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Ab initio calculation of thermodynamic potentials and entropies for superionic water
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We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and
face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular
dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is
developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect
is the accurate determination of the entropy, which is done using an approximate two-phase method based on
the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII
and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from
the simulations. Differences in the physical properties of the bcc and fcc superionic phases and their impact on
interior modeling of water-rich giant planets are discussed.
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I. INTRODUCTION

Many planetary bodies contain large amounts of water due
to the high abundance of oxygen nuclei in protoplanetary
discs [1,2]. The thermodynamic states in the interior of
our solar water-rich planets, the ice giants Uranus [3] and
Neptune [4], range up to pressures of 10 Mbar and tem-
peratures of several thousand degrees Kelvin [5–10]. Under
such extreme conditions, water is predicted to form exotic
superionic phases characterized by a crystalline oxygen lattice
and mobile protons [11–15]. Although a direct experimental
proof of the superionic structure is still needed, there is
strong indication of its existence by a kink in the melting
line of ice VII [16–20]. Furthermore, static [21] and dynamic
compression techniques [22,23] were used to measure the
conductivity of dense proton-conducting states of water.
Theoretical conductivity calculations for superionic water
(SIW) can reproduce such measurements with reasonable
accuracy [24,25].

In a recent paper, it was predicted that SIW with an
fcc oxygen lattice is thermodynamically favored against the
phase with a bcc lattice for a wide range of pressures and
temperatures [15]. Moreover, it was claimed that the diffusion
coefficient of the protons depends significantly on the type
of the oxygen lattice, which would have implication on
the electrical conductivity and, possibly, the magnetic field
generation [10,26] in water-rich giant planets. Even though
water never occurs as a pure compound in planetary bodies, its
thermophysical properties under extreme conditions need to be
well understood before considering more complex planetary
mixtures that contain additional elements.

Here we employ finite-temperature density functional
theory (FT-DFT) combined with molecular dynamics (MD)
simulations to construct analytic free energy functions f (�,T )
for the superionic phases with body-centered cubic (bcc) and
face-centered cubic (fcc) oxygen lattices. This is achieved
by fitting equation of state (EOS) data from the FT-DFT-
MD simulations as well as calculating the entropy with a
multicomponent two-phase thermodynamic model [27–29].

Having obtained the complete thermodynamic information
of the SIW phases, we then investigate the location of

transitions between them. The boundary to the dense ices VII
and X, for which a corresponding thermodynamic potential is
also available [30], is calculated as well. It is in good agreement
with that observed directly in the MD simulations.

Finally, we discuss the differences between the ther-
modynamic properties of the superionic phases. Additional
investigations show that the type of the oxygen lattice in
SIW has no significant influence on the diffusion coefficient,
which is in contrast to the results of Wilson et al. [15]. The
thermodynamic functions constructed in this work are intended
to become part of a wide-range EOS for water in the future.

II. THEORETICAL FOUNDATIONS

This section contains the principal information about the
theoretical basics of our work. It is divided into several
subsections that present the FT-DFT-MD method in general
and various aspects of the procedure used to calculate the
entropy.

A. Details of the FT-DFT-MD simulations

Based on the Born-Oppenheimer approximation, our sys-
tem of electrons, protons, and oxygen nuclei is investigated by
performing MD simulations for the heavy particles with forces
derived from an FT-DFT treatment of the electrons [31–33] at
each time step. The procedure is implemented in the Vienna ab
initio simulation package (VASP) [34–38]. For given density
� and temperature T , one obtains the EOS for the pressure
pMD(�,T ), internal energy uMD(�,T ), in addition to various
microscopic properties of the electrons and ions.

We use the exchange-correlation functional of Perdew,
Burke, and Ernzerhof (PBE) [39] in our FT-DFT-MD calcula-
tions. Previous work has shown that thermodynamic properties
derived with the PBE functional are in very good agreement
with shock-wave experiments that probed extreme states of
fluid water [40–44].

The standard PAW pseudopotentials [45,46] provided with
VASP (hydrogen PAW-sphere radius: 0.52 Å, oxygen PAW-
sphere radius: 0.72 Å) are used with a plane-wave cutoff
of 900 eV. All FT-DFT-MD simulations are performed with
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particle numbers of at least 54 water molecules and at
the Baldereschi k point [47]. Using the Baldereschi point
ensures excellent convergence of the EOS also in the dense
metallic bcc SIW that is comparable to using the 2 × 2 × 2
Monkhorst-Pack grid [48]. This finding is in line with the
extensive convergence tests made in previous work [13,14,24].
All simulations are run for 10 000 to 30 000 time steps of
length 0.3 fs after equilibration. Relatively long simulation
runs are required to reach an excellent statistical accuracy that
is necessary to calculate frequency spectra and small pressure
differences, which many of our results rely on. The temperature
is controlled with a Nosé-Hoover thermostat [49,50].

To calculate the EOS for the bcc SIW, we performed 75 FT-
DFT-MD simulations at different densities between 2.25 and
15 g/cm3 and temperatures between 1500 and 12 000 K in its
stability region using 54 molecules. In case of the fcc SIW, we
obtained 99 data points at different densities and temperatures
with 108 molecules. The fcc SIW generally has a slightly
extended stablity regime toward lower temperatures than the
bcc SIW. However, it becomes unstable above 13 g/cm3 at all
temperatures, i.e., the oxygen lattice gets distorted, while the
bcc SIW can remain stable also beyond 15 g/cm3.

Additional FT-DFT-MD simulations were made at the
4000 K isotherm to calculate effective partial volumes that
are necessary to determine the entropy. Details on those
calculations are given in a subsequent section.

