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Ballistic annihilation with superimposed diffusion in one dimension
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We consider a one-dimensional system with particles having either positive or negative velocity, and these
particles annihilate on contact. Diffusion is superimposed on the ballistic motion of the particle. The annihilation
may represent a reaction in which the two particles yield an inert species. This model has been the subject of
previous work, in which it was shown that the particle concentration decays faster than either the purely ballistic
or the purely diffusive case. We report on previously unnoticed behavior for large times when only one of the
two species remains, and we also unravel the underlying fractal structure present in the system. We also consider
in detail the case in which the initial concentration of right-going particles is 1/2 + ε, with ε �= 0. It is shown
that remarkably rich behavior arises, in which two crossover times are observed as ε → 0.
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I. INTRODUCTION

Deviations from mean-field theory caused by fluctuations
have been the subject of a considerable amount of research [1].
Thus, when reactants diffuse and react on contact, they
create spatial correlations that invalidate the usual concept of
mean-field theory, and indeed, invalidate the applicability of
rate equations, which are normally viewed as fundamental in
chemical kinetics. A very simple example of this is one-species
annihilation (or aggregation) in which one species reacts with
itself via a bimolecular reaction,

A + A−→
K

B, (1)

where B represents an inert species, which we disregard in the
following. The rate equation for such a process is given by

ċA = −Kc2
A, (2)

and the decay for large times is therefore 1/t . However, as is
well known (see, for example, [2]), if we consider a model of
point random walkers on the line, which annihilate whenever
two walkers alight on the same site, then the decay is in fact
given by (Dt)−1/2. At a deeper level, the amplitude of the 1/t

decay determined by (2) depends on the initial concentration,
whereas the amplitude of the 1/

√
t decay does not.

These and many similar results have been discussed exten-
sively. For a review, see for example the book [3] by Redner
and Krapivsky. In the following, we shall consider a variation
on the model described by (1), in which the transport has both a
ballistic component, in which the particles can have one of two
velocities v and −v, and a diffusive component. The purely
ballistic model was initially discussed by Elskens and Frisch
in [4]. Similar to the diffusive model discussed in [2], the decay
of concentration goes as t−1/2, but for quite different reasons.
As was then pointed out in [5,6], combining both diffusion
and ballistic motion leads, in one dimension, to a decay that is
more rapid than the one brought about by either mechanism.

The kinetics of particle annihilation, A + A → ∅, has
attracted considerable attention from the scientific commu-
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nity from another completely different point of view. The
dynamics of particle annihilation with A + A → ∅ have a
direct one-to-one correspondence with the kinetic Ising model
in one dimension. For example, the zero-temperature Glauber
dynamics in a one-dimensional Ising spin system with nearest-
neighbor interaction can be mapped to the A + A → ∅ system,
in which the A are pure random walkers [7]. On the other
hand, the binary opinion dynamic models in one dimension
(which can be directly mapped to a one-dimensional Ising
spin system) have a much more complicated walker picture,
where the A walkers are not purely random. There are also
binary opinion dynamic models, in which A walkers perform
a complicated ballistic motion. For example, in the dynamics
introduced in [8], the boundaries of the domains (which could
be construed as walkers) move ballistically unless they meet
the boundary of some other domain. Once two boundaries
meet, the annihilation of the boundaries is more involved
than the simple A + A → ∅. In another example of a binary
opinion dynamics model introduced in [9], the walkers in
the corresponding walker picture have ballistic motion; in
this case, the A walkers always move ballistically in the
direction of their nearest walker and annihilate upon meeting,
following A + A → ∅. This leads to complex changes in the
direction of motion of the walkers, somewhat akin to a random
walk [9]. Understanding the dynamics of the simple ballistic
annihilation process with superimposed diffusion can thus also
be of help in understanding these complex dynamics.

The simple model of ballistic annihilation discussed in this
paper has quite a rich structure. Introducing a corresponding
binary opinion dynamics model could be a motivation and
direction for future work.

