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Thermostat algorithm for generating target ensembles

A. Bravetti*

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México DF 04510, Mexico
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We present a deterministic algorithm called contact density dynamics that generates any prescribed target
distribution in the physical phase space. Akin to the famous model of Nosé and Hoover, our algorithm is based on
a non-Hamiltonian system in an extended phase space. However, the equations of motion in our case follow from
contact geometry and we show that in general they have a similar form to those of the so-called density dynamics
algorithm. As a prototypical example, we apply our algorithm to produce a Gibbs canonical distribution for a
one-dimensional harmonic oscillator.
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I. INTRODUCTION

Equilibrium statistical mechanics is a beautiful mathemat-
ical construction based on Gibbs canonical distribution and a
very powerful tool that permits to establish a link between
the microscopic laws of motion and the macroscopically
observable properties of systems with a large number of
particles. However, some conceptual and practical problems
in this framework are still unsettled.

A major issue regards the mechanical foundations of the
equilibrium distribution. In fact, the dynamical evolution
of a Hamiltonian system is confined to a hypersurface of
constant energy of the phase space and therefore the only
possible distribution for the energy of the system from a
dynamical perspective is a δ distribution, which represents
the microcanonical ensemble. Therefore, a relevant problem
at the foundations of statistical mechanics, which is also of
primary practical importance for numerical simulations, is that
of finding a well-defined dynamics that can lead to ensembles
which are different from the microcanonical one. In this case
several proposals have been found, which are generally based
on defining a fictitious dynamical system in an extended phase
space that reduces to the desired non-Hamiltonian dynamics
in the physical phase space, with the property that the invariant
distribution reproduces a specified ensemble. Such algorithms
are known in the literature as thermostat algorithms. The
paradigmatic example is the Nosé-Hoover (NH) algorithm,
which generates the canonical ensemble in the physical phase
space [1] (see also [2–8] for further references).

In [9] an algorithm based on the NH idea that generates
any distribution on the physical phase space was proposed,
which is called density dynamics (DD). Here we introduce
an algorithm similar in spirit to that of DD. The main
difference is that our procedure is motivated through a
geometrical setting. In fact the systems that we introduce are
the natural extension of classical Hamiltonian systems to a
space with an extra dimension and are known in the literature as
contact Hamiltonian systems [10,11]. Their dynamics includes
standard Hamiltonian dynamics in some particular cases that
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we point out. However, in the general case it is more rich and
we show that this generality is the essential ingredient to allow
for the dynamical generation of ensembles different from the
microcanonical one. For this reason we refer to our algorithm
as contact density dynamics (CDD).

To introduce our algorithm we proceed in three steps, akin to
the NH and DD procedures. We start with a class of dynamical
systems in an extended phase space, which in our case is given
by contact Hamiltonian systems. The second step is to find an
invariant measure for their flow. This step was pursued in [12],
where the important fact was remarked that there is a unique
invariant measure depending only on the generating function in
the extended phase space. Finally, the last step is to show that,
by a proper choice of the generating function and by integrating
out the additional unphysical degree of freedom, any desired
distribution in the physical phase space can be generated. We
argue that, assuming that the dynamics in the extended phase
space is ergodic, our results provide a dynamical foundation
for different ensembles. To show that this is indeed the case, we
include a numerical simulation generating a Gibbs canonical
ensemble for a one-dimensional harmonic oscillator.

In what follows we first introduce the basics of NH and DD
algorithms and then present our proposal. To fix the notation,
we always denote by � the physical phase space, with variables
(p,q), where p and q are n-dimensional vectors and n is the
number of degrees of freedom of the system. Moreover, �̃

indicates the extended phase space, a (2n + 1)-dimensional
space with coordinates (p,q,S).

