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Fermionic thermocoherent state: Efficiency of electron transport
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On the basis of the fermionic coherent state of Cahill and Glauber [Phys. Rev. A 59, 1538 (1999)], we have
introduced here the fermionic thermocoherent state in terms of the quasiprobability distribution which shows
the appropriate thermal and coherent limits as in the bosonic case or the Glauber-Lachs state. It is shown that
the fermionic thermocoherent state can be realized as a displaced thermal state of fermions. Its relation with the
fermionic displaced number state and the fermion-added coherent state are explored in the spirit of the bosonic
case. We have investigated the nature of the average current and the suppression of noise due to the thermocoherent
character of the source. The theory is applied to the problem of electronic conduction. A modification of the
Landauer conductance formula is suggested which reflects the role of nonzero coherence of the source in electron
transport.
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I. INTRODUCTION

Recently the electron transport [1–3] properties of small
systems with a discrete energy level structure have attracted
much interest where the quantum dynamics are dominated by
coherent effects. For example, quantum tunneling in a system
of self-assembled quantum dot array reveals antibunching [4,5]
and near lifetime limited linewidths [6]. Furthermore, in an
effort to achieve coherent control of single electron or electron
spin, quantum transport has been used to detect the quantized
motion of electrons in nanostructures [7–9]. A great deal
of theoretical [10] and experimental [11] results are already
available which involve a coherent transfer of electrons from
the source to sink reservoirs maintained at different chemical
potentials [2,12]. The availability of a coherent source of
electrons [13] can be utilized to inject coherence [13,14] into
the thermal electron source for the suppression of noise [15,16]
as observed in terms of the interference effects [3,5,9] and the
correlation function of electron sources [17,18].

The characteristics of fully or partially coherent sources
are well understood for bosonic systems [19–25] and the
thermocoherent state [26–29] in the case of light was conceived
long ago by Lachs [27]. Here our main objective is to
construct a fermionic thermocoherent state similar to the
bosonic thermocoherent state to understand more about the
coherent characteristics of electronic conduction problems
[15,16]. Although fermionic coherent states were studied
in many contexts [25,30] such as the spin coherent state
[31] and quantum states of many-electron systems [32],
however, Cahill and Glauber [33] in 1999 first systematically
introduced the fermionic coherent state and the corresponding
quasiprobability distribution functions similar to the bosonic
coherent state [21]. In contrast to the bosonic case, the
vacuum state of the fermionic field is the only physically
realizable eigenstate of the annihilation operator which makes
the formal definition of the fermionic coherent state little
special [33]. Again since fermion field variables anticommute,
the eigenvalues are anticommuting numbers obeying rules
of Grassmann algebra which in the corresponding bosonic
case are in general complex. However, even with such
mathematical differences, one can find close resemblance in
the quasiprobability distributions and various moments in both
cases.

Before proceeding further about the fermionic thermoco-
herent state let us first briefly outline about the thermocoherent
state of light. In their pioneering works, Glauber [19] and
Sudarshan [20] have independently introduced the expansion
of the density operator in terms of the coherent states of
a harmonic oscillator to obtain the quantum mechanical
description of the superposition of electromagnetic fields.
Thereby the quasiprobability distribution function [22] of the
position and momentum of a harmonic oscillator are found
by this expansion and the connection between these with
electric and magnetic fields are established. This approach is
extended further [21,26,27] to derive some quantum properties
of radiation which is a mixture of thermal and coherent
radiation. The resultant field thus can be expressed in terms of
the probability densities, the average photon numbers, and the
average photon number fluctuations of the constituent fields in
a particular mode by the expansion of the density operator.

The coherent state [21] |α〉, which is an eigenstate of
the photon annihilation operator, is utilized to compute the
quantum mechanical description of the superposition of the
electromagnetic field like in the classical case. The density
operator is expanded in coherent state space [19,20] as

ρ =
∫

d2α|α〉〈α|P (α), (1)

where the weight factor P (α) is known as the quasiprobability
distribution function or P distribution in the sense that although
it bears a classical analog by the normalization relation,∫

d2αP (α) = 1, the distribution function can take negative
values due to the intrinsic quantum character of the coherent
state or more precisely the coherent state is becoming an
overcomplete set of states. Besides this P-distribution function
in the coherent-state representation other quasiprobability
distributions including the Wigner function and the Q function
[22] play similar convenient roles in representing the density
operator. Glauber [21,26] and Lachs [27] have shown that such
a distribution, P (α), can also be defined for a superposition of
two fields with P distributions P1(α) and P2(α) with a resultant
P distribution as a convolution integral,

P (α) =
∫

P1(α
′
)P2(α − α

′
)d2α

′
. (2)
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Using the P distribution of the corresponding coherent and
thermal fields [21,27], one can thus obtain the P distribution
of the thermocoherent state. Now going back to the number
state representation the photon distribution of a single mode
field with frequency ω in the thermocoherent or Glauber-Lachs
state is given by [26,27,29]

P GL(n) = ρGL
nn = n̄n

T

(1 + n̄T )1+n

× exp

(
− n̄c

1 + n̄T

)
Ln

(
− n̄c

n̄T (n̄T + 1)

)
, (3)

where n̄T = e− �ω
kT (1 − e− �ω

kT )−1 is the thermal average photon
number corresponding to the Bose-Einstein distribution and
n̄c = |α|2 is the coherent-average photon number for the Pois-
son distribution of the coherent state. Ln is the Laguerre poly-
nomial [29,34,35] expressed as Ln(x) = ∑n

i=0(−x)i n!
(i!)2(n−i)! .

