2.

At temperatures T > 284 K, most of the liquid, �80%, is
in an unstable state and flows from the porous medium in a
characteristic time of the removal of excess pressure t ∼ 10 s.
The remaining liquid with the fraction of filled pores below the
percolation threshold θ < θc at times t � 10 s slowly relaxes
according to a power law θ ∼ t−α with a small exponent value
α � 0.05.

Thus, it is necessary to describe the process of extrusion of
the confined liquid for t < 10 s in two different cases: (i) the
decay of unstable states of filled pores occurs to θ below the
percolation threshold θ , and isolated clusters of liquid-filled
pores can be formed; and (ii) the decay of unstable states ends
in time t ∼ 10 s with θ above the percolation threshold θ and
results in the formation of a metastable state.

A. Kinetics of the formation of the metastable state

We consider the dynamics of the extrusion of the non-
wetting liquid from the nanoporous medium. The porous
medium is initially completely filled at excess pressure p0 =
450 × 105 Pa. With a decrease in the pressure to the critical
value pc ∼ 120 × 105 Pa, the process of extrusion of the liquid
from the porous medium begins. The aim is to calculate
the time dependence of the volume fraction of the liquid
remaining in the porous medium θ (t) with the reduction of
excess pressure p(t) to zero during the pressure reduction
time τp.

We assume that the disordered nanoporous medium con-
tains pores with different sizes and the porous medium is much
larger than the maximum pore, and an infinite percolation
cluster of pores is formed. The extrusion of the liquid from
the nanoporous medium can occur through two different
mechanisms. If θ is above the percolation threshold θ for
filled pores, these pores form a connected system of filled
pores through which the liquid can be extruded with the
characteristic hydrodynamic time τ0 ∼ 0.1 s [49]. If the degree
of filling with the confined liquid is θ < θc, connected paths for
the extrusion of the liquid are absent and the extrusion of the
liquid is possible through capillary evaporation-condensation
at the boundary of the porous medium.

The characteristic pressure reduction time in the performed
experiments was τp = 10 s; consequently, τp � τ0. The
process of extrusion of the liquid at pressure variation times
τp � τ0 can be considered as a process occurring in a
quasistationary medium with excess pressure p(t) decreasing
slowly.

According to [25,56], the time of extrusion of the liquid
from the pore is given by the expression

τ = τ0 exp(δA/T ). (1)

Here, τ0 is the hydrodynamic time of extrusion determined
by the dynamics of extrusion of the liquid from the porous
medium. This time can be estimated as follows. If the liquid
is extruded from the pore with radius R through a channel
of filled pores with the same radius, τ0 = 4πR3

3Q(R) [56]. In the
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case of the flow of liquid through the channel of radius R,
Q(R) ∼ R4 [58] and τ0 ∼ 1/R.

The expression for δA in the case of a spherical pore with
radius R can be represented in the form [56]

δA(R,θ ) = pV + δε,

δε = δε1(R) + δεint(R,θ ),

δε1(R) = −δσ [1 − η(R)]S, (2)

η(R) = 〈Sm(R)〉
S

,

δεint(R,θ ) = σW (z,θ )η(R).

Here, V = 4
3πR3 and S = 4πR2 are the volume and area of

the pore, respectively; 〈Sm(R)〉 is the mean area of menisci in
the local configuration; δσ is the change in the specific energy
of the surface of the solid (frame of the porous medium) at
the extrusion of the liquid; and σ is the specific energy of the
(nonwetting liquid-gas) interface.

According to Eq. (1), δA serves as the potential barrier
for the extrusion of the liquid from the pore. If δA < 0,
the characteristic extrusion time τ is determined by the
hydrodynamic time τ0 for the motion of liquid in the porous
medium. If δA > 0, the characteristic liquid extrusion time
is determined by the extrusion potential barrier δA. The
characteristic liquid extrusion time in this case can be much
larger than the hydrodynamic time τ � τ0 when the barrier
is δA > T . The barrier δA includes the work (pV ) done by
the system during an increase in its volume by the volume
V of the pore at a pressure p and a change in the surface
energy δε of the liquid in the pore at the extrusion of
the liquid. This change in energy δε should include, first, a
change in energy δε1 at the extrusion of the liquid from the
pore associated with the interaction of the liquid with the frame
of the porous medium, and second, a change in the energy of
the environment of the pore δεint from which the liquid flows.
This is because the extrusion of the liquid from the filled pore
results in the formation of menisci in throats connecting this
pore to neighboring liquid-filled pores and in the disappearance
of menisci in throats connecting this pore to empty pores. As
a result, the energy of the liquid in neighboring pores changes.
This change in energy depends on the numbers of filled and
empty pores in the environment of the pore from which the
liquid flows (local configuration), and, therefore, on the degree
of filling of the porous medium θ . This can be treated as a
“multiparticle interaction” of the liquid in the pore with its
environment, which depends on the degree of filling θ .