Here we study the model of ballistic annihilation with
superimposed diffusion in greater detail than was previously
done, showing in particular a remarkably rich structure when
the number of left- and right-going particles is allowed to be
different. In particular, we study the nature of the crossovers
appearing as these numbers come close to each other.

II. THE MODEL

A. Description of the model

Let us first describe in some detail the model we study in this
paper. The system we consider consists of point particles on
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a one-dimensional lattice. Each particle moves, always, either
to the left or to the right, that is, each particle has positive
or negative velocity. Initially there is a fraction (1/2 + ε)
of particles with positive velocity and a fraction (1/2 − ε)
of particles with negative velocity (with −1/2 � ε � 1/2)
randomly distributed on the lattice. Whenever a particle lands
on a site at which another particle is found, both are removed
from the system. This is therefore a model of the so-called
one-species annihilation type (A + A → ∅). It is of central
importance that the particles are moved asynchronously, that
is, at each time step one particle is chosen at random and
moved in the direction corresponding to the velocity of that
particle.

Note that the asynchronous updating rule leads to the
possibility that particles having the same velocity can react,
since the random choice of the particle leads to an effective
diffusive motion of the particles with respect to their neigh-
boring particles having the same speed, whereas in a perfectly
synchronous update, these particles’ distances would remain
fixed. It is largely the consequences of this effect that we will
explore in this paper. This model is equivalent to a model
in which a fraction 1/2 + ε of particles performs a random
walk with bias v, whereas the others have a bias −v. We shall
generally work with a bias equal to v in order to keep the
dimensions explicit.

For ε = 0, the number of positive and negative velocity
particles is equal, on average, at the beginning. Taking ε �= 0
introduces inequality in the numbers of positive and negative
velocity particles, and ε = ±1/2 means there is only one kind
of particle.

The synchronous update version of this system has been
studied by Elskens and Frisch [4], who showed that for ε = 0,
the concentration of particles decays as t−1/2. Here we study
the following variant: instead of letting the particles move
ballistically in continuous time, we discretize time and choose,
at each time step, a particle at random and move it to the right if
it has positive velocity, and to the left otherwise. In other words,
we use an asynchronous updating rather than a synchronous
one. This introduces diffusion, and thereby the possibility of
two particles with the same velocity annihilating each other.
This apparently minor change affects the system profoundly,
as already noted in [5,6] for the case ε = 0. Here we extend the
study to the general case, and we also display some nontrivial
large time behavior in the case ε = 0 that had previously gone
unreported. Finally, we propose a mechanism, first studied by
Alemany [10], for modifying the decay exponent of diffusive
annihilation kinetics in one dimension, and we show that it is
indeed operative in this particular system.

Let us briefly summarize our results for the general case
ε > 0. We find three different regimes, of which the easiest is
certainly the last: at very large times, all particles with negative
velocities have disappeared. Additionally, all the spatial cor-
relations that their presence might have induced—we will see
that such correlations can in fact arise—have also disappeared.
We thus have a system consisting solely of right-moving
particles moving ballistically, with superimposed diffusion.
This is equivalent to pure diffusive dynamics, so that the
asymptotic decay goes as (Dt)−1/2. This is the third stage
of the system’s evolution. If ε � 1, there are two other
stages: the first one is the one in which we may neglect

c
(
t
)

Time

t-3/4

t-1/4
t-1/2

ε-2
ε-4

FIG. 1. A schematic figure with two crossovers for the decay of
c(t), which is the concentration of the total number of particles at
time t .

the difference in concentration between left- and right-going
particles. In this regime, the usual decay exponent reported
and analyzed by ben-Naim, Redner, and Krapivsky [6] applies,
and the concentration decays as t−3/4. This stage ends when
all left-going particles have disappeared. This happens, as
we shall see, at a time t1(ε) of order ε−2 (Fig. 1). At this
point, a second stage sets in, characterized by a decay with
a t−1/4 leading term (Fig. 1). This is due to the fact that the
surviving right-going particles are far from being uniformly
distributed, which leads to an anomalous decay, as pointed
out by Alemany [10]. The third stage, when these correlations
finally disappear, sets in at a time t2(ε) that scales as ε−4