II. NOSÉ-HOOVER ALGORITHM AND DENSITY
DYNAMICS

A. Nosé-Hoover algorithm

The logic of the NH algorithm follows three steps. Step 1
is simply the definition of a dynamical system in �̃, given by

q̇i = ∂H (p,q)

∂pi

, (1)

ṗi = −∂H (p,q)

∂pi

− S pi , (2)

Ṡ = 1

Q

(
n∑

i=1

pi

∂H (p,q)

∂pi

− n

β

)
, (3)
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where pi and qi are the physical positions and momenta,
and Q is a positive constant and β = 1/kBT . Here S is an
additional variable introduced ad hoc in order to generate a
non-Hamiltonian dynamics on � with the desired property of
having control over the temperature T . Furthermore, H (p,q)
is the Hamiltonian of the system. Step 2 is the identification of
an invariant measure on �̃. It turns out (see, e.g., [3]) that the
system (1)–(3) has the invariant measure

dμNH = e−βH (p,q) e−βQS2/2 dnp dnq dS, (4)

where dnp dnq dS is the volume element of �̃.
Step 3 consists of obtaining the corresponding measure

on � by integrating out the additional variable S. A direct
integration in Eq. (4) gives (up to a multiplicative factor)

dμNH|� = e−βH (p,q)dnp dnq, (5)

which coincides with the canonical measure. This proves
that NH dynamics can generate the canonical ensemble in
the physical phase space, provided the dynamics (1)–(3) is
ergodic [2,13].

B. Density dynamics

The DD algorithm aims to generalize the NH equations in
order to yield any distribution on the physical phase space.
The key idea of DD is to define an ad hoc dynamical system
on �̃ with the property that its invariant distribution coincides
with an arbitrary ρ(p,q,S). Then ρ(p,q,S) is projected to �

to obtain the desired distribution. To do so, one starts with the
function

�(p,q,S) = − ln ρ(p,q,S) (6)

and writes the flow

q̇i = ∂�(p,q,S)

∂pi

, (7)

ṗi = −∂�(p,q,S)

∂qi

− ∂�(p,q,S)

∂S
pi, (8)

Ṡ =
n∑

i=1

pi

∂�(p,q,S)

∂pi

− n. (9)

It can be checked then that Liouville equation divρX = 0
is satisfied, with X the vector field generating the flow (7)–
(9). Therefore, ρ(p,q,S) is the invariant distribution on �̃.
For instance, when �(p,q,S) = β[H (p,q) + QS2/2] one
recovers the NH case with the distribution (4).

A simple and very useful case is the one in which the
invariant distribution ρ(p,q,S) is of the form

ρ(p,q,S) = ρt(p,q) f (S), (10)

where ρt(p,q) is the target distribution on � and f (S) is
a normalized distribution for the thermostatting variable S.
Equation (10) being a product of two independent distribu-
tions, the integration of the variable S is straightforward and
the result is the desired distribution ρt(p,q) in the physical
phase space.

In the following we present our algorithm for generating
equilibrium ensembles. As for the above description of the
NH algorithm, we divide it into three steps and we show that,

although it is derived from a geometric perspective, it retains
all the positive features of the DD algorithm.

III. CONTACT DENSITY DYNAMICS

A. Step 1: Contact Hamiltonian systems

Contact Hamiltonian systems are defined in a precise
geometric fashion starting from a generating function in the
extended phase space which we indicate as h(p,q,S). The
function h is called the contact Hamiltonian of the system
(for more details see, e.g., [10–12]). The properties of such
systems have already been exploited in physics. In particular,
they are relevant in thermodynamics [14–18] and in control
theory [19,20]. Recently, it was also proposed that they can be
suitable to study the statistical mechanics of nonconservative
systems [12] and to improve the efficiency of Monte Carlo
simulations [21]. For our discussion, it is sufficient to write
down the dynamical equations thus generated, which read

q̇i = ∂h(p,q,S)

∂pi

, (11)

ṗi = −∂h(p,q,S)

∂qi

+ ∂h(p,q,S)

∂S
pi, (12)

Ṡ = −
n∑

i=1

pi

∂h(p,q,S)

∂pi

+ h(p,q,S). (13)

From Eqs. (11) and (12) it is clear that this dynamics induces a
standard Hamiltonian dynamics over the physical phase space
whenever the generating function h does not depend on S.
In addition, the similarity with the NH and DD equations is
evident and is made more concrete in the next section; cf.
Eqs. (17)–(19).