B. Frequency spectra of the nuclear motion

The key quantities in the calculation of the entropy from
MD simulations are the following spectra of vibrational modes
of the nuclei [51]:

Sα(ν) = 4mα

3kBT

∫ ∞

0
dt cos(2πνt)〈�vα(t) · �vα(0)〉, (1)

where mα is the mass of a nucleus of species α and kB is
Boltzmann’s constant. The velocity autocorrelation functions
〈�vα(t) · �vα(0)〉 of the species α are calculated from the nuclear
motion in the FT-DFT-MD. There is one frequency spectrum
per species, formally normalized to∫ ∞

0
dν Sα(ν) = 1. (2)

This condition is satisfied to better than 1% in our simulations.
Apart from entropy calculations, we use the spectra Sα(ν)

to augment the internal energy of our FT-DFT-MD simulations
with a quantum correction. This procedure allows us to
incorporate nuclear quantum effects, e.g., from molecular
vibrations into our EOS data. More precisely, the classical
harmonic oscillator energy kBT is replaced by the respective
quantum-statistical value for each frequency interval as fol-
lows [51]:

uvc = 3

m

∑
α

Nα

∫ ∞

0
dν Sα(ν)

×
[
hν

(
1

2
+ 1

exp(hν/kBT ) − 1

)
− kBT

]
. (3)

In the above formula, the total mass of the nuclei is defined as
m = ∑

α Nαmα , where Nα is the number of nuclei of species α.

A similar expression can be obtained also for direct
calculations of the entropy [51]. However, it is limited to
applications to solid systems due to a divergence in the
harmonic entropy weighting function at zero frequency.

C. Calculation of the entropy

Calculating the nuclear entropy of fluids from MD simu-
lations with the frequency spectra Sα(ν) requires an elaborate
formalism [27–29]. The respective procedure is based on
a separation of the properties of the fluid into a gas-like
and a solid-like fraction [27] and was developed by Lin
et al. [27]. The method involves a description of the gas-like
fraction consistently with a hard-sphere model and of the solid-
like fraction with the harmonic oscillator model. Later, the
formalism was substantially improved by Desjarlais [29], so
that an accuracy of better than 0.1 kB /atom became achievable,
which was demonstrated in application to several liquid metals,
including calculations of the melting curves of sodium [29]
and aluminum [52]. Moreover, the method of Lin et al. [27]
was also generalized to multicomponent systems, which then
requires a more extended treatment in order to derive effective
partial volumes of the individual species [28]. In this work,
we use the combined extensions by Desjarlais [29] and Lai
et al. [28] to calculate the entropy of superionic water.

For clarity, we first compile the most important aspects of
the formalism in a compact way. For more detailed derivations,
we refer the interested reader to the original papers [27–29].
Note that the normalization of our spectra Sα(ν), differs from
that in the former literature, so that the following expressions
may carry corresponding prefactors.

Our starting point is the formal separation of the frequency
spectra into gas-like, S

g
α (ν), and solid-like, Ss

α(ν), parts:

Sα(ν) = f g
α Sg

α (ν) + (
1 − f g

α

)
Ss

α(ν), (4)

where the fluidity factors f
g
α determine the fractions of the

gas-like components. The specific entropy then takes the form

snuc(�,T ) = 1

m

∑
α

Nα

∫ ∞

0
dν

× [
f g

α Sg
α (ν)Wg

α + (
1 − f g

α

)
Ss

α(ν)Ws
α(ν)

]
. (5)

The weighting function of the solid-like part is taken from the
quantum-statistical harmonic oscillator model and reads

Ws
α(ν) = 3kB

{
hν/kBT

exp(hν/kBT ) − 1

− ln[1 − exp(−hν/kBT )]

}
. (6)

For the gas-like fraction one assumes a weighting function
from a hard-sphere model [53],

Wg
α = kB

{
SIG

α

kB

+ ln

[
1 + γα + γ 2

α − γ 3
α

(1 − γα)3

]
+ 3γ 2

α − 4γα

(1 − γα)2

}
,

(7)

where the ideal gas term is

SIG
α

kB

= 5

2
− ln

[(
h2

2πmαkBT

)3/2

neff
α f g

α

]
. (8)
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In this multicomponent description [28], special attention has
to be paid to the effective particle densities

neff
α = Nα

Vα

. (9)

The partial volumes Vα need to be determined separately,
which is described in the following section.

The effective hard-sphere packing fractions γα are derived
by numerically solving the equation [29],

γ 2/5
α �3/5

α = 2(1 − γα)3

2 − γα

, (10)

for given normalized diffusivities �α . The latter are deter-
mined by the zero-frequency value of the spectra in the
following way:

�α = 2

3
Sα(0)

√
πkBT

mα

(
neff

α

)1/3
(

6

π

)2/3

. (11)

At this point, an ansatz for the gas-like spectra S
g
α (ν) is

required. Lin et al. [27] chose a Lorentz function, which is
characteristic for an uncorrelated system of particles described
within the relaxation-time approximation. However, the slow
ν−2 decay of such Lorentz spectra leads to an overshooting of
the total spectra at high frequencies. This has the unphysical
consequence that the residual solid-like spectra Ss

α(ν) become
negative. Moreover, the entropies derived with Lorentz spectra
are significantly too high [29].

To remedy these problems, correlations need to be included
into the gas-like spectra, which can be achieved by using
an alternative ansatz derived within a memory function
formalism [29,54–56]:

SGK
α (ν) = 2

K̂GK
α (2πνi) + 2πνi

+ 2

K̂GK
α (−2πνi) − 2πνi

.