When the coherent-average excitation number n̄c vanishes,
the distribution becomes a thermal one corresponding to an
equilibrium state at temperature T, i.e.,

Limn̄c→0ρ
GL
nn = n̄n

T

(1 + n̄T )n+1
. (4)

Similarly when the thermal-average excitation number n̄T

vanishes the state assumes a coherent state with the distribution
becoming Poissonian, i.e.,

Limn̄T →0ρ
GL
nn = e−n̄c

n̄n
c

n!
. (5)

The mean and variance of the average photon number
distribution has also been calculated [21], respectively, as

n̄ = n̄T + n̄c, (6)

and

σ 2
n = 〈n2〉TC − 〈n〉2

TC = 2n̄T n̄c + n̄c + n̄T + n̄2
T . (7)

For the coherent state the variance in the photon number
is equal to the average photon number, however, for the
thermocoherent state the excess variance of the photon number
over the Poisson distribution of coherent radiation causes
photon bunching [23]. Another remarkable property of P
distribution is the superposition of the constituent mixture of
quantized fields which is like the addition of corresponding
classical electromagnetic waves above the common zero-
point field. The Glauber-Lachs state can be prepared if an
external Gaussian pulse of light excites a cavity mode initially
in a thermal distribution and subsequently thermalization
takes place before the mode exchanges its energy with any
other mode or bath [28]. The probability of photon number
distribution for the thermocoherent field interpolates between
the thermal and coherent limits [21,28,29]. This can be math-
ematically treated either by convolution of quasiprobability
P -distribution function or by unitarily displacing a thermal
state (see Appendix A for a brief outline).

In the bosonic case the study of the mixture of quantized
fields is basically motivated by the classical superposition of
electromagnetic fields. However, for the fermionic case such
superposition of fields may not be so straightforward as there is
no such classical correspondence. Here we would like to study
the fate of such mixing of thermal and coherent fermionic

fields using the approach of the P distribution function. Then
we have also shown quite extensively the utility of such a
mixture of fermionic fields in the conductance problem. More
specifically in this work we have derived here the fermionic
thermocoherent state using the definition of the fermionic
coherent state and the corresponding quasiprobability distri-
bution functions of Cahill and Glauber [33]. Then we have
investigated the alternative physical features of the fermionic
thermocoherent state by showing it as the fermionic displaced
thermal state and explored its relation with the fermionic
displaced number state and the fermion-added coherent state
as in the bosonic case. As an immediate application of
the fermionic thermocoherent state, we have examined its
role in electron transport through a quantum system if the
source reservoir is maintained in a thermocoherent state while
the sink reservoir in the usual thermal state. The motivation
is to study the modification of the current noise [24,36,37]
due to the coherent character in the source reservoir. Here, we
have constructed the relevant equation of the density operator
[24,36] to obtain the current through the system in both the
steady state and transient regime. The steady-state behavior
of the current is monitored in terms of the current noise
spectrum [38,39] and the possible modification of conductance
[15,16,40] is shown in this context.

The rest of the paper is organized as follows: After a brief
outline of the bosonic thermocoherent state in the introduction
in Sec. II we have provided a derivation of the fermionic
thermocoherent state as a result of the superposition of the
thermal and coherent P -distribution functions for fermions.
In the next section, we have established how to relate the
thermocoherent state with the displaced thermal state and
displaced number states. In Sec. IV we have discussed an
application of the fermionic thermocoherent state showing the
results of electron transport in the steady state and dynamic
regime and the noise spectrum through a single-level quantum
system connected to a thermal sink but with a thermocoherent
source. Finally the article is concluded in Sec. V.

II. FERMIONIC THERMOCOHERENT STATE

In this section our aim is to formulate a fermionic
thermocoherent state using the definition of the fermionic
coherent state by Cahill and Glauber [33]. Here it is shown that
the mathematical methods that have been used to analyze the
properties of the bosonic thermocoherent field and the thermal
and coherent limits in quantum optics, have their counterparts
for the fermionic field. In particular, using the close analogs
of the bosonic coherent states, the displacement operators, the
P representation, and the other operator expansions we have
described, the quantum statistical features of the fermionic
thermocoherent coherent state are based upon the Grassmann
calculus of anticommuting variables.

The normalized fermionic coherent state [33] is defined as

|ξ 〉 = D(ξ )|0〉, (8)

with D(ξ ) being the spin displacement operators defined as

D(ξ ) = ea†ξ−ξ∗a = 1 + (a†ξ − ξ ∗a) + (
a†a − 1

2

)
ξ ∗ξ, (9)

where a and a† are the fermionic step-down and step-up
operators defined as a|1〉 = |0〉 and a†|0〉 = |1〉, respectively,
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with the anticommutaion relation {a,a†}+ = 1. For any mode
i, ξi and ξ ∗

i are Grassmann numbers for the corresponding
mode obeying the following anticommutation relations:

{ξi,ξj }+ = 0, (10)

{ξ ∗
i ,ξj }+ = 0, (11)

{ξ ∗
i ,ξ ∗

j }+ = 0. (12)

We also assume [33] the anticommutation of Grassmann
numbers ξi and ξ ∗

i with the operators a and a†, for example,

{ξk,a}+ = 0. (13)

For the single mode fermion, the s-ordered characteristic
function χ (ξ,s) can be expressed as

χ (ξ,s) = Tr[ρ(1 + (ξa† − aξ ∗) + ξ ∗ξ{a†a}s)], (14)

with {a†a}s = a†a + 1
2 (s − 1), where s = 1 means normal

ordering, s = −1 means antinormal ordering, and s = 0 means
symmetrically ordered product, and ρ is the density operator.