(Fig. 1).
If we start with N particles, then one finds that at t1(ε) there

remain Nε3/2 particles, whereas at t2(ε) there only remain
Nε5/2. This brings out some numerically challenging features
of the model: if we wish to have a clean separation of time
scales, we need at least ε ∼ 10−2, and if we wish to have,
say, 100 particles at t2(ε) (in order to be able to observe the
final exponent reliably), we would need to start out with N ∼
107, which is altogether unrealistic. We will therefore rely on
various simulations with different values of the parameters to
bring out the various features of the system.

B. Quantities calculated

We have studied the following quantities in the present
work:

(i) The decay of the concentration of the total number
particles, c(t), with time, starting from concentration c(0) = 1,
which means that all sites are occupied initially.

(ii) The decay of the concentration of an excess number of
particles, cex(t), with time, which is defined as the absolute
difference between positive and negative velocity particles.
For ε = 0, cex(0) � 1/

√
N [up to an O(1) factor], where N is

the initial number of particles.
(iii) The change of the domain size of positive and negative

velocity particles with time.
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(iv) The distribution of interparticle distances between two
neighboring particles (independent of their velocities) at late
time. This distribution is also studied for particles with the
same velocity and those with different velocities.

(v) The persistence probability P (t): This is the probability
that a site remains unvisited by any of the walkers A up to
time t > 0. When the walkers perform a pure random walk,
the persistence probability P (t) shows a power-law decay
given by P (t) ∼ t−θ , where θ is the persistence exponent
and is unrelated to any other known static or dynamic
exponents [11,12].

We have studied the dynamics starting from initially N par-
ticles, with 104 � N � 8 × 104. The results are averaged over
2000 to 2500 configurations. Periodic boundary conditions
have been used.

III. THEORY

For ε = ±1/2, only one kind of ballistic particle (either
+v or −v velocity particles) exists in the system. Due to the
random update rule for the simulation, by which diffusion is
incorporated, the relative motion of the particles is actually
diffusive in this case. The relative diffusion constant Deff = 1
is the same as if the particles performed symmetric random
walks (see Appendix A for details). Naturally, in this situation,
the concentration c(t) will decay as t−1/2.

If ε �= ±1/2, for any typical configuration, the number of
+v and −v velocity particles will not be equal (this is clear
for ε �= 0, but also when ε = 0, due to statistical fluctuations).
Due to this inequality in numbers, the system will go from a
regime of ballistic annihilation with superimposed diffusion
to a long-time regime of pure diffusion when only one kind
of particle is present. In the following, we start by considering
the regime in which no significant difference in the numbers
of left- and right-going particles exists, ε = 0. In this case, as
has been shown in [5,6], the particle number decays as t−3/4.
In the following subsection, we shall rederive this result for
the sake of keeping the paper self-contained. Afterward, we
will proceed to analyze the case of finite systems, in which
the particles eventually all have one given velocity due to the
effect of statistical fluctuations. Finally, we analyze the case
of ε �= 0.

A. The infinite system with ε = 0: Dimensional analysis

In the following, we analyze the system for ε = 0 using
dimensional considerations. The various parameters involved
are c(0), D, t , and v. These can be combined in two
dimensionless parameters:

x = v

Dc(0)
, (3a)

τ = v2t

D
. (3b)

The former is the ratio of the time required for nearest neigh-
bors to cross the average distance between them if they move
ballistically, to the time required to cross the same distance
with diffusive dynamics. It thus states whether diffusion or
drift dominates the short-time dynamics. τ is a dimensionless

time, which separates the regime in which diffusion dominates,
τ � 1, from that in which drift dominates, τ 	 1.