(12)
The employment of a Gaussian memory function [57] leads to
the following Laplace transform of the kernel [29]:

K̂GK
α (z) = Aα

2

√
π

Bα

exp

(
z2

4Bα

)
erfc

(
z

2
√

Bα

)
, (13)

where erfc(x) is the complementary error function. The
constants Aα are given by

Aα = 4Bα

2 +
√

π
(
1 + BαS2

α (0)

4γ
4/5
α �

6/5
α

) . (14)

The remaining parameters Bα are formally determined by
moments of the spectra Sα(ν) [29]. In practice, the Bα are
obtained by manually matching the high-frequency tail of
SGK

α (ν) with that of the Sα(ν), which is a much more efficient
way.

The fluidity factors to be used in the above expressions then
read

f g
α = f GK

α = AαSα(0)

8

√
π

Bα

, (15)

and they differ from those one would obtain with Lorentzian
gas-like spectra [27].

Note that for all nuclear species α that are immobile (like
the oxygen in superionic water) the gas-like fraction is fα = 0.
The treatment of the respective contribution to the nuclear
entropy is then performed purely with the harmonic-oscillator
weighting functions [51]. Consequently, no ideal-mixing con-
tribution to the entropy [28] is added here because there is only
a single fluid component (hydrogen) in the MD. Therefore, for
our special case of SIW, which has two species but no mixing,
we must multiply VH by N/NH in the ideal gas contribution to
the hydrogen entropy, Eq. (8), in order to preserve the correct
ideal gas limit, where VH /NH = VO/NO = V/N .

Furthermore, we do not take into account the nuclear spin or
isotopic entropies here. Those are not required for our purpose
of calculating phase boundaries because the composition of
nuclear species is conserved.

Last, the electronic contribution to the specific entropy is
derived from the Fermi occupation numbers fi of the electronic
states from the DFT [33]:

sel(�,T ) = −kB

m

〈∑
i

[fi ln fi + (1 − fi) ln(1 − fi)]

〉
. (16)

The total specific entropy of our system then reads

stot(�,T ) = snuc(�,T ) + sel(�,T ). (17)

Obviously, the method employed here is approximate, and
there is no guarantee that it will produce results as accurate
as coupling-constant integration methods [58,59] may yield.
On the other hand, its complexity scales only linearly in
dependence of the number of nuclear species. Another ad-
vantage is the capability to capture nuclear quantum effects
in the entropy, which enter via the weighting function of the
solid-like component. This allows us to consistently calculate
phase boundaries with solids described by a realistic EOS
containing quantum effects of the nuclear motion.

D. Calculation of the effective partial volumes

The partial volumes that enter Eq. (9) are crucial quantities
in entropy calculations from MDs with different nuclear
species. They are defined as [28]

Vα = Nα

(
∂V

∂Nα

)
p,T ,{Nβ }

= Nαξα. (18)

The total volume of the system is given by V = ∑
α Vα . With

the help of the scaling quantities ξα , which correspond to the
mean volume per particle of species α, Eq. (9) can be recast
into the convenient form

neff
α = Nα

Vα

= 1

V ξα

∑
β

Nβξβ. (19)

That way, we easily observe that it is sufficient to determine
only the ratios ξβ/ξα in the multicomponent case. We do not
rely on simple estimations for the ξα for the extreme conditions
of interest here, but instead calculate them directly with the
FT-DFT-MD method.

The ξα can theoretically be calculated by inserting or
removing very few particles iα or jα of the respective species
from the FT-DFT-MD simulations of standard composition at
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constant pressure and temperature:

ξα =
(

�V

�Nα

)
p,T ,{Nβ }

= V (p,T ,Nα + iα,{Nβ}) − V (p,T ,Nα − jα,{Nβ})
iα + jα

.

(20)

Ideally, one would choose both iα = jα = 1. In order to
circumvent the adjustment of the pressure in DFT-MD sim-
ulations, we use the following transformation(

∂V

∂Nα

)
p,T ,{Nβ }

= −
(

∂p

∂Nα

)
V,T ,{Nβ }

(
∂V

∂p

)
T ,Nα,{Nβ }

= V

KT

(
∂p

∂Nα

)
V,T ,{Nβ }

, (21)

where the isothermal bulk modulus,

KT = −V

(
∂p

∂V

)
T ,Nα,{Nβ }

= �

(
∂p

∂�

)
T ,Nα,{Nβ }

, (22)

is introduced. For small changes in composition of the fluid,
we can then write

ξα = V

KT

(
�p

�Nα

)
V,T ,{Nβ }

= V

KT

p(V,T ,Nα + iα,{Nβ}) − p(V,T ,Nα − jα,{Nβ})
iα + jα

.

(23)

One can eliminate the bulk modulus and obtain a simple
expression for the desired ratios:

ξβ

ξα

=
(

�p

�Nβ

)
V,T ,Nα,{Nγ }

(
�Nα

�p

)
V,T ,Nβ,{Nγ }

. (24)

The above equation only requires the calculation of the
pressure differences with few DFT-MD simulations in the
NV T ensemble with inserted or removed particles. It is very
convenient to use for multicomponent fluid systems.

However, in the case of superionic water, it is not possible
to insert or remove an oxygen atom from the lattice without
distorting it, which would lead to discontinuous changes in the
thermodynamic functions. Instead, we directly use Eq. (18)
and write

ξβ

ξα

= Vβ

Nβ

Nα

Vα

. (25)

For a system with only two nuclear species, the following
expression can be easily derived using some of the above
relations:

ξβ

ξα

= Nα

Nβ

V − Vα

Vα

= Nα

Nβ

[
V

Nα

(
�Nα

�V

)
p,T ,Nβ

− 1

]
. (26)

We can once more use Eq. (21) and find the result:

ξβ

ξα

= Nα

Nβ

[
KT

Nα

(
�Nα

�p

)
V,T ,Nβ

− 1

]
. (27)

This expression does not contain any differences �Nβ (here
oxygen). It requires the isothermal bulk modulus KT (�,T )
instead, which can be derived from the EOS straightforwardly.