B. Step 2: The invariant distribution for
contact Hamiltonian systems

Although the system (11)–(13) is non-Hamiltonian and
there is no conserved quantity in the general case, it was found
in [12] that there is only one invariant measure on �̃ which
depends uniquely on h whenever h �= 0. This is given by

dμ = |h|−(n+1)

Zn

dnp dnq dS, (14)

where | · | is the absolute value and Zn is the partition
function. Thus, Eq. (14) shows that the invariant measure of the
dynamics generated by any contact Hamiltonian system in the
extended phase space has a power law distribution. We show
below that, for a proper choice of h, the invariant measure (14)
induces any desired distribution on �, just as in the DD case.

C. Step 3: Integrating out S and recovering
the target distribution

Let us proceed as in the preceding discussion about DD and
assume that we wish to induce the target distribution ρt(p,q)
on �. Considering the measure (14), together with the choice
of the contact Hamiltonian

h(p,q,S) = [ρt(p,q)f (S)]−
1

n+1 , (15)
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it turns out that the invariant distribution on �̃ is set to be
Eq. (10). Moreover, with the choice of h as in Eq. (15), the
function h is always positive and therefore the absolute value
in Eq. (14) is not necessary and we avoid regions where h = 0
and the invariant measure is degenerate.

Now, since f (S) is a normalized distribution by assumption,
we can integrate out the unphysical degree of freedom, S, and
obtain the induced measure on �, which is

dμ|� = ρt(p,q) dnp dnq. (16)

This concludes our algorithm for generating any desired
ensemble on the physical phase space.

Notice that different choices of the target distribution lead
to different h in Eq. (15) and therefore to different dynamical
equations of the form (11)–(13). Moreover, Eq. (15) is not
the only possibility for the generating function. We decided to
present this form for clarity because in this case it is particularly
simple to integrate out S. A comment on ergodicity is also in
order. Since h as in Eq. (15) is always greater than zero, the
flow equations (11)–(13) do not have any fixed points, which
are obstructions to ergodicity. Finally, from the form of h as
in Eq. (15), the dynamical equations on �̃ take the form

q̇i = h

n + 1

∂�(p,q,S)

∂pi

, (17)

ṗi = h

n + 1

[
−∂�(p,q,S)

∂qi

+ ∂�(p,q,S)

∂S
pi

]
, (18)

Ṡ = h

n + 1

[
−

n∑
i=1

pi

∂�(p,q,S)

∂pi

+ n + 1

]
, (19)

where � is given by Eq. (6). These equations suggest that
the CDD algorithm is a rescaling of the DD algorithm on
the extended phase space by the positive function h/(n + 1).
The relationship between CDD and DD is beyond of the
scope of this work and it will be explored in future efforts.
Having established our algorithm, in the next section we apply
it to a concrete example, the generation of Gibbs canonical
distributions for a one-dimensional harmonic oscillator.

IV. NUMERICAL SIMULATION

In this section we consider a one-dimensional harmonic
oscillator and show that our algorithm produces a Gibbs
canonical distribution in the physical phase space. This
is a standard test for thermostat algorithms [2–5,22]. For
instance, it has been shown that the NH equations cannot
generate a Gibbs ensemble for this system due to the lack of
ergodicity [1,2,23,24].

Following Eq. (15), the contact Hamiltonian for this system
is

h(p,q,S) =
(

e−βH (p,q)

Z f (S)

)−1/2

, (20)

with H (p,q) the Hamiltonian function of a harmonic oscil-
lator with potential U (q) = 2q2, Z = π/β the corresponding
partition function, and f (S) a normalized distribution. The
freedom in f (S) allows us to do numerical tests for different
distributions and choose the most adequate according to the
ergodicity of the corresponding dynamical system and to

FIG. 1. Evolution of the error in the invariant quantity (22)
for both the RK and the TS integrators with same random initial
condition.

the computational cost of the numerical integration of the
equations of motion. Considering these issues, we select f (S)