The concentration of particles at time t can thus be written
in terms of the adimensional quantities x and τ as follows:

c(t) � c(0)�(x,τ ). (4)

If x � 1, then c(t) should not depend on v for initial times,
since the process is (in a first approximation) purely diffusive,
leading to a (Dt)−1/2 behavior. Therefore, for x � 1, using
the expression of x and τ given by Eqs. (3a) and (3b), we get

�(x,τ ) = x√
τ

. (5)

This is only valid up to τ ∼ 1, since, as we have seen above,
this is the crossover time between drift and diffusion.

On the other hand, for x 	 1, the behavior of c(t) is purely
ballistic for moderate τ . It is thus independent of D and given
by

√
c(0)/vt , as shown in [4]. Therefore, for x 	 1, again

using Eqs. (3a) and(3b), we find

�(x,τ ) =
√

x

τ
. (6)

Let us now determine the time τ up to which this is valid.
The qualitatively new feature introduced by diffusion is the
possibility for particles of the same velocity to annihilate via
diffusion. But this happens on a time scale 1/[Dc(0)2], which,
in terms of the adimensional quantities, is τ ∼ x2. We see,
therefore, that the approximation (6) should hold up to τ ∼ x2

The previous Eqs. (5) and (6) only hold for short times. For
the former, this is because the influence of drift is eventually
felt, whereas for the latter, it is due to the diffusive annihilation
of particles with like velocity. If we now describe the large τ

behavior for the full dynamics by

�(x,τ ) � xατβ, (7)

then we obtain two conditions on α and β as follows: when
τ ∼ 1 and x � 1, we may apply both (5) and (7). This leads
to

x ∼ xα (8)

implying α = 1. Similarly, if we consider the case in which
x 	 1 and τ ∼ x2, we may apply (6) as well as (7), and we
are thereby led to √

1

x
∼ xα+2β = x1+2β, (9)

from which follows that

β = −3

4
. (10)

We thus obtain

�(x,τ ) � xτ−3/4. (11)

This finally yields, for the concentration c(t) at large times,

c(t) � v−1/2D−1/4t−3/4. (12)

This dimensional analysis parallels that made in [5,6] and is
presented for the sake of keeping the paper self-contained.

Note that the above derivation contains a weak point: it is
assumed in (7) that the x dependence of the prefactor of τβ is
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always the same power α, both in the x � 1 and in the x 	 1
regime. This is, in itself, not obvious, and we will see in later
sections a derivation of the same result that is free from this
objectionable feature.

B. The case of finite systems

Let us first describe the behavior of the set of surviving
particles in ballistic annihilation with synchronous updating.
Here we follow [4].

Let the initial condition of a system undergoing ballistic
annihilation be given by the numbers σk , where k runs from
0 to L, where L is the length of the system, and σk can take
three possible values: σk = ±1 means that site k is initially
occupied by a particle having velocity σk , whereas σk = 0
means that site k is initially unoccupied. Assume that σk = 1
represents the +v velocity particles and σk = −1 represents
the −v velocity particles. Under these circumstances, once
the initial condition is set, something we will assume to have
been done at random, then the fate of each particle is uniquely
determined. Indeed, each particle has a unique annihilation
partner, or else it survives indefinitely. If σk = 1, the unique
annihilation partner is initially at position π+(k), defined by
the following condition: let Ak be defined as the following set:

Ak :=
{

m ∈ N :
k+m∑
r=k

σr = 0

}
. (13)

Then π+(k) is the smallest element of Ak . If Ak = ∅, then the
particle initially at k survives indefinitely and π+(k) = ∞ [a
wholly similar definition works if σk = −1, in which case we
would say the partner is at initial position π−(k)].

Given the initial condition, each particle survives until it
encounters its reaction partner. The collision time is thus

τ (k) = π+(k)

2
, (14)

where we have considered the positive velocity particles.
We now determine the structure of the set 
t defined as


t = {k : τ+(k) > t}. (15)

Let us consider a pair of particles with positive velocity
separated by a distance k. Without loss of generality, we may
assume that we have two particles, one at 0 and one at k > 0.
The particle at k we call the leader, while the one at 0 is the
follower. For both to belong to 
t , the following conditions
are necessary:

(i) A0 should not have any element r � t .
(ii) Ak should not have any element s � t .
If k > t , then the two intervals [0,t] and [k,k + t] are

disjoint. The probability of both sites belonging to 
t is
thus simply the product of either site belonging to 
t , and
no dependence on k exists. Note that this is so regardless of
whether ε = 0 in the initial condition.