III. CONSTRUCTION OF THE THERMODYNAMIC
POTENTIALS

In this section, we use our EOS and entropy calculations
to derive free-energy functions for the bcc and fcc SIW. The
EOS of SIW is very similar to that of a dense fluid and cannot
be divided into cold curves and thermal parts, as is usually
done for crystalline solids [60]. For each phase, the resulting
expressions are composed of main parts fm(�,T ) and nuclear
quantum correction parts fqc(�,T ) in the following way:

f (�,T ) = fm(�,T ) + fqc(�,T ). (28)

The entropy constants, although determined in a separate final
step of the procedure, are included in the main parts for
convenience.

Note that we aim to reach a high precision for the f (�,T )
here because the differences in the thermodynamic functions
between the bcc and the fcc SIW are small. In numbers,
the pressures differ only by about one percent or less, while
the internal energies are typically different by no more than
0.5 kJ/g.

A. Main contribution from the FT-DFT-MD

The indispensible requirement for the construction of a
thermodynamic potential from MD simulations is the avail-
ability of very well converged EOS data. Our basic EOS
quantities are the pressure pMD(�,T ) and the internal energy
uMD(�,T ). In SIW, both quantities increase almost linearly
with the temperature. Most noteworthy, both uMD(�,T ) and
the reduced pressure pMD(�,T )/� show a fairly linear increase
with the density in the strongly compressed region between 10
and 15 g/cm3. Both quantities are displayed in Fig. 1. Such
a quasilinear dependence on the density is not an uncommon
observation for warm dense matter in an intermediate region
of compression [61–63], i.e., between the energy minimum at
ambient conditions and the Thomas-Fermi limit.

Having these general considerations in mind, we make the
following generic ansatz for the free-energy function:

fm(�,T ) =
∑
ik

αikT
i/i0�k/k0 +

∑
il

βilT
i/i0Ll

�

+
∑
jk

γjkL
j

T �k/k0 +
∑
j l

δjlL
j

T Ll
�

+
∑

k

εkT ln(T + T0)�k/k0

+
∑

l

ωlT ln(T + T0)Ll
�, (29)

where i0 and k0 are preset suppressor constants and the
modified logarithms are defined as

L� = L�(l) = ln[� + (l − 1)�0] (30)

and

LT = LT (j ) = ln(T + jT0). (31)
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FIG. 1. Three isotherms of the reduced pressure pMD(�,T )/�
(top panel) and the internal energy uMD(�,T ) (bottom panel) for bcc
SIW. The circles indicate the data from the FT-DFT-MD simulations
while the lines are the results from the fits Eqs. (32) and (33). The
temperatures are 12 000 K (black upper line), 8000 K (blue middle
line), and 4000 K (red lower line). Results for the fcc SIW are not
shown here because they would be mostly on top of that from the bcc
SIW.

The smoothing constants �0 and T0 serve to remove unwanted
logarithmic divergences at low values and are also preset. The
indexes j and l may run over positive integers, while the i and
k may be any set of positive or negative integers. The quantities
αik , βil , γjk , δjl , εk , and ωl are parameters to be determined in
an automatic fitting procedure.

Analytic expressions for our quantities of principal interest
are easily obtained by differentiation. These are the reduced
pressure

pm(�,T )

�
= �

(
∂fm

∂�

)
T

, (32)

and the internal energy

um(�,T ) = −T 2

(
∂(fm/T )

∂T

)
�

, (33)

which are of same dimension as the free energy.
The ansatz Eq. (29) allows us to ensure that both the

high-density and the high-temperature limits are determined
by few terms containing the highest power of � and T ln T

(or the highest power of T if imax > i0), respectively. In
addition, complex nonlinearities in the EOS can be captured
by several terms containing powers of the modified logarithms.
Those terms are slowly varying functions and contribute only
at less extreme conditions of density and temperature. In
our particular cases of SIW, the natural choices for tuning
the suppressor constants are i0 = imax and k0 = kmax. The
smoothing constants are set to �0 = 1 g/cm3 and T0 = 100 K.

The fitting of the remaining parameters is then performed
by formulating a linear optimization problem to simultane-
ously minimize the least-squares differences to all EOS data
points for the reduced pressure Eq. (32) and internal energy
Eq. (33), which can be solved numerically. One more important
peculiarity to pay attention to is the term αi0,0T . It is directly

tied to the absolute entropy and cannot be obtained this way
because the term disappears in both Eqs. (32) and (33). The
parameter αi0,0 must be separately determined from the entropy
calculations, which is done in Sec. III C.

Fits of both excellent fidelity and reasonable behavior in
extrapolation beyond the stability regions are achieved for
both phases of SIW, which is illustrated in Fig. 1. In numbers,
the mean deviation between the fit and the pressure data is
less than 0.1%, while the internal energies are on average
reproduced to better than 0.1 kJ/g. This is yet somewhat
larger than the statistical uncertainties or those that stem from
numerical convergence parameters. Further reduction of these
deviations would have been possible by including additional
higher-order terms. However, it would also have worsened
the extrapolation behavior of the functions and inflated the
number of coefficients to handle. Therefore, the series were
truncated at, e.g., lmax = 4 for bcc and lmax = 5 for fcc SIW
because the EOS data set of the latter phase includes slightly
pronounced curvatures. The fit coefficients are given in Table I.
For convenience, we also include the coefficient αi0,0 here,
albeit that one is determined from the entropy calculations
described below.