FIG. 2. Projections of the extended phase space orbit of a
one-dimensional harmonic oscillator in the (p,q), (S,q), and (S,p)
planes. An orbit with 3 × 105 points is shown. Initial condi-
tion [q0,p0,S0] = [0.12578471404894542,0.7479637648489665,

0.917435858684718]. More details are available in the text.
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FIG. 3. Histograms of the frequencies for q, p, S, and E and corresponding theoretical distributions (solid line) for a one-dimensional
harmonic oscillator. The initial condition is the same as for Fig. 2. More details are available in the text.

to be the logistic distribution with scale 1 and mean c; that is,

f (S; c) = eS−c

(1 + eS−c)2
. (21)

The choice of the numerical value of c is also guided
by the same principles mentioned above (ergodicity and
computational cost). For the simulation we fix c = 2, kB =
m = 1, and β = 0.1. It has been also argued that having
the additional freedom in the choice of unknown functions
such as our f (S), which affects the dynamics but not the
equilibrium properties, may help to extend the capability to
adequately simulate not only static averaged but also transport
and time-dependent properties (see, e.g., [25]). A detailed
analysis of such nonequilibrium properties is beyond the scope
of the present work and will be addressed elsewhere.

To integrate the equations of motion we use and compare
two different integration schemes, the standard Runge-Kutta
(RK) and the Taylor series (TS) method for ordinary differ-
ential equations [26–28]. We have implemented both of them
by means of a JULIA code and made them available at [29].
The RK scheme adopted is the fourth order adaptive with
Dormand-Prince coefficients [30], with a relative tolerance
of 1.0 × 10−16 and an absolute tolerance of 1.0 × 10−20.
On the other hand, the order taken in the TS method is
28 with a variable step size and a tolerance of 1.0 × 10−20.
Since the step size in the methods is not constant, we need
to fix a sample time. We choose 	tsample = 0.05 and we
decide to stop the simulation after a number of samplings
nsampling = 1 × 106, which corresponds to a total integration
time ttotal = 	tsample × nsampling = 5 × 104.

In order to check the accuracy of the two methods for
the integration of the equations of motion, we have resorted
to a test proposed in [31]. In this work the authors derive
an invariant quantity for an arbitrary system of differential
equations

Iφ(t) = − ln ρ(φ(t)) +
∫ t

0
divX(φ(s))ds, (22)

FIG. 4. Numerical joint probability distribution for p and q for
a one-dimensional harmonic oscillator. The initial condition is the
same as for Fig. 2. More details are available in the text.
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FIG. 5. Time average of the energy as a function of time for ten
different initial conditions. Details are available in the text.

where ρ is the invariant distribution of the dynamics, φ is
the flow that gives the time evolution, X is the vector field
generating the dynamics, and div stands for the divergence.
Since Iφ is an invariant quantity, its value at any time t must
be the same as the initial value. Therefore, this provides a
useful test for the accuracy of the numerical integration. For
the time of integration considered, the RK method numerically
conserves the invariant (22) with an error of less than few parts
in 1 × 1011, while the TS integrator conserves (22) with an
error of less than few parts in 1 × 1012 (see Fig. 1). This is
a good indication of the validity of both methods to integrate
the equations of motion. All the tests with the two different
schemes can be checked in [29]. In what follows we show only
the results of the integration performed with the Taylor series
method.

In Fig. 2 we display the projections to different planes
of the orbit of the system with a randomly generated initial
condition. We see that the phase space is filled by the orbit.
We have analyzed the orbits of 1 × 103 different random initial
conditions and checked that the filling of the phase space is a
generic property, which suggests the ergodicity of the system.

In Fig. 3 we show the histograms of the frequencies
of the numerical values of q,p,S and E = H (p,q) for the
specified trajectory and compare them with their theoretical
distributions. The histograms are in good agreement with
the theoretical curves. Figure 4 displays the numerical joint
probability distribution of p and q along the orbit. The
Gaussian character of the bivariate distribution is clearly
observed. All these tests indicate that the CDD correctly
generates Gibbs distributions for this system.