Let us now consider the opposite case. In this case, the
leader “clears the way” for the follower: since Ak has no
element s � t , it follows that A0 cannot contain any elements
in the interval [k,k + t]. Thus, for the follower to belong to

t , it is sufficient that there be no elements in A0 belonging
to the interval [0,k]. The probabilities that the leader and the
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FIG. 2. Initial and very late time position of the particles that
have survived for a long enough time. The picture suggests that
the long-surviving particles are fractally distributed over the lattice
from the beginning. This plot is generated starting initially from
N = 2 × 104 particles. Note that the number of final particles is quite
small—namely six—in order to claim that these lie on a fractal.
Nevertheless, we may view this as evidence of the fact that, in the
limit of infinitely many initial particles, the surviving particles would
indeed lie on a fractal.

follower both belong to 
t are thus again a product, but this
time of the probability that for all r < k we have

r∑
m=0

σm > 0. (16)

In other words, this is the probability p0(k) that a random
walk, which starts at the origin and takes a step to the right,
does not return to the origin before time k. The probability for
this, as is well known [13], scales as k−1/2 for k 	 1, if the
walk is symmetric, which corresponds, in our case, to an initial
condition with ε = 0. Thus, if ε = 0, the probability of having
two particles separated by a distance k < t both surviving a
time t is of the order of k−1/2. In other words, this description
is compatible with the set 
t forming a fractal set—below the
cutoff value t—with fractal dimension 1/2. The correlation
function for k 	 1 and t 	 1, but k < t is of order (kt)−1/2.

The initial and very late time positions of the surviving
particles, as shown in the schematic in Fig. 2, form a number
of clusters (of two or more particles), and the clusters are
well separated from each other. This indicates that the long-
surviving particles are on a fractal from the beginning.

In the case with no diffusion, we therefore see that 
t

is a fractal with a lower cutoff at length 1 (lattice spacing)
and an upper cutoff t with fractal dimension 1/2. This was
the case in which we have synchronous updating. If instead
we have asynchronous dynamics, the annihilation of similar
particles eliminates all particles with a distance less than

√
t .

The corresponding set of surviving particles then becomes
a fractal of dimension 1/2 with lower cutoff

√
t and upper

cutoff t , leading to the fact that the set has t1/4 elements in
each domain of size t , thereby leading to a concentration c(t)
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of t−3/4. We therefore see that the particles surviving at time
t1, at which only one species survives, also lie on a fractal of
dimension df = 1/2.

The fact that 
t1 is a fractal further implies, as shown by
Alemany [10], that the decay of a purely diffusive reaction
starting from such an initial condition is not given by t−1/2 but
rather by t−df /2, where df is the fractal dimension of the initial
condition. In the particular case with which we are concerned
here, since df = 1/2, we have a decay law of t−1/4. This is
seen in qualitative terms as follows: the probability that a given
particle survives for a time t is negligible if this particle is both
followed and preceded by a particle significantly closer than√

Dt . We therefore require, for the particle to survive, that
one of either neighbors be further from the central particle
than

√
Dt , which has the probability (Dt)−df /2. In our case,

this means that the final decay, after the annihilation of all
minority particles, goes as t−1/4.