To conclude this subsection, we note that the ansatz
Eq. (29) is of general usefulness for warm dense matter,
e.g., dense fluids with a similarly shaped EOS, which we
checked in a number of tests with other materials [63–65].
With few modifications, i.e., leaving out the term containing
ω1 and setting k0 = 3kmax/2 and i0 = imax, it is possible to
achieve compatibility with both the Thomas-Fermi and the
classical ideal gas limits. A combination with additional terms
that describe EOS behavior at low densities [66], which is
characterized by various thermal dissociation and ionization
processes, seems achievable as well.

B. Nuclear quantum correction

Quantum effects of the nuclear motion cannot be neglected
when calculating the thermodynamic properties of SIW.
Equation (3) allows us to include such effects at the same
level as was recently done for the ices VII and X [30] or
earlier calculations for fluid water [44,67]. In the case of fluid
ammonia, it was shown that the method can capture effects
of thermal dissociation that lead to an increased decay of
the nuclear quantum effects due to the loss of intramolecular
modes of vibration [61].

Here we investigate strongly correlated, compressed sys-
tems at moderate temperatures, which roughly correspond to
the characteristic vibrational temperatures of water molecules
or phonons in ice. Although the compression of fluid water
leads to dissociation of molecular bonds and formation of
SIW, the effective vibrational frequencies in the system start
to increase again near 3 g/cm3 due to the reduction of available
configuration space. Beyond about 5 g/cm3, uvc(�,T ) in
SIW surmounts the values one obtains from characteristic
frequencies of isolated water molecules [44]. Figure 2 shows
the results obtained with Eq. (3). Differences between the
bcc and fcc phases occur only in the dense region and
are especially visible below 8000 K. Although the nuclear
quantum correction is a relatively small contribution to the
EOS, it needs to be treated with the same care as the main part.
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TABLE I. Coefficients αik , βil , γjk , δjl , εk , and ωl used in
Eqs. (29), (32), and (33) for bcc and fcc SIW. All units are chosen in a
way that entering the temperature in K and the density in g/cm3 leads
to results for fm(�,T ) in kJ/g. The remaining constants are k0 = 1,
�0 = 1 g/cm3, and T0 = 100 K for both phases.

Coefficient bcc fcc

i0 = imax 1 2
α0,0 −3.63984992 × 102 −1.62279576 × 104

α0,1 1.43364427 × 103 7.42720416 × 104

α1,0 1.25922368 × 10−2 −4.03568116 × 102

α1,1 1.97035631 × 10−1 1.85798837 × 103

α2,0 – 9.44227280 × 100

α2,1 – −4.33817146 × 101

β0,1 −3.56056653 × 102 −2.27104207 × 104

β0,2 −1.44298289 × 103 −2.05737109 × 104

β0,3 5.59430175 × 102 −3.95998221 × 104

β0,4 −3.08323312 × 102 1.33150358 × 104

β0,5 – −4.09804698 × 103

β1,1 −1.43320849 × 10−1 −5.62582310 × 102

β1,2 −8.82509173 × 10−2 −5.40915927 × 102

β1,3 3.29148647 × 10−2 −9.56594334 × 102

β1,4 −3.74794358 × 10−2 3.17811925 × 102

β1,5 – −1.00389467 × 102

β2,1 – 1.29955635 × 101

β2,2 – 1.33967031 × 101

β2,3 – 2.13900668 × 101

β2,4 – −7.01319766 × 100

β2,5 – 2.28766744 × 100

γ1,0 3.35489536 × 101 3.50463307 × 103

γ1,1 −1.88285213 × 102 −1.61345494 × 104

δ1,1 5.58962773 × 101 4.93435639 × 103

δ1,2 1.72141931 × 102 4.46724428 × 103

δ1,3 −6.74546340 × 101 8.58645314 × 103

δ1,4 4.08435200 × 101 −2.88082484 × 103

δ1,5 – 8.88638310 × 102

ε0 −3.37183530 × 10−3 −7.63424649 × 10−1

ε1 −1.73302844 × 10−2 3.49923831 × 100

ω1 1.42836268 × 10−2 −1.04708374 × 100

ω2 6.32756867 × 10−3 −1.09013426 × 100

ω3 −2.33253788 × 10−3 −1.71244862 × 100

ω4 3.22127559 × 10−3 5.59947252 × 10−1

ω5 – −1.83720236 × 10−1

We do not have an expression analogous to Eq. (3) to obtain
a corresponding pressure correction from the FT-DFT-MD
simulations [68]. Nevertheless, it is possible to parametrize
a meaningful quantum-correction free-energy function solely
from the data for uvc(�,T ) when making the following ansatz:

fqc(�,T ) =
∑

k

ηkT

[
ln(1 − e−TE/T ) + ln

(
T + T1

TE

)]
�k/k0

+
∑

l

ζlT

[
ln(1 − e−TE/T ) + ln

(
T + T1

TE

)]
�l

�

+
∑

k

λk�
k/k0 +

∑
l

κl�
l
�. (34)

The idea behind Eq. (34) is to have its temperature dependence
determined by harmonic oscillator correction functions (with

2 4 6 8 10 12 14 16
ρ [g/cm³]

0

0.5

1

1.5

2

2.5

3

u vc
 [

kJ
/g

]

1000 K
2000 K
3000 K
4000 K
6000 K
8000 K
10000 K
12000 K

FIG. 2. Isotherms of the quantum correction to the internal energy
from Eq. (3). Diamonds are results for bcc and squares for fcc
SIW, respectively. The solid and dashed lines are generated with
the fit Eq. (36) for bcc and fcc SIW, respectively. The thin dotted
lines are values from characteristic frequencies of isolated water
molecules [44]. All sets of curves and symbols behave systematically
with the temperature indicated in the legend. The highest curves
correspond to the lowest temperature, etc., see color code in the
online version.