The function η(R) defined as the ratio of the mean area of
menisci to the area of the surface of the pore was calculated
in Ref. [59], η ∼ q(R0/R)−γ , γ ≈ 0.3, q ≈ 1.0 [56]. The
function W (z,θ ) is defined as the average difference between
the number of menisci after and before the depletion of the
pore [24], where z is the average number of nearest neighbors.

According to Eq. (2), the energy of the “multiparticle
interaction” of the liquid cluster with clusters in neighboring
connected pores, together with the surface energy of liquid
clusters with the frame of the medium and the work pV ,
forms the local random profile of a potential barrier for the
extrusion of the liquid from the pore in this disordered medium.
In view of the dependence of the number of filled (empty)

pores on the degree of filling, this barrier can be negative for
some pores and the liquid rapidly flows from them [24,56].
The barrier is positive for the other pores and metastable
states appear. It follows from Eq. (2) that the energy of the
“multiparticle interaction” is positive, δεint > 0, at θ0 � θ � 1,
and it is negative, δεint < 0, at degrees of filling of the porous
medium below a certain value θc < θ < θ0 [24,56]. According
to estimates [23,24], θ0 ≈ 0.3 for a porous medium with a
narrow pore size distribution with relative width �R/R � 1.

It follows from Eq. (2) that the potential barrier δA is
determined by the pressure p and by the surface energy δε

of the liquid in the pore, and it depends on the radius of
the pore R. According to Eq. (2), the quantity pV is always
positive, whereas the surface energy δε has a maximum εmax

for R = Rmax(z,θ ) and can change sign at radii R∗(z,θ ) for
which δεint(R,θ ) = |δε1|. It follows from this condition that

R∗(z,θ ) = q
1
γ R0

(
1 + σ

δσ
W (z,θ )

) 1
γ

, (3)

where R0 ≈ R/z is the minimum size of pores in the pore
volume distribution f V (R). According to Eqs. (2) and (3),
the surface energy for R < R∗(z,θ ) is positive, δε > 0. In
this case, the potential barrier δA is positive at any pressure
p. Consequently, the extrusion time from such a state given
by Eq. (1) is exponentially large, τ = τ0 exp(δA/T ) � τ0,
compared to the hydrodynamic time τ0 ∼ 0.1 s.

The surface energy δε for R > R∗(z,θ ) is negative, δε < 0.
It follows from Eq. (3) that the barrier δA in this case critically
depends on the pressure p. The barrier δA is positive, δA >

0, at pressures p > pc = δε
V

, and it is negative, δA < 0, at
p < pc = δε

V
. The critical pressure depends on the radius of

the pore pc(R). For this reason, at excess pressure p, the
barrier for some pores is negative and, according to Eq. (1),
the liquid can flow from these pores in the hydrodynamic time
τ0 ∼ 0.1 s. The barrier for the other pores is positive, δA > 0.
According to Eq. (1), the extrusion time from such pores can
be exponentially large, τ = τ0 exp(δA/T ) � τ0.

It follows from Eq. (3) that the quantities R∗(z,θ ) and
εmax(z,θ ) depend on the temperature through the temperature
dependence of the surface tension coefficients σ (T ) and
δσ (T ). The analysis shows that the quantities R∗(z,θ ) and
εmax(z,θ ) increase with decreasing temperature and with an
increase in the degree of filling θ [24]. Correspondingly,
the potential barrier δA also depends on the temperature,
increasing with decreasing temperature and with an increase
in the degree of filling θ .

The potential barrier δA can be calculated with use of the
results [60] for the surface tension coefficient σ (T ) and its
temperature dependence. The surface tension coefficient of
water at T = 293 K is 75 mJ/m2 [60]. The quantity δσ and
its temperature dependence for the system under study were
determined from the temperature dependence of the extrusion
pressure by the method described in Ref. [51]. The δσ value at
T = 293 K is 22 mJ/m2. The quantity R0 ∼ R

z
was estimated

within the model of randomly distributed spheres [24,59]. At
the porosity φ ∼ 0.5 and R ∼ 5 nm, R0 ∼ 1 nm.

The energy barrier for extrusion from pores with the
distribution function f V (R) at pressures p > 200 × 105 Pa is
δA ∼ 4 eV. The reduction of the pressure to p ∼ 100 × 105 Pa
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is accompanied by a change in the potential barrier. The
potential barrier for extrusion from pores with radius R > R∗
disappears, δA(R > R∗) � 0.