Let us look at this decay law in greater detail. When the
particles are distributed on a fractal of dimension df (0 < df <

1), the probability distribution function for initial interparticle
distances for two nearest particles will be P (x),

P (x) = 1

ζ (λ)

∞∑
l=1

l−λδ(x − l), (17)

where λ = df + 1. The mean distance between nearest-
neighbor particles diverges for 0 < df < 1 or for 1 < λ < 2.
We have obtained the decay law considering this discrete
distribution given by Eq. (17) following the formalism de-
veloped by Alemany [10]. The number of particles n(t) at
time t [normalized by the initial number of particles n(0)] will
be

n(t) = − �(1 − λ)

2ζ (λ)�( 3−λ
2 )

τ− λ−1
2 + �(1 − λ)

4(1 − λ)[ζ (λ)]2
τ−(λ−1)

+ ζ (λ − 1)

2ζ (λ)
√

π
τ−1/2 + O(τ−λ/2), (18)

where τ = Defft . See Appendix B for details. For the fractal
dimension df = 1/2, that is λ = 1.5, the leading term will
be t−1/4 and the coefficient of this leading term is positive,
as �(1 − λ) is negative for all λ > 1. The first correction to
scaling will involve both the second and third terms of (18),
thereby leading to

n(t) =
√

π

ζ (3/2)�(3/4)
τ−1/4

+
( √

π

ζ (3/2)2
+ ζ (1/2)

2
√

π ζ (3/2)

)
τ−1/2 + O(τ−3/4)

≈ 0.5537 τ−1/4 + 0.102 τ−1/2 + O(τ−3/4). (19)

In the following, we shall always take the leading correction
to scaling into account, since it modifies the behavior consid-
erably.

C. The case ε > 0

Let us now analyze the case in which ε > 0. We proceed
exactly as in the previous subsection, and we wish to know the
structure of the set 
t . The probability that a particle at 0 and

another particle at k both belong to 
t , in the case k < t , is
still given by the probability, which we now call pε(k), that a
random walk, which starts at the origin and takes a step to the
right, does not return to the origin before time k. The important
difference is now that the walk is biased, that is, that a step to
the right now has probability 1/2 + ε, whereas a step to the
left has probability 1/2 − ε.

The probability pε(k) has the property that it saturates to
a positive value pε(∞) as k → ∞. More specifically, this
saturation happens when k ∼ kc(ε), where kc(ε) ∼ ε−2 as ε →
0 [13,14]. When ε → 0 we have p∞(ε) � ε. The set 
t is
therefore a fractal set with a cutoff that is either at t or at ε−2,
depending on which is smaller. The correlation function in
this case is (kt)−1/2 for k � ε−2, whereas it goes as εt−1/2 for
k ∼ ε−2. Of course, k � ε−2 and k < t are only compatible if
t > ε−2.

If, on the other hand, ε < 0, that is, if we are looking at the
number of surviving particles of the minority species, then the
probability of surviving for k time steps decays exponentially
in k as k becomes larger than a characteristic value kc(ε) � ε−2.
This means that there are essentially no minority particles
when t > kc(ε), in other words, after a time of order ε−2.
We will call this time t1(ε). We will again obtain this time
scale from the scaling at the crossover point at the end of this
section, with the implication that the relatively few particles
that survive at such times are very close to each other.

When all minority particles have been annihilated, and only
the majority species remains, the surviving particles lie on a
fractal of dimension 1/2 with a lower cutoff t1(ε)1/2 and an
upper cutoff t1(ε), where t1(ε) is the time at which the minority
species disappears. At that time, one has N (0)1/4 particles,
where N (0) is the initial number of majority particles. These
particles will now undergo diffusive annihilation with diffusion
constant Deff (Appendix A), starting from a fractal distribution.
Actually, not only these remaining majority particles, but all
excess particles cex(t) will undergo diffusive annihilation on
a fractal of dimension 1/2 from the beginning, except when
ε = ±1/2, in which case all particles are excess particles.

Let us determine the crossover time t1(ε). This is the time
at which we cross from the t−3/4 initial behavior to the long-
time t−1/4 behavior. The latter, as follows from that mentioned
above, is

at1(ε)−3/4 = b(ε)t1(ε)−1/4, (20)

where the coefficient a does not depend on ε as the decay at
the beginning does not depend on the initial concentration. On
the other hand, b(ε) ∼ ε as p∞(ε) � ε for ε → 0. Simplifying
Eq. (20), we get

t1(ε) ∼ ε−2, (21)

which is compatible with the previous description. For ε → 0,
this crossover time tc will diverge and hence will scale with
system size L for finite L.