As a final examination, we compute the time averages
of the energy Et for an ensemble of 1 × 102 oscillators and
compare them with the ensemble average 〈E〉 = 1/β = 10.0.
At the final time ttotal the relative error for each element of the
ensemble is less than 2%. In Fig. 5 we plot the evolution of Et

for ten representative elements. The convergence of the time
averages to the ensemble average of the energy is a further
indication of the ergodicity of the system.

V. CONCLUSIONS

Hamiltonian mechanics and symplectic geometry are at
the foundations of equilibrium statistical mechanics of con-
servative systems since they produce the microcanonical
ensemble. Here we have proposed an algorithm based on
contact geometry and the corresponding Hamiltonian systems
that dynamically produces any desired ensemble. This might
provide a theoretical basis for the equilibrium statistical
mechanics of nonconservative systems.

We have shown that our algorithm generates equations of
motion which have the same structure of those provided by
density dynamics. However, the main difference between our
algorithm and DD is that our framework is grounded on the
geometry of the extended phase space.

To investigate the ergodicity of the dynamics induced by our
algorithm and prove that it effectively yields the desired target
distribution in the physical phase space, we have presented an
example in which we simulated a one-dimensional harmonic
oscillator in a Gibbs canonical ensemble. We have considered
different curves in the phase space, marginal and joint
distributions, and the time averages of the energy for several
randomly generated initial conditions. From all these tests
we conclude that the system is in the canonical ensemble, as
expected.

In future works we wish to clarify in detail the relationship
between our algorithm and density dynamics and to study the
physical relevance of the contact Hamiltonian. Moreover, we
are going to apply the present proposal to construct several
systems in different ensembles. We consider that our contact
density dynamics algorithm can be useful in the design of
molecular dynamics simulations and that it establishes a step
forward in the theoretical understanding of equilibrium in
nonconservative systems.
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Nosé-Hoover approach, Phys. Rev. E 65, 026105 (2002).

[10] V. I. Arnold and S. P. Novikov, Dynamical Systems IV:
Symplectic Geometry and Its Applications (Springer, Berlin,
2001).

[11] C. P. Boyer, Completely integrable contact Hamiltonian systems
and toric contact structures on S2 × S3, Symmetry Integrability
Geom. Methods Appl., SIGMA 7, 058 (2011).

[12] A. Bravetti and D. Tapias, Liouville’s theorem and the canonical
measure for nonconservative systems from contact geometry,
J. Phys. A: Math. Theor. 48, 245001 (2015).

[13] A. R. Plastino and C. Anteneodo, A dynamical thermostatting
approach to nonextensive canonical ensembles, Ann. Phys. 255,
250 (1997).

[14] R. Mrugała, On a special family of thermodynamic processes
and their invariants, Rep. Math. Phys. 46, 461(2000).

[15] D. Eberard, B. M. Maschke, and A. J. Van Der Schaft, An
extension of Hamiltonian systems to the thermodynamic phase
space: Towards a geometry of nonreversible processes, Rep.
Math. Phys. 60, 175 (2007).

[16] A. Bravetti and C. S. Lopez-Monsalvo, Para-Sasakian geometry
in thermodynamic fluctuation theory, J. Phys. A: Math. Theor.
48, 125206 (2015).

[17] A. Bravetti, C. S. Lopez-Monsalvo, and F. Nettel, Contact
symmetries and Hamiltonian thermodynamics, Ann. Phys. 361,
377 (2015).

[18] S.-I. Goto, Legendre submanifolds in contact manifolds
as attractors and geometric nonequilibrium thermodynamics,
J. Math. Phys. 56, 073301 (2015).

[19] Audrey Favache, Denis Dochain, and B. Maschke, An entropy-
based formulation of irreversible processes based on contact
structures, Chem. Eng. Sci. 65, 5204 (2010).

[20] Hector Ramirez, Bernhard Maschke, and Daniel Sbarbaro,
Feedback equivalence of input-output contact systems, Syst.
Control Lett. 62, 475 (2013).

[21] M. J. Betancourt, Adiabatic Monte Carlo, arXiv:1405.3489.
[22] Glenn J. Martyna, Michael L. Klein, and Mark Tuckerman,
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