The dependence of the volume fraction of the liquid
remaining in the porous medium at times t < τp = 10 s can be
calculated taking into account that extrusion at times τp � τ0

can be considered as a quasistatic process at an excess external
pressure p(t) decreasing slowly to zero. In this case, following
[49], the probability of finding a pore in the filled state at the
pressure can be determined as

w0(p(t),R) =
[

1 + exp

(−δA(p(t),R)
T

)]−1

. (4)

Then the time dependence of the volume fraction of the
liquid remaining in the porous medium upon reduction of the
pressure at times t < τp = 10 s can be represented in the form

θ (t) =
∫ ∞

0
w0(p(t),R)f V (R)dR, (5)

where f V (R) is the pore volume distribution function.
According to Eq. (5), the time dependence of the volume

fraction of the remaining liquid at times t < τp = 10 s is
determined by Eqs. (4) and (5). The potential barrier at nonzero
excess pressure p(t) 
= 0 is determined by the competition
between a change in the surface energy δε of the liquid in the
pore and the work necessary for the depletion of the pore. At
t = τp = 10 s, excess pressure p(t) vanishes and the potential
barrier for the extrusion of the liquid is determined by the
competition between the energy of the interaction of the liquid
with the frame of the porous medium δε1 and the energy of
the effective “multiparticle interaction” of the liquid cluster
in the pore with liquid clusters in neighboring pores δεint.
According to Eq. (2), liquid clusters for which the energy of
the effective “multiparticle interaction” with liquid clusters in
neighboring pores is positive, δεint > 0, and δεint > |δε1| form
the metastable state of the system corresponding to the bound
states of interacting local configurations of filled pores [56].

B. Kinetics of the relaxation and decay
of the metastable state at θ > θc

We now determine the character of relaxation of this
state θ (t) at times t > τp in the absence of excess pressure
p = 0 and θ (t) > θc. In this case, the system includes a
percolation cluster of filled pores through which the liquid
flows from the porous medium. According to Eq. (3), the
effective “multiparticle interaction” of the liquid cluster with
neighboring clusters in pores is nonzero and is attractive
at θ > θ0 ∼ 0.2. This interaction ensures the existence of
the metastable state of some pores satisfying the condition
δεint > |δε1|. It follows from Eqs. (1) and (3) that the time of
extrusion of the system is

τ = τ0 exp[−δε(R,θ,T )/T ], τ0 ∼ 1/R. (6)

This time is determined by the degree of filling θ of the porous
medium with the liquid in the metastable state, the radius of
the pore R, and the temperature T .

Following [56], we introduce the distribution function
F (t) in the time of extrusion from a pore with radius
R and, correspondingly, volume V = 4

3πR3. This function

determines the volume fraction of pores dθ (t) from which the
liquid flows in time dt ≈ dθ (t) = F (t)dt .

The relaxation function FV (t) of this state θ (t) is normal-
ized to unity,

∫ ∞
0 FV (τ )dτ = 1, and the integral

∫ t

0
FV (τ )dτ = θ (t) (7)

determines the volume fraction of pores θ (t) from which the
liquid flows in the time interval from zero to t . Since we
describe the relaxation of the metastable state formed at the
time t = τp, we measure the relaxation time from this time.
Then, if the medium at the initial time (time of the formation of
the metastable state) is filled to the degree of filling θ (0) = θ ,
the volume fraction of pores θ (t) from which the liquid did
not flow to the time t is determined by the expression

θ (t) = θ

∫ ∞

t

F V (t)dt. (8)

Following [56], we find that the distribution function FV (t)
has the form

FV (t) = f V [R(t)]
dR(t)

dt
. (9)

Here, R(t) is the solution of the equation

τ [R(t)] = t. (10)

Integral (8) of the distribution function given by Eq. (9)
determines the time dependence of the volume fraction of
liquid in the porous medium in the metastable state.

Following [61,62] and using Eqs. (9) and (10), we obtain
θ (t) for the times t > τp in the form

θ (t) ∼ θ

(
τq

t

)α

, α = 1

1 + (2 − γ )�R

R

εmax
T

,

τq ∼ τ0 exp

(
εmax

T

)
, θp = R

R∗

∫ R∗

0
f V (R)dR. (11)

Here, εmax is the maximum height of the barrier ε(R,θ ) in
Eq. (4), and τ0 is the hydrodynamic time of extrusion of the
liquid from pores of the porous medium [56].