The s-ordered quasiprobability distribution function is
again defined as

W (α,s) =
∫

d2ξe(αξ∗−ξα∗)χ (ξ,s), (15)

where α and α∗ are also Grassmann numbers.
By analogy with boson, the normally ordered quasiproba-

bility distribution function, P (α) = W (α,1) is defined as

P (α) = −
∫

d2βe−(α−β)(α∗−β∗)Q(β), (16)

where the antinormal ordered quasiprobabilty distribution
function Q is defined as

Q(β) = 〈β|ρ| − β〉. (17)

While deducing Eq. (16), we have considered that a|β〉 = β|β〉
and 〈β|a† = 〈β|β∗ along with the trace formula,

TrB =
∫

d2β〈β|B| − β〉 =
∫

d2β〈−β|B|β〉, (18)

and the completeness relation,∫
d2β|β〉〈β| = I. (19)

The single mode fermion density operator for a thermal
state can be expressed as [33]

ρ = (1 − n̄T )

(
n̄T

1 − n̄T

)a†a

, (20)

where n̄T is the mean occupation number defined as the Fermi-
Dirac distribution function,

n̄T = 1

e
�ω−μ

kT + 1
, (21)

where μ is the chemical potential per particle and �ω is the
energy for the respective mode. After having a little algebraic
manipulation using Eqs. (17)–(21), we have the Q-distribution

function for a single mode thermal fermionic state as

Q(β) = exp

(
ββ∗

1 − n̄T

)
. (22)

The P -distribution function of the thermal state from Eq. (16)
becomes

P (α) = −n̄T e
− αα∗

n̄T . (23)

Now we evaluate the P -distribution function for a fermionic
coherent state defined by the density operator ρ = |α0〉〈−α0|
as

P (α) = −
∫

d2βe−(α−β)(α∗−β∗)〈β|α0〉〈−α0| − β〉
= δ(α − α0). (24)

Construction of the above Eq. (23) utilizes the formula [33],

〈β|α〉〈α|β〉 = e−(β∗−α∗)(β−α), (25)

and the definition of the delta function [33] as

δ(ξ − ζ ) =
∫

d2αeα(ξ∗−ζ ∗)−(ξ−ζ )α∗
. (26)

We are now in a position to construct the thermocoherent state
for a fermionic system by the superposition of the thermal and
coherent P -distribution functions P1(α1) and P2(α2) in terms
of the density operator χ as

χ =
∫

d2α2P2(α2)D(α2)ρ1D
†(−α2), (27)

where

ρ1 =
∫

d2α1P1(α1)|α1〉〈−α1|, (28)

where P1(α) and P2(α), respectively, represent the P distri-
butions of the thermal and coherent states. Considering the
properties of the displacement operators [33],

D(α1)D(α2) = D(α1 + α2)eα∗
1α2−α∗

2α1 , (29)

and

D†(−α1)D†(−α2) = D†(−α2 − α1)eα∗
2α1−α∗

1α2 , (30)

the resultant P -distribution function comes out as

P (α) =
∫

d2α2P1(α − α2)P2(α2), (31)

which gives

P (α) = −n̄T exp

(
− (α − α0)(α∗ − α∗

0 )

n̄T

)
, (32)

with the corresponding density operator,

χ = −n̄T

∫
d2α exp

(
− (α − α0)(α∗ − α∗

0 )

n̄T

)
|α〉〈−α|.

(33)
In what follows to evaluate the integral we use the following
Fourier transform formula involving Grassmann calculus [33]
as ∫

d2ξ exp (αξ ∗ − ξβ∗ + λξξ ∗) = λ exp

(
αβ∗

λ

)
. (34)
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Using Eq. (34), we calculate the diagonal matrix elements of
the thermocoherent density matrix as

〈1|χ |1〉 = χ11 = 1 − (1 − n̄T ) exp

(
α0α

∗
0

1 − n̄T

)
, (35)

and

〈0|χ |0〉 = χ00 = −χ11

−n̄T

∫
d2α exp

(
− (α − α0)(α∗ − α∗

0 )

n̄T

)
, (36)

so that

χ00 + χ11 = 1. (37)

At this point, to have a correspondence of a fermionic thermo-
coherent state with that of a bosonic one, we evaluate the mean
occupation number, 〈n〉TC for a fermionic thermocoherent state
as

〈n〉TC =
∑
n=0,1

nχnn = 1 − (1 − n̄T )e− n̄c
1−n̄T = n̄T + n̄c, (38)

and the mean square occupation number 〈n2〉TC as

〈n2〉TC =
∑
n=0,1

n2χnn = 1 − (1 − n̄T )e
−n̄c

1−n̄T , (39)

where n̄c = α∗
0α0. Hence the variance becomes

(�n)2
TC = 〈n2〉TC − 〈n〉2

TC

= (1 − n̄T )e− n̄c
1−n̄T

[
1 − (1 − n̄T )e− n̄c

1−n̄T

]
. (40)

In appropriate thermal and coherent limits, Eq. (40) gives the
following result:

Limn̄T →0(�n)2
TC = n̄c, (41)

and

Limn̄c→0(�n)2
TC = n̄T (1 − n̄T ). (42)

Equation (41) is exactly similar to the thermocoherent bosonic
field in the coherent limit [see Eq. (7)]. On the contrary, the
fermionic thermocoherent field corresponding to the thermal
limit n̄c → 0 [see Eq. (42)] is different from the bosonic case
by a minus sign [see Eq. (7)]. This is due to the fermionic
anticorrelation between the particles and the expression is
already deduced by Cahill and Glauber [33] for the thermally
chaotic fermion field. Such a remarkable similarity in the
fermionic domain is essentially a major outcome of the crucial
roles played by the Grassmann numbers. This is due to the
fact that any polynomial in the Grassmann number should
be linear making the higher order terms in the exponential
function appearing in Eqs. (38) and (40) vanish which produces
a similar mathematical structure of the moments in the bosonic
and fermionic thermocoherent states.

III. FERMIONIC DISPLACED THERMAL STATE,
DISPLACED NUMBER STATE, AND FERMION-ADDED

COHERENT STATES USING DISPLACEMENT OPERATOR
APPROACH

In the mid-1960s Glauber [26] and Lachs [27] had intro-
duced the bosonic thermocoherent state by the approach of

superposition of quasiprability distributions; Filipowicz [28]
has also defined it in terms of the displaced thermal state by
coherently driving a cavity mode in a thermal equilibrium state.
However, in fermionic system these two definitions appear
very different as the eigenvalues of the annihilation operator
are anticommuting Grassmann numbers and the vacuum state
is the only eigenstate of the annihilation operator. Here we have
studied the properties of the fermionic thermocoherent state
by the approach of the fermionic displacement operator. Using
Grassmann algebra we arrive at the fermionic thermocoherent
state by unitarily displacing the thermal state and we have
shown their relation with the fermionic displaced number
states and the fermion-added coherent state. This approach
is subsequently used to study the effect of coherence in
the thermal electron transport [15] which is purely quantum
mechanical in origin. Here we have shown that it is possible
to introduce coherence in the thermal fermion bath modes
resulting in a thermocoherent bath by coherently driving a
thermal bath followed by equilibration.

A. Fermionic thermocoherent state as displaced thermal state

The density operator for the fermionic thermal state can
be obtained as a steady-state solution of the quantum master
equation for a fermionic mode coupled to a thermal fermion
bath. The master equation in the Markov limit for the reduced
density operator ρT (t) is given by

ρ̇T (t) = L̂ρT (t), (43)

where

L̂ρT (t) = −
{

γ

2
(1 − n̄T )[a†aρT (t) − aρT (t)a†]

+γ

2
n̄T [aa†ρT (t) − a†ρ(t)a] − γ

2
n̄T [a†ρT (t)a

−ρT (t)aa†] − γ

2
(1 − n̄T )[aρT (t)a† − ρT (t)a†a]

}
.

(44)

The unitarily displaced density operator ρd can be expressed
as

ρd = D(α)ρT D†(−α), (45)

where D(α) is the single mode fermionic displacement
operator as D(α) = ea†α−α∗a . Equation (45) bears a minor
dissimilarity of a minus sign with that of the displaced thermal
state of a harmonic oscillator [41]. The reason for such a
structural difference can be traced in the intricate nature
of the Grassmann numbers which makes its presence felt
in the density operator for the fermionic coherent state as
ρ = |α〉〈−α|, different by a minus sign in the bosonic case.

The density operator for the thermal state for a single mode
fermion can be obtained from the steady-state solution of
Eq. (44) as

ρT = (1 − n̄T )|0〉〈0| + n̄T |1〉〈1|, (46)

where n̄T is the mean occupation number [see Eq. (21)].
Keeping the following standard relations [33,42],

D(α)|1〉〈1|D†(−α) = −α∗α|0〉〈0| − α∗|0〉〈1| + α|1〉
×〈0| + |1〉〈1|(1 + α∗α), (47)
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and

D(α)|0〉〈0|D†(−α) = −α∗|0〉〈1| + α|1〉〈0| + |0〉
×〈0|(1 − α∗α) + α∗α|1〉〈1|, (48)

we can get the matrix elements of the density operator for the
displaced thermal state as

〈0|ρd |0〉 = (1 − n̄T )(1 − n̄c) − n̄T n̄c, (49)

and

〈1|ρd |1〉 = (1 − n̄T )n̄c + n̄T (1 + n̄c), (50)

with n̄c = α∗α. Now, using Eqs. (49) and (50), we can evaluate
the average occupation number for the displaced thermal state
for a single mode fermion as

〈n〉 =
∑
n=0,1

n〈n|ρd |n〉 = n̄T + n̄c. (51)

Here, we see that Eq. (51) gives the same result as that of
Eq. (38) which means the fermionic thermocoherent state can
be called a displaced thermal state. This is very much similar
to the idea of coherently driving a thermal bosonic field to
prepare a bosonic thermocoherent state. Here again we must
emphasize that the key role lies in Grassmann algebra which
gives such a close one-to-one correspondence.

B. Displaced number states and fermion-added coherent state

Here we establish the connection between the fermionic
thermocoherent state with the displaced number states and the
fermion-added coherent state as often defined in the bosonic
case. The primary idea is to start from the definition of the
unitarily displaced fermionic thermal state which is equivalent
to the fermionic thermocoherent state and to express the latter
as a linear combination of displaced number states.