For ε = 0, the t−1/4 decay is difficult to see, as there
remain very few particles at this late stage. For ε �= 0, it is
easier to detect the t−1/4 (which is the leading term) decay
of concentration on the fractal, because there remain more
particles in this situation. As the dynamics is diffusive in this
regime, the fractal structure will eventually fade out to the
uniform distribution. Hence there will be yet another crossover
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FIG. 3. The concentration c(t) for the total number of particles
decaying as t−1/2.

and the concentration will decay as t−1/2 at very late time. If
the crossover time for this second crossover is t2(ε), we can
write

b(ε)t2(ε)−1/4 = c t2(ε)−1/2,

where the coefficient c does not depend on the initial
concentration and hence on ε. This gives

t2(ε) ∼ ε−4. (22)

It is quite difficult to detect and measure this second crossover
time t2(ε), as the number of remaining particles is very low
and the time very large. To be able to observe it, we need to
use comparatively large values of ε, for which other effects,
such as the −3/4 initial decay, are not so clearly visible.

IV. NUMERICAL RESULTS AND SCALING

A. Results for ε = ±1/2

For ε = ±1/2, there exists only one kind of particles (either
+v or −v velocity particles) and hence the excess number
of particles cex(t) = c(0). As discussed above, the system is
purely diffusive in this case, thus the concentration c(t) decays
with time t as t−1/2 (Fig. 3).

The domain size of positive or negative velocity particles
(depending on ε = +1/2 or −1/2) cannot change and is
equal to the system size from the beginning. The probability
distribution of interparticle distances between two neighboring
particles increases linearly with the domain size (due to diffu-
sion) for smaller domains [15] and then drops exponentially,
as expected for diffusion. The persistence probability decays
exponentially with time as the walkers are ballistic and wipe
out the persistence of all the lattice sites.

B. Results for ε = 0

When ε = 0, the number of particles of each kind is equal
on average. As discussed above, the system will undergo
a crossover from ballistic annihilation with superimposed
diffusion to purely diffusive annihilation on a fractal. Figure 4
shows the decay of the concentration, c(t), for the total
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101 103 105 107 109

t

N=80000

FIG. 4. The concentration c(t) (red points) for the total number
of particles decaying as t−z1 , with z1 = 3/4 (blue dotted line) before
the crossover and following Eq. (19) after the crossover. The decay of
cex(t) (green points), which is the concentration for the excess number
of particles, is also plotted. n(t)/

√
N , with λ = 1.5, is plotted as a

theoretical curve (pink dotted line), where the expression of n(t) is
given by Eq. (18). The decay of the concentrations is plotted starting
initially with N = 80 000 particles.

number of particles, and the decay of cex(t), the concentration
of the excess number of particles. Both concentrations are
normalized by the total number of initial particles, denoted by
N . The concentration c(t) decays as t−3/4 [Eq. (12)] before the
crossover and following Eq. (19) after the crossover (Fig. 4).

The initial concentration for the excess particles is cex(0) =
1/

√
N . If the excess particles, which decay due to diffusive

annihilation, are assumed to lie on a fractal of dimension 1/2
from the beginning, then they will decay according to Eq. (19).
The plot of Eq. (19) with the numerical data for cex(t) (Fig. 4)
shows excellent agreement, supporting the assumption made
above.

After the crossover, the total number of particles is equal to
the excess number of particles, as there exists only one kind of
particle in this regime. However, the number of particles left
after the crossover is quite limited, O(N1/4), and a very large
number of configurations (more than 2 × 103) are needed to
attain the proper statistics. Further, as previously mentioned,
one has to consider n(t)/

√
N to fit the decay of the fraction

of excess particles from the beginning. Hence to check the
expression of Eq. (19) directly, we have also studied the
dynamics starting from an initial configuration, where all
the particles have the same velocity and are distributed on
a fractal (Fig. 5). The numerics show good agreement with the
theoretical plot.