removed low-temperature divergences). It turns out that a
single characteristic temperature TE is sufficient to produce ex-
cellent fits to the data. In the high-temperature limit, fqc(�,T )
converges to a small constant value, which vanishes against
the main contribution fm(�,T ). The density dependence is of
similar generic form as that of the main part, Eq. (29), but with
somewhat simpler logarithmic terms,

�� = ln(� + �0), (35)

that always approach constant values at low densities.
The corresponding expression for the internal energy is

obtained by differentiation of Eq. (34), and it contains exactly
the same parameters:

uqc(�,T ) = −T 2

(
∂(fqc/T )

∂T

)
�

=
∑

k

ηk

(
TE

eTE/T − 1
− T 2

T + T1

)
�k/k0

+
∑

l

ζl

(
TE

eTE/T − 1
− T 2

T + T1

)
�l

�

+
∑

k

λk�
k/k0 +

∑
l

κl�
l
�. (36)

After setting the basic parameters to k0 = 1, �0 = 1 g/cm3,
T1 = 100 K and preoptimizing the characteristic temperature
to a value of TE = 4500 K, the parameters ηk , ζl , λk , and
κl were fitted with an automatic routine. The fit curves are
included in Fig. 2, and they reproduce most of the data within
about 0.01 kJ/g, which is a negligible source of error. The fits
behave very reasonably also in extrapolation. Table II contains
the numerical values of the optimized parameters.
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TABLE II. Coefficients ηk , ζl , λk , and κl used in Eqs. (34) and (36)
for bcc and fcc SIW. All units are chosen in a way that entering
the temperature in K and the density in g/cm3 leads to results for
fqc(�,T ) in kJ/g. The remaining constants are k0 = 1, �0 = 1 g/cm3,
TE = 4500 K, and T1 = 100 K for both phases.

Coefficient bcc fcc

η0 1.66311177 ×10−3 2.48398711 ×10−3

η1 1.27391534 ×10−3 9.66256285 ×10−4

ζ1 −8.43618254 ×10−4 −2.16049076 ×10−3

ζ2 −1.62214854 ×10−3 −6.05171608 ×10−4

λ0 3.09204736 4.97616755
λ1 2.75926296 2.09621409
κ1 −1.43268130 −4.39664120
κ2 −3.56990330 −1.35920623

The corresponding pressure, pqc = �2(∂fqc/∂�)T , amounts
to less than 1% of that of the FT-DFT-MD simulations,
pMD(�,T ), in most cases. It becomes more significant only
for the cool and dense states of SIW.

C. Entropy constant

In the previous subsections, we have accomplished the
parametrization the thermodynamic potentials f (�,T ) for SIW
with the exception of the entropy constants s0 = αi0,0 in
Eq. (29), so that the relative behavior of the entropy,

s(�,T ) = −
(

∂f

∂T

)
�

= −
(

∂(fm + fqc)

∂T

)
�

, (37)

is already fixed. In principle, a single calculation of the entropy
for each phase of SIW would now be sufficient to complete
the construction of their thermodynamic potentials. In order
to examine the performance of the elaborate formalism to
determine the entropy from the FT-DFT-MD simulations (see
Sec. II C), we calculate it for several states at the 4000 K
isotherm.

The first step is the determination of the volume weighting
ratios ξO/ξH . The only way to accomplish this for SIW is via
Eq. (27) because it is not possible to insert or remove oxygen
atoms without destroying its lattice. Moreover, we found out
that inserting hydrogen atoms in simulation boxes for either
phase of SIW leads to a deformation of the oxygen lattices as
well. The removal of hydrogen atoms is the only possible way
to obtain a smooth derivative of pressure by the particle number
NH , which is required to evaluate Eq. (27). In particular, we
removed 2 hydrogen atoms out of 108 from the bcc SIW
and 2 out of 216 from the fcc phase, respectively, at constant
volume. We verified that the decrease in the pressure is linear
for such small changes of NH with additional test simulations
in which only 1 or 4 hydrogen atoms were removed. The bulk
moduli were calculated via Eq. (22) using the analytically
parametrized EOS for SIW.

The results for ξO/ξH along the 4000 K isotherm are shown
in the lower panel of Fig. 3, and there are significant differences
between the fcc and bcc phases of SIW. In the fcc phase, the
ratio takes a density-independent value of ξO/ξH ≈ 3.7 for
all densities at which the fcc lattice structure is dynamically
stable, i.e., up to 9 g/cm3. In bcc SIW, the effective volume

4
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m

]

2 4 6 8 10 12 14

ρ [g/cm
3
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3
3.5

4
4.5

5

ξ O
/ξ

H

bcc
fcc

FIG. 3. Top panel: Calculated entropy for bcc and fcc SIW at
4000 K, represented by diamonds and squares, respectively. The solid
and dashed lines are the results from the fit formula, Eq. (29), for the
bcc and fcc phases, respectively. Bottom panel: Calculated ratios
ξO/ξH for the same states as in the top panel. The lines are simple
linear fits to the data.

of a hydrogen atom shrinks significantly under compression
compared to that of an oxygen atom. This can be understood
with the rearrangement of the protons, which relocate from
ice X positions into octahedreal sites under compression [14].
This rearrangement allows the system to yield internally and,
thus, to stabilize its structure up to high densities far beyond
15 g/cm3. It has a very pronounced effect on the ξO/ξH ratio
in bcc SIW up to 7 g/cm3, albeit it is not discontinuous. The
lines drawn in the lower panel of Fig. 3 are guides to the
eye. The rearrangement of protons is also accompanied by a
metallization transition [24]. Electron-proton pair correlation
functions show a delocalization of electrons with increasing
density [24]. No such proton rearrangement or metallization
happens in the fcc phase.