Following Ref. [33], the displaced number state can
conveniently be expressed as

|n,α〉 = D(α)|n〉, (52)

and

〈n, − α| = 〈n|D†(−α), (53)

with n = 0,1. Hence, the displaced thermal state can be
expressed as

ρd = (1 − n̄T )D(α)

(
n̄T

1 − n̄T

)a†a

D†(α)

×
{ ∑

m=0,1

|m,α〉〈m, − α|
}

, (54)

where a(a†) is the fermionic annihilation (creation) operator.
Defining n̄T = 1/(eλ + 1), we obtain(

n̄T

1 − n̄T

)a†a

= 1 − λa†a. (55)

The simplified form of Eq. (55) is markedly due to the fact
that the higher orders of the fermionic operators always vanish
which stems from the Pauli exclusion principle.

Inserting the operator identity D(α)D†(α) = 1 twice in
Eq. (55), we get(

n̄T

1 − n̄T

)a†a

= 1 − λ(D(α)aD†(α))†D(α)aD†(α). (56)

We are now in a position to define displaced fermionic
operators as

D(α)aD†(α) = a − α, (57)

and

D(α)a†D†(α) = a† − α∗. (58)

Hence, Eq. (54) can be re-expressed as

ρd = (1 − n̄T )

(
n̄T

1 − n̄T

)(a†−α∗)(a−α)
{ ∑

m=0,1

|m,α〉〈m, − α|
}

.

(59)
Therefore, the fermionic thermocoherent state can be ex-
pressed as a mixture of orthogonal states which are basically
the displaced number states like in the bosonic case [41].
Hence, for a multimode fermionic thermocoherent reservoir,
the density operator can be expressed as

ρTC
bath = �k

⎡
⎣(1 − n̄k)

(
n̄k

1 − n̄k

)(a†
k−α∗)(ak−α)

×
⎧⎨
⎩

∑
mk=0,1

|mk,α〉〈mk, − α|
⎫⎬
⎭

⎤
⎦. (60)

It is be noted that although a reservoir is generally considered
as intrinsically incoherent, however, here we have shown
that it is possible to make a reservoir which is a partially
coherent source of particles. This motivates us to study a simple
transport problem involving a single-level system connected
to two reservoirs, one of which is in a thermocoherent state.

IV. APPLICATION TO ELECTRON TRANSPORT

In this section, we discuss the role of the source reservoir
which is in a fermionic thermocoherent state in the context of
the electron transport process through a single-level quantum
system. For the model of quantum current we consider an
arrangement of source-system-sink where the source and the
sink are fermionic reservoirs. After giving a brief discussion
about the master equation for transport we apply it to build the
equation of motion for current. In the next subsection we show
the steady-state limit to calculate the Fano factor to probe the
current noise spectrum.

A. Steady state and dynamic regimes of quantum transport:
Modification of conductance formula

Here we consider a quantum system coupled to both the
source and sink of electrons as two fermionic reservoirs. We
consider the source bath is in a thermocoherent state and the
sink is in a thermal state.

To start with, we consider the total Hamiltonian HT as

HT = Hs + HE + HC + Hint (61)
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where Hs is the system Hamiltonian expressed as

Hs = �ω0c
†c, (62)

HE is the Hamiltonian of the source or emitter expressed as

HE = �

∑
k

ωE
k a

†
kak, (63)

HC is the Hamiltonian of the sink or collector expressed as

HC = �

∑
p

ωC
p b†pbp, (64)

and the interaction Hamiltonian Hint is expressed as

Hint = �

∑
k

(TEkc
†ak + ca

†
kT

∗
Ek)

+�

∑
p

(TCpb†pc + c†bpT ∗
Cp). (65)

In Eqs. (62)–(65), c(c†), ak(a†
k), and bp(b†p) are the step-

down(step-up) operators for the system, kth emitter mode and
pth collector mode, respectively. The system-lead coupling
coefficients TEk(T ∗

Ek),TCp(T ∗
Cp) are considered to obey Grass-

mann algebra [see Eqs. (10)–(13)].
If ρI (t) is the density operator for the system in the

interaction picture and ρE and ρC represent the density
operators for the emitter and collector, respectively, then the
coarse-grained equation of motion [24] can be expressed
as

dρI (t)

dt
= − 1

�2

∫ t

0
dt ′T rR

×[Hint(t),[Hint(t
′),ρI (t ′) ⊗ ρE ⊗ ρC]]. (66)

Putting the reduced density operator of the system after tracing
over the emitter and the collector modes for the fermionic bath
from Eq. (33)and after performing the Markovian approxima-
tion in the Schrodinger picture for weak system-bath coupling,
we get

dρ

dt
= −iω0[c†c,ρ] − 1

2

[
(c†cρ − cρc†)

(
γc

(
1 − n̄e

TC

)
− γe

(
1 − n̄e

TC

)) − (c†ρc − ρcc†)
(
γen̄

e
TC − γcn̄

c
TC

)]
−1

2

[
(cc†ρ − c†ρc)

(
γen̄

e
TC − γcn̄

c
TC

)
− (cρc† − ρc†c)

(
γc

(
1 − n̄c

TC

) − γe

(
1 − n̄e

TC

))]
, (67)

where we have assumed that γe and γc are the corresponding
rate constants for the emitter and collector, respectively [24].
In what follows we assume that the collector is in the
thermal state with n̄c

T = 0, which physically signifies that
the chemical potential of the collector is much smaller than
that of the system energy scale, i.e., �ω − μc � kT , where
μc is the chemical potential of the collector (sink). From
the emitter side, we consider that the transport of electrons
through the system is controlled by both the thermal as well
as the coherent parameter of the emitter (source) bath. In
the following analysis, we will show the dependence of the
current through the system in terms of the scaled parameter
�ω−μe

kT
, as well as the coherent parameter n̄c, of the source

reservoir.