At late times, the distribution of interparticle distances
between two neighboring particles was also studied. This
distribution for two neighboring particles with the same
velocity, which is denoted by Ps(l), goes as l−3/2 for large
l (see the inset at the bottom of Fig. 6). This is evidence
that inside a domain of particles with the same velocity, the
particles are distributed on a fractal of dimension 1/2, while
Ps(l) ∼ l for small l. This is due to the diffusion-limited
annihilation, which follows, for example, from the exact results
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FIG. 5. n(t), normalized by the initial number of particles n(0)
for each configurations, are plotted as a function of time t (red dots).
The blue line is the theoretical plot, which is the plot of Eq. (18) with
λ = 1.5 [which is the plot of Eq. (19)]. In this plot, the system size
L = 150 000 and the average initial number of particles is 〈n(0)〉 =
O(680).

of [16], where it is shown that the interparticle distribution
function for diffusion-limited annihilation grows linearly as x

for x much less than the average interparticle distance. On the
other hand, we have also computed Pd (l), the distribution of
interparticle distances between two neighboring particles with
different velocities. The distribution is almost flat and then has
an exponential decay (see the top-right inset of Fig. 6). At
the exponential decay, the value of Pd (l) suddenly increases,
indicating that the probability of having some large value of
l is very high. This is due to the fact that the two domains or
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FIG. 6. The distribution P (l) for the interparticle distances
between two neighboring particles, independent of their velocity, is
plotted in the main plot. The inset at the bottom shows the distribution
Ps(l) for the particles with the same velocity, and the top-right
inset shows the distribution Pd (l) for two particles with different
velocities. The pink line indicates l−3/2 decay for both the main plot
and the bottom inset. Similarly, the black dashed line shows the linear
increase.
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FIG. 7. The collapsed plot of scaled data of the concentration
of particles with α = 0.75 for a different number of particles for
ε = 0. The inset shows the raw data. The collapse is not good for
the exponentially decaying part, as the scaling theory applies to the
two power-law regions only. The average number of particles is also
considerably less than 1 in this exponentially decaying region.

fractals of particles with the same velocity are moving apart
from each other, and the distance increases almost linearly
with time. Indeed, this sudden increase of probability is not
observed in the distribution function Ps(l).

P (l), the general distribution function for interparticle
distances between two neighboring particles, where the neigh-
boring particles can have any velocity, is also computed (see
the main plot of Fig. 6). As a combined effect of Ps(l) and
Pd (l), P (l) ∼ l for small l and it also goes as l−3/2 for large l

(Fig. 6) before the exponential decay. This indicates that the
fractal structure is dominating at late times, right up to just
before the crossover time, when a small number of minority
particles is still left in the lattice. As an effect of Pd (l), the
sudden increase of probability for a large value of l is also
present in this general distribution function P (l).

The decay of c(t), the concentration of the total number of
particles, has a dependence on the initial number of particles
(see the inset of Fig. 7). After the crossover, when c(t,L) is
equal to cex(L,t), finite-size scaling analysis can be done using
the scaling form

c(t,L) ∼ L−αf (L/t), (23)

where f (x) → xα with α = 3/4 for x → ∞ and f (x) →
x−1/4 when x � 1. The raw data as well as the scaled data
using α = 3/4 are shown in Fig. 7.

The domain size for particles with the same velocity is
defined as the number of consecutive particles with the same
velocity (either +v or −v). Sd (t) is the average over all the
domains of particles with the same velocity at the time t . On
the other hand, lattice domain size is defined by the number
of lattice sites occupied by these domains of particles with the
same velocity and Sld (t) is the average over all these lattice
domains at the time t . Both of the average domain sizes Sd (t)
and Sld (t) are normalized by the size of the lattice. The average
value of the lattice domain size cannot go beyond 0.5 as the
entire lattice can be occupied by either the positive or the
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FIG. 8