It follows from Eq. (11) that the volume fraction of the
remaining liquid in the metastable state at times t > τp

decreases according to a power law with the exponent α and
characteristic time τq ∼ τ0 exp( εmax

T
). According to Eqs. (2)

and (3), the quantities R∗(z,θ ) and εmax(z,θ ) decrease with a
decrease in θ because of the reduction of the energy of the
“multiparticle attraction” between local configurations [24].
For this reason, it follows from Eq. (11) that the regime of
relaxation changes with a decrease in the degree of filling θ (t)
due to reduction of εmax. The relaxation of the metastable
state according to Eq. (11) with the exponent α � 1 for
degrees of filling θ ∼ 1 at low temperatures and �R

R

εmax
T

� 1

is replaced at �R

R

εmax
T

< 1 by fast relaxation with the exponent
α ∼ 1 and characteristic relaxation time τq ∼ τ0 exp( εmax

T
) ∼

τ0 exp( R
�R

) < 1000τ0 ∼ 100 s. This corresponds to the decay
of the formed metastable state. According to Eq. (11), the
decay of the metastable state begins at times for which the
degree of filling θ (t) is such that �R

R

εmax
T

∼ 1.
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Expression (11) indicates that the power-law dependence
θ (t) for the relaxation and decay of the metastable state is due
to the polydisperse distribution (�R/R) of the porous medium
and to the interaction between local configurations.

C. Discussion of the results

We now discuss the time dependences the volume of the
liquid remaining in the porous medium at three stages of the
formation, relaxation, and decay of the metastable state. It
follows from Eq. (5) that the time dependence of the volume
fraction of the remaining liquid at times t < τp = 10 s is
determined by Eqs. (1), (2), and (4).

Estimates show that the maximum value εmax for the system
under study at temperatures below the transition dispersion
temperature Td = 284 K is εmax � 0.8 eV. At excess pressures
p > 200 × 105 Pa, the energy barrier for extrusion from pores
with the pore distribution f V (R) is δA ∼ 4 eV. In this case,
the time of extrusion of the liquid from pores is estimated
by Eqs. (2) and (4) as τ > 1033 s. When excess pressure is
reduced to p ∼ 100 × 105 Pa, the barrier δA becomes negative
for liquid clusters in pores with the radii R > R∗. The liquid
flows from such pores in the hydrodynamic time τ ∼ 10−1 s.
As the pressure is reduced, the quantity R∗ decreases and
the number of pores from which the liquid flows increases.
The volume of the extruded liquid at zero excess pressure is
determined by the expression

θ =
∫ ∞

R∗
f V (R)dR. (12)

An increase in the temperature results in a decrease in R∗.
For this reason, according to Eq. (12), as the temperature is
increased, the volume of the liquid extruded until the excess
pressure vanishes increases, and, therefore, the volume of the
liquid remaining in the porous medium for this time decreases.

The volume of the extruded liquid 1 − θ can be estimated
from Eq. (12) with R∗ given by Eq. (3). The estimates by
Eqs. (3) and (12) with the dependence σ (T ) from [60], as
well as δσ and its temperature dependence determined by the
method described in Ref. [51], give 1 − θ (T = 277 K) ∼ 0.15
at temperature T = 277 K and 1 − θ (T = 289 K) ∼ 0.9
at temperature T = 289 K. These values are close to the
experimental values 1 − θ = 0.1 and 0.8 at time t = 10 s,
respectively.

It follows from Eqs. (2) and (6) that the character of
relaxation of the state formed at the reduction of excess
pressure to p = 0 is determined by the potential barrier δε.
According to [61,62], the potential barrier δσ decreases with
an increase in temperature and a decrease in the degree of
filling. The value of εmax at T = 293 K and θ = 0.1 is below
or about the temperature for all pores. In this case, θ < θc and
only isolated clusters of filled pores are formed in the porous
medium. Paths for the extrusion of liquid from these clusters
through filled pores are absent. A possible mechanism of the
extrusion of liquid from clusters of filled pores in this case can
be recondensation.

According to Eq. (11), the relaxation of the formed
metastable state occurs through extrusion from local configu-
rations of pores with radii smaller than R∗. The energy barrier
for extrusion from these configurations ε(R,θ ) is determined

by the interaction between local configurations. Such local
configurations are “strongly coupled” with their environment
and, therefore, they “interact” with each other. Interacting local
configurations of the pore and its environment may be seen
as condensed into a metastable state of the entire system of
clusters, which decays according to power law (11) with the
characteristic time τq ∼ τ exp( εmax

T
), which is τq ∼ 105 s at

τ ∼ 0.1 s, εmax ∼ 0.5 eV, and T = 277 K. It follows from
Eq. (11) that the exponent α for narrow distributions with the
relative width �R

R
∼ 0.1 at these parameters is α ∼ 0.1.