First of all, we define the average current as

〈î〉(t) = 1
2 [γc〈c†c〉 + γe〈cc†〉], (68)

where the occupation number operator averages are calculated
as

〈c†c〉(t) = γen̄
e
TC

2γen̄
e
TC − γe + γc

(1 − e−(2γen̄
e
TC−γe+γc)t )

+ e−(2γen̄
e
TC−γe+γc)t , (69)

with

〈cc†〉(t) = 1 − 〈c†c〉(t). (70)

Hence the steady-state value of the average current by using
Eqs. (68)–(70) comes out as

〈i〉ss = 1

2

[
γe

(
n̄e

T + n̄e
C

)
(γe + γc) − γe(γe − γc)

2γe

(
n̄e

T + n̄e
C

) − γe + γc

]
, (71)

as n̄e
TC = n̄e

T + n̄e
C and here we have considered that the sink

is at zero temperature, i.e., n̄c
T = 0. For the usual thermal

source n̄e
TC = n̄e

T and when the difference in the thermal
occupation number of source and sink is unity, i.e., if n̄e

T = 1
and making n̄e

T − n̄c
T = 1 from the above equation one obtains

the Landauer conductance formula [3,16,40],

〈i〉ss = γeγc

γe + γc

. (72)

However, for the thermocoherent source, i.e., n̄e
C 	= 0, the

modified formula of the steady-state current becomes

〈i〉ss = 1

2

[
γen̄

e
C(γe + γc) + 2γeγc

2γen̄
e
C + γe + γc

]
. (73)

The steady-state current through the system is expressed
here in terms of γe and γc, the rate constants of the flow of
electrons from the source and to the sink. The Landauer con-
ductance formula [Eq. (72)] for the system connected with the
traditional thermal electron source and sink is modified here
by the nonzero coherent average fermion number introduced
into the source bath n̄e

C . The main result in this section is the
effective modification of the conductance formula coming in
Eq. (73) due to the thermocoherent state of the emitter through
the coherent and thermal population terms.

A few comments are relevant here regarding the formula
of quantum electron transport through nanostructures for
which various methods have been developed. Foremost is
the Landauer-Buttiker formalism [43], which establishes a
basic relationship between scattering amplitudes and currents
through nanostructures where the conductance is proportional
to the transmission coefficient. Secondly, the nonequilibrium
Green’s function (NEGF) scheme deals with many-body
interaction effects in quantum transport. Haug and Jauho [44]
applies NEGF formalism to arrive at the Landauer formula
of conductance [3,44,45]. However, recently approaches of
quantum optics [23,36] are also applied to study time-
dependent transport processes through solid-state structures.
In the present context, the Landauer formula for conductance
which is given here expresses the average of the time-
dependent current without considering any inelastic scattering
processes. Equation (71) carries a signature of coherence in the
electron conductance formula coming from the source electron
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FIG. 1. Plot of 〈i〉TC
ss

〈i〉Tss versus the coherent population of the emitter

n̄e
c for various scaled temperatures Ts = kT

�ω0−μe
. Increase in the value

of kT

�ω0−μe
causes an enhancement of the steady-state current with the

coherent population of the emitter.

reservoir. This has significant implications for the nature of the
noise in the current unlike the thermal one in usual tunneling
conductance of the Landauer type.

In order to investigate the effect of the thermocoherent state
of the emitter in the electron transport process, we evaluate the
steady-state current and the transient behavior of the current
through the quantum system.

In Fig. 1, we study the steady-state behavior of the current in
terms of the ratio of the steady-state thermocoherent current to

the thermal one 〈i〉TC
ss

〈i〉Tss against the coherent population parameter

of the emitter n̄e
c for different scaled temperatures kT

�ω0−μe
.

For a fixed value of the scaled temperature, the ratio 〈i〉TC
ss

〈i〉Tss
increases nonlinearly with the increase in the value of the
coherence parameter n̄e

c. It is found that with increase in scaled
temperature the ratio with n̄e

c shows enhancement. Here, we
particularly note that the assigned values of the scaled tem-
perature does not necessarily signify a high temperature limit.
This actually suggests that the difference in electrochemical
potential between the source and the sink is very high with
respect to the thermal energy kT . Figure 1 therefore suggests
that, as the energy difference between the system and the Fermi
level of the emitter is decreased in comparison to the thermal
energy, the steady-state value increases and the increment is
more prominent for the higher range of the coherent parameter.
We ascribe this phenomenon to the thermal efficiency of
electron transport for the coherent character of the source bath.