The uncertainty in the ratios ξO/ξH amounts to 5% or less
for each individual calculation. To further suppress this source
of error, we use the values from the simple fits displayed
as lines in the lower panel of Fig. 3 when calculating the
entropy stot(�,T ). This also enables us to calculate the entropy
at 3 g/cm3, for which ξO/ξH cannot be determined directly
because the oxygen lattice melts when removing hydrogen at
that low density. All in all, the entropy is not very sensitive to
the ratio of effective volumes. An error of 5% in ξO/ξH causes
an entropy error of less than 0.01 kB /atom.

The entropy calculated at the 4000 K isotherm is shown
in the upper panel of Fig. 3. It decreases with the density for
both phases of SIW. The entropy of the bcc phase is roughly
0.04 kB /atom higher than that of the fcc phase at most of the
densities. It is now easy to fit the final coefficients αi0,0 from
Eq. (29) by shifting the respective entropy functions and match
them with the calculated data. The average deviation between
the fits and each individual data point is less than 0.03 kB /atom,
which is approximately the statistical accuracy that our entropy
calculations are converged to. From such good consistency
between the entropy functions s(�,T ) derived from the EOS
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data and the directly calculated numbers, we can expect the
absolute values of the entropy to be accurate within the same
degree of uncertainty.

IV. PHASE DIAGRAM AND TRANSITIONS TO THE ICES
VII AND X

Having obtained the complete thermodynamic information
for the bcc and fcc SIW, we can now use Eq. (28) to calculate
the free enthalpies,

g(�,T ) = f (�,T ) + �

(
∂f

∂�

)
T

, (38)

which are numerically inverted into the form g(p,T ) using
the pressures p(�,T ) = �2(∂f/∂�)T . Boundaries between
two phases are found by calculating the intersection of the
respective free enthalpies via �g(p,T ) = 0.

A phase diagram of warm dense water is displayed in Fig. 4.
It includes the data points for which dynamically stable FT-
DFT-MD simulations were obtained for the bcc and fcc phases
SIW. Additional points for the fluid as well as for the ices VII*
and X were taken from previous work [14,30]. The calculated
phase boundary between bcc and fcc SIW (solid green line) is
located in the center of their dynamic stability regions, whereas
the fcc SIW is thermodynamically favored below the curve.
The characteristic density jump at this boundary is small. For
example, at 4000 K it amounts to 0.3% at 240 GPa and 0.14%
at 4900 GPa.
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Ice X
Fluid

fcc
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bcc

Δg ± 0.1 kJ/g 

bcc?

fluid

fluid

FIG. 4. Phase diagram of warm dense water. Diamonds and
squares indicate FT-DFT-MD simulation points for the superionic
phases with bcc and fcc lattices, respectively, made in this work.
Additional data for the ices VII* and X (triangles) as well as for
the fluid (circles) were taken from Refs. [30] and [14]. The solid
green line (gray in print version) is the phase boundary between
the bcc and fcc phases of SIW derived using the thermodynamic
potentials, Eq. (28). The dashed green lines (gray in print version) are
corresponding boundaries, but were obtained after adding artificial
energy differences of ±0.1 kJ/g to �g(p,T ). The solid and dashed
black lines are the boundaries between the bcc and fcc SIW,
respectively, and the ices, for which the thermodynamic potential
was taken from Ref. [30].

To examine the sensitivity of this boundary against uncer-
tainties in the thermodynamic potentials, we also calculate it
after adding small offsets of ±0.1 kJ/g to �g(p,T ), which
shifts the boundary significantly. It is very difficult to estimate
the actual uncertainty of �g(p,T ), but it is likely to be larger
than 0.1 kJ/g. Therefore, we cannot precisely determine up to
which degree each of the phases of SIW may be present in the
phase diagram. However, it is certain that the bcc phase will
eventually prevail against the fcc phase toward high pressures.
This result is also concordant with the loss of dynamic stability
of fcc SIW there. The fcc phase is likely to vanish against bcc
SIW also at high temperatures, albeit we cannot say if this
happens below or above the transition between bcc SIW and
the fluid phase. The fcc phase certainly prevails in a region of
order 10 Mbar and few 1000 K.

In a previous paper [30], we constructed a single-phase
thermodynamic potential for ices VII* and X, using FT-
DFT-MD simulations on the same level of approximation
as here (PBE XC-functional, derivation of the entropy from
power spectra [51]). A multistage fitting procedure was
employed to fit energy and entropy data calculated from MD
simulations to an analytic free-energy function suited model
the thermodynamics of a solid. The numerical accuracy of
that fit was comparable to that achieved here, i.e., residual
deviations in internal energy amounted to about 0.1 kJ/g.

The respective boundaries between each of the phases of
SIW and the ices VII* and X are displayed in Fig. 4 as well. The
ices have a bcc oxygen lattice, and their protonic structures can
melt upon heating, so that the transtion to bcc SIW is directly
observable in simulations. The calculated boundary between
bcc SIW and the ices (solid black line) is located relatively well
between the data points that represent the dynamically stable
states of both ices and bcc SIW. Nevertheless, it lies somewhat
low in temperature and touches some of the highest data points
of the ices. A plausible explanation for this is that the ion
dynamics in the FT-DFT-MD simulations is purely classical,
whereas our thermodynamic potentials contain nuclear quan-
tum effects via the postprocessing correction of the internal
energy data with power spectra; see Eq. (3) or Sec. III B. If such
quantum effects were inherent in the MD simulations, it would
very likely result in a lower melting temperature of the proton
sublattice because potential barriers can be overcome more
easily by quantum particles. The dynamic stability regime of
fcc SIW partially overlaps with that of the ices because the
shape of the simulation cell is kept fixed in our simulations,
so that a direct transition between those two phases is not
possible. The calculated boundary (dashed black line) is close
to that between the ices and bcc SIW though. This illustrates
again the strong similarity that both phases of SIW share in
their thermodynamic functions. A likewise investigation of
sensitivity of the SIW-to-ice transitions shows that their shifts
are one order of magnitude smaller compared to that of the
bcc-fcc transition line when adding ±0.1 kJ/g to �g(p,T ).