In view of Eq. (11), the decay of this metastable state is
accompanied by a decrease in the degree of filling θ . According
to Eq. (3), this results in a decrease in the energy of the
interaction between local configurations and, as a result, a
decrease in the energy barrier for extrusion ε(R,θ ). As follows
from Eq. (11), the quantity εmax decreases and the exponent
α in Eq. (11) increases. For this reason, the decay rate of this
metastable state increases with time. According to Eq. (11),
the decay of the metastable state begins when the degree of
filling θ (t) is such that �R

R

εmax
T

∼ 1. The decay onset time of

the metastable state at �R/R ∼ 0.1, T = 277 K, is estimated
as >104 s, in agreement with the experimental data.

The relaxation of the metastable state of interacting lo-
cal configurations of filled pores continues as long as the
percolation cluster of filled pores exists in the system. The
existing time of the percolation cluster of filled pores can be
estimated from Eq. (11). At α ∼ 0.2, θp ∼ 0.8, θc ∼ 0.1, with
allowance for a change in the degree of filling θ in the process
of decay of the metastable state, this time is tp ∼ 106 s. At the
degree of filling θ below the percolation threshold, θ < θc,
isolated clusters of filled pores are formed in the porous
medium. A possible mechanism of extrusion of liquid from
such isolated clusters of filled pores can be recondensation, i.e.,
capillary evaporation and subsequent capillary condensation
at the interface between the porous medium and the liquid
environment considered in Refs. [52,53,63]. An analysis
similar to that used when deriving Eq. (11) gives in this case a
logarithmic law of the extrusion of the liquid.

To summarize, the performed analysis shows that there are
three stages of the extrusion of the nonwetting liquid from
the nanoporous medium. When the pressure is reduced from
p > 200 × 105 Pa to p ∼ 100 × 105 Pa, liquid clusters in all
filled pores in the water-L23 system should be in states with the
extrusion barrier δA ∼ 4 eV. The time of extrusion from such
pores is τ > 1033 s. For this reason, the liquid should remain
in the porous medium for the time of pressure reduction to
100 × 105 Pa.

When the pressure is reduced to p < 100 × 105 Pa, pores
appear for which the extrusion barrier δA is negative or can
be about the temperature T . The liquid can be extruded from
these pores in the hydrodynamic time τ0 ∼ 0.1 s and, therefore,
extrusion should be observed for the excess pressure vanishing
time t ∼ τp. As excess pressure vanishes, the number of such
pores increases.

At temperatures T < Td = 284 K under the reduction of
excess pressure from 100 × 105 Pa to zero in 10 s, the degree
of filling decreases from θ = 1 to θ > θc and the loosely bound
state decays with the formation of the initial metastable state
of the confined liquid.
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The relaxation of the formed metastable state of the
confined liquid occurs at times t = 100–6000 s according to
the power law θ (t) ∼ t−α (11) with the exponent α ∼ 0.1. At
times t > 104 s, the metastable state decays. In this case, the
exponent α increases to α ∼ 0.3.

The reduction of excess pressure to zero at temperatures
T < Td = 284 K results in a decrease in the fraction of
the remaining liquid because of the decay of the loosely
bound states from θ = 1 to the degrees of filling below the
percolation threshold θc ∼ 0.15. In this case, the relaxation of
the system can occur through the evaporation-condensation
mechanism, which results in an increase in the character-
istic extrusion time of the liquid from the loosely bound
states due to both an increase in the extrusion barrier with
the temperature and an increase in the transfer time of
the Knudsen gas from an evaporated pore to the surface of the
granule.

According to Eq. (11), the exponent α depends on the
maximum potential barrier and temperature. The exponent α

increases with temperature because of a decrease both in the
maximum potential barrier εmax and in the ratio εmax/T . At
high temperatures T > 284 K, when the excess pressure is

reduced to zero, the degree of filling of θ in the time t ∼ τp

becomes lower than the percolation threshold θc ∼ 0.15. In
this case, the relaxation mechanism of the system changes. The
percolation cluster of filled pores disappears, and the extrusion
of the liquid occurs through a slower evaporation-condensation
mechanism. For this reason, the exponent α at T > 284 K
should decrease with an increase in the temperature. Thus,
an increase in the exponent α with the temperature at T <

Td = 284 K due to a decrease in the potential barrier is
replaced by its decrease with an increase in the temperature at
T > Td = 284 K. This results in the appearance of a maximum
in the temperature dependence of the exponent α. This picture
corresponds to the experimental data.
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