Next we consider the current through the quantum system in
its dynamical or transient regime. Figure 2 shows the transient
current for a fixed value of scaled temperature, say kT

�ω0−μe
=

0.01, for different parametric values of n̄e
c. We see that the

steady current depends on n̄e
c and in addition to it, the increment

in its value causes an increase in the magnitude of steady
current. But for a fixed value of the scaled temperature, the
time delay, which is defined as the characteristic time needed
for the system to reach the steady-state value, decreases. In
other words, introduction of coherence in the emitter causes a
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FIG. 2. Plot of 〈i〉TC(t) against scaled time [in units of (γe +
γc)−1] for different parametric values of n̄e

c at a fixed scaled
temperature of Ts = kT

�ω0−μe
= 0.01. Increase in n̄e

c increases the
steady value and also decreases the delay time for the current to
reach the magnitude of the steady state.

decrease in the delay time. This is purely a consequence of the
quantum nature of the emitter.

We therefore conclude here that the efficiency of transport
through the quantum system can be characterized by the
magnitude of the delay time which depends strongly on
the value of the coherence parameter of the emitter. The
more the delay time, the less efficient the transport will be.
Thus, the introduction of the coherent character in the emitter
enhances the transport efficiency through the device.

B. Current noise spectrum and Fano factor

For the dynamical information about the current and
its noise characteristics here we have calculated the noise
spectrum and Fano factor from the current-current correlation
function. Following Eq. (68), we have calculated the equation
for the average value of current as

d〈i〉(t)
dt

= 1

2

[
γcγen̄

e
c + γe

(
γen̄

e
c − γe + γc

)]
− (

2γen̄
e
c − γe + γc

)〈i〉(t). (74)

We use the steady-state solution of Eq. (74) along with the
quantum regression theorem [36] (see Appendix B) to arrive
at the current-current correlation function as

〈i(0)i(τ )〉 = γeγc

(
n̄e

c + 1
) + γ 2

e

(
n̄e

c − 1
)

2γen̄e
c − γe + γc

×
[

1 − γeγc

(
n̄e

c + 1
) + γ 2

e

(
n̄e

c − 1
)

2γen̄e
c − γe + γc

]

× exp
(−(

2γen̄
e
c − γe + γc

)
τ
)

+
[

γeγc

(
n̄e

c + 1
) + γ 2

e

(
n̄e

c − 1
)

2γen̄e
c − γe + γc

]2

. (75)

The Fano factor is defined as

F (ω) = S(ω)

2〈i(0)〉 , (76)
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FIG. 3. Plot of the current Fano factor F (ω) against normal-
ized frequency ω

γe+γc
for a fixed value of the scaled temperature

Ts = kT

�ω0−μe
= 0.01 for different parametric values of the coherent

parameter of the emitter n̄e
c. The figure clearly reveals that an

increase in the value of the coherent parameter results in a substantial
suppression in noise at a fixed temperature of the emitter.

where S(ω) is the Fourier transform of the current-current
correlation function defined as

S(ω) =
∫ +∞

−∞
eiωτ 〈i(0)i(τ )〉dτ. (77)

In what follows, we plot the Fano factor F (ω) against the
scaled frequency ω

γe+γc
, for different parametric values of the

coherence parameter of the emitter n̄c
e and scaled temperature

kT
�ω0−μe

.
In Fig. 3, we plot the current Fano factor against the scaled

frequency ω
γe+γc

for a fixed value of the scaled temperature
kT

�ω0−μe
= 0.01 for different parametric values of the coherent

parameter of the emitter n̄e
c. As the coherent driving parameter

for the emitter increases, the variation becomes more and more
flat, revealing that the increase in the coherent population of
the emitter results in a suppression of current noise. This
can be explained on the basis of the fact that, as more and
more coherently injected electrons from the emitter tunnel
into the system, no further electrons can enter the well until
it is drained into the collector. As the emitter as well as the
collector are assumed to be at a very low temperature and no
coherence is present in it, the time scale in which the draining
of electrons from the system to the collector takes place will
be principally guided by the rate constants γe and γc along
with the thermocoherent state of the emitter. This suppresses
the noise which is evident from a decrease in the Fano factor.

To conclude the section, we note that the results shown
in Fig. 3 reveal a quite close resemblance with that obtained
earlier [15], where an increase in the coherent coupling pa-
rameter between two quantum systems suppresses the current
noise. This evidently gives an indication for an experimental
realizability of the thermocoherent bath. An emitter with a
suitable thermocoherent state can conveniently be prepared by
coupling a system to a fermionic reservoir with a coherent
driving followed by thermalizing the entire system at a given
low temperature.

V. CONCLUSION

Following the fermionic coherent state formulation of
Cahill and Glauber [33], we have introduced a fermionic ther-
mocoherent state. In order to obtain a thermocoherent state, the
key element in the derivation is to obtain the quasiprobability
P -distribution functions for fermionic thermal and coherent
states separately followed by the convolution integration. For
the fermionic case the integration is over the anticommuting
Grassmann variables which have no classical analog. We have
shown that the corresponding average occupation number
and the variance gives the appropriate coherent and thermal
limits, which puts the fermionic thermocoherent state with the
bosonic counterpart on the same footing which is particularly
due to the treatment of the Grassmann algebra. We also show
that the thermocoherent state can alternately be formulated as
a displaced thermal state and subsequently we have shown
its connection with the fermionic displaced number state
and the fermion-added coherent state. This clearly gives a
systematic procedure to introduce coherent character in a
thermal fermionic reservoir, which is traditionally considered
as an incoherent source of electron.