There have been several predictions of crystalline structures
of water ice at zero Kelvin beyond the stability region of
ice X [69–75]. Those ices may have boundaries to SIW, but
most of them are of noncubic structure and the derivation of
accurate thermodynamic potentials for them is not an easy
task. Similarly, the calculation of the transitions between
SIW and the fluid phase would require the construction of
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TABLE III. Diffusion coefficients of the protons in cm2/s for bcc
and fcc SIW.

T [K] �[g/cm3] bcc fcc

4000 3.0 1.24 × 10−3 1.26 × 10−3

4000 3.5 1.23 × 10−3 1.24 × 10−3

4000 4.0 1.20 × 10−3 1.22 × 10−3

4000 5.0 1.12 × 10−3 1.08 × 10−3

4000 6.0 9.60 × 10−4 9.78 × 10−4

4000 7.0 7.86 × 10−4 8.36 × 10−4

4000 9.0 5.35 × 10−4 5.64 × 10−4

5000 5.0 1.53 × 10−3 1.45 × 10−3

5000 7.0 1.05 × 10−3 1.12 × 10−3

5000 9.0 6.96 × 10−4 7.75 × 10−4

a thermodynamic potential for the fluid phase. Although this
should be achievable using the same techniques as here, it is
out of scope of this work.

V. PROTON DIFFUSION IN SUPERIONIC WATER

Although the thermodynamic properties of bcc and fcc SIW
are very similar, their transport properties might differ. Wilson
et al. reported a significant effect of the type of oxygen lattice
on the proton diffusion coefficients [15]. We have calculated
the self-diffusion coefficients of the protons, DH , from our
FT-DFT-MD simulations using the velocity auto-correlation
functions:

Dα = 1

3

∫ ∞

0
dt 〈�vα(t) · �vα(0)〉 = kBT

4mα

Sα(0). (39)

In contrast to the results of Wilson et al., we do not observe
a significant difference in the proton diffusion coefficients
within the statistical error of 5% or less. At the very most,
the values for the fcc phase tend to be up to 10% larger
than that for bcc SIW, and this occurs only for densities
larger than 6 g/cm3. Table III contains the respective values
along the 4000 K isotherm, for which we have produced the
longest simulations (about 10 ps) in order to calculate the
entropy, plus three values at 5000 K from shorter simulations.
These states include all those for which diffusion coefficients
were given in Ref. [15], with the exception of the data at
the 2000 K isotherm and at 11 g/cm3 and 5000 K. At those
conditions, we observed a distortion of either the bcc or the fcc
lattices, i.e., a dynamic instability of one of the phases in the
simulations.

Our values fit very well into a set of previous results for
bcc SIW obtained with the mean-square-displacement method
and follows the same trends with temperature and density [24].
Strangely, the absolute values for the diffusion coefficients
given by Wilson et al. are about two orders of magnitude higher
than ours. Such high values of DH would lead to unrealistically
high ionic electrical conductivities of order 105 to 106 S/m,
which is a characteristic number rather for electronic transport
in dense plasmas [76].

Since the type of the oxygen lattice does not strongly
affect the proton diffusion, it is unlikely that related ionic

transport properties, e.g., the electrical conductivity [25], are
significantly influenced either. We thus expect no significant
impact of a bcc-to-fcc transition within SIW on planetary
interiors of Uranus or Neptune.

VI. SUMMARY AND CONCLUSIONS

We have constructed analytic free-energy functions f (�,T )
for two phases of SIW (bcc and fcc) by fitting pressures and
internal energies from ab initio simulations and calculating the
entropy. Their primary purpose is to serve in the construction of
thermodynamically consistent multiphase EOS tables. These
functions are of very high fidelity within the p − T conditions,
which the underlying EOS data from FT-DFT-MD simulations
were generated for; see Fig. 4. Moreover, they can be
extrapolated sufficiently far enough beyond those regions so
that boundaries to neighboring phases can be calculated, which
was demonstrated in the case of ices VII* and X.

The resolution of transitions between two phases that have
very little differences in their thermodynamic functions, like
bcc and fcc SIW, remains challenging though. One can imagine
that bcc and fcc are not the only possibilities, and that many
phases of SIW with low-symmetry oxygen lattices [77] can
be simulated dynamically stable with FT-DFT-MD as well.
However, for practical applications it does not matter much
whether the EOS of the “truly” stable phase or that of a very
similar one is used. Although not discussed here in detail,
the choice of the exchange-correlation functional has a larger
influence on p(�,T ) than the type of the oxygen lattice. It is
therefore very reasonable to recommend the use of f (�,T )
for bcc SIW solely as a good overall representation for the
thermodynamics of SIW up to densities of 15 g/cm3.

Moreover, we showed that the type of the oxygen lattice
does not significantly influence the diffusion coefficient of the
protons, in contrast to the claims of Wilson et al. [15]. Thus, we
do not expect any relevant implication for the magnetic field
generation in water-rich giant planets that might be caused by
transitions between different superionic structures.

Future work will aim at describing the fluid phase in a
similar manner and calculating the melt boundary of the
superionic structures. Moreover, the techniques developed in
this work can be directly applied to investigate superionic and
fluid phases of more complex materials, e.g., astrophysically
relevant mixtures of hydrogen, helium, oxygen, nitrogen, and
carbon [78–80].
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