As an immediate application, we have studied electron
transport characteristics of a quantum system connected to
a source in a thermocoherent state and a traditional thermal
sink. Here we have suggested a modification in the Landauer
conductance formula in the present context as a function of
thermal and coherent population of the source reservoir. It is
found that with the introduction of the coherent character of the
emitter, the steady-state current increases and the delay time to
reach the steady state decreases which is solely a consequence
of the coherent nature of the emitter. Then, we have calculated
the current noise spectrum and the Fano factor to monitor
the steady-state fluctuation of current. When the emitter is
prepared in a thermocoherent state, the noise of the current is
suppressed. The suppression of noise in the current reveals a
quite close resemblance with the result obtained earlier [15] in
the bosonic case using a prepared coherently coupled state of
the system instead of introducing coherence in the source as in
our case. This evidently gives an indication of an experimental
implication of the fermionic thermocoherent source.
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APPENDIX A

Bosonic coherent state [21] |α〉 is an eigenstate of the
harmonic oscillator annihilation operator Â defined as

Â|α〉 = α|α〉. (A1)

Here α, the eigenvalue, is a complex number such that
α = |α|eiφ which practically corresponds to complex wave
amplitude in classical optics. The coherent states are minimum
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uncertainty product states with the usual relation �p�q = �

2
and it forms a so-called overcomplete set owing to the relation,∫

|α〉〈α|d
2α

π
=

n=∞∑
n=0

|n〉〈n| = 1. (A2)

On the other hand, thermal states are mixed states where the
probability Pn for an oscillator that one mode with frequency ω

is excited with n excitations is given by Boltzmann distribution
at temperature T and the corresponding density operator [21]
is

ρ th = (
1 − e− �ω

kT

)
e− �ωA†A

kT . (A3)

The P distribution for the corresponding coherent and
thermal fields [21] is given by

P coh(α) = δ2(α − α0), (A4)

and

P th(α) = 1

πn̄T

e
− |α|2

n̄T . (A5)

Using the convolution of quasiprobability functions of the
thermal and coherent states in the introduction one can find the
quasiprobability distribution function of the thermocoherent
state P (α) as

P (α) = 1

πn̄T

e
− |α−α0 |2

n̄T . (A6)

As a result, the probability of photon number distribution for
the thermocoherent field ρGL

nn which interpolates between the
thermal and coherent limits [21,28,29] is given in Eq. (3).

The probability of photon number distribution for the
thermocoherent field ρGL

nn can also be mathematically obtained
by unitarily displacing a thermal equilibrium state of a cavity
mode, a thermal state characterized by the density operator
given by Eq. (A5). The displacement operator D(α) is defined
as

D(α) = eαA†−α∗A, (A7)

and the density matrix operator of the Glauber-Lachs state
[27,28] can be expressed as

ρGL = D(α)ρ thD†(α)

= (
1 − e− �ω

KT

)∑
n

e− n�ω
KT D(α)|n〉〈n|D†(α). (A8)

The displaced number state finds its expression [21,46] as

D(α)|n〉 = e− |α|2
2

∞∑
k=0

αk

k!

n∑
j=0

(−α∗)j

j !

×
√

(n − j − k)!n!

(n − j )!(n − j )!
|n − j + k〉, (A9)

which after substitution in Eq. (A8) followed by considering
the diagonal matrix element gives Eq. (3).

APPENDIX B

Here we give a short note on calculating the current-current
correlation function using the quantum master equation [36].

In general, a two-time average of two operators A1(t) and
A2(t ′) in the interaction picture can be expressed as

〈A1(t)A2(t ′)〉 = TrS+B [χ (0)A1(t)A2(t ′)], (B1)

where the total density operator χ (t) can be expressed as

χ (0) = e
iHt
� χ (t)e− iH t

� , (B2)

with the equations of motion for the operators being expressed
as

Ȧi(t) = 1

i�
[Ai,H ], (B3)

along with the solution,

Ai(t) = e
iHt
� Aie

− iH t
� . (B4)

Using Eqs. (B1)–(B3), we obtain

〈A1(t)A2(t + τ )〉 = Trs[A2(0)T rB{χA1 (τ )}], (B5)

where we define t ′ − t = τ and

χA1 (τ ) = e− iHτ
� (χ (t)A1(0))e

iHτ
� . (B6)

We now exclude the explicit reference of the reservoir by
tracing over the reservoir variables thereby defining the
reduced operator ρA1 (τ ) as

ρA1 (τ ) = TrB[χA1 (τ )], (B7)

with

ρA1 (0) = TrB[χA1 (0)] = ρ(t)A1(0). (B8)

We can express an equation of motion for ρA1 as

ρA1 (τ ) = eLτ [ρ(t)A1(0)], (B9)

where L is a generalized Liouvillean superoperator. After
having a little algebra, we can rewrite Eq. (B5) as

〈A1(t)A2(t + τ )〉 = Trs[A2(0)eLτρ(t)A1(0)]. (B10)

For a complete set of system operators {Kμ}(μ = 1,2,3,....)
such that for any arbitrary operator O, one can write

Trs[Kμ(LO)] =
∑

θ

MμθT rs(KθO), (B11)

where Mμθ are constants. Using Eq. (B11), we obtain

〈K̇μ〉 =
∑

θ

Mμθ 〈Kθ 〉, (B12)

which in the matrix form can be expressed as

〈K̇〉 = M〈K〉. (B13)

Now, using Eqs. (B10) and (B13), after a slight algebra we
obtain

d

dτ
〈A1(t)Kμ(t + τ )〉 =

∑
θ

Mμθ 〈A1(t)Kθ (t + τ )〉, (B14)

a form of quantum regression theorem [36], which is used to
calculate the current-current correlation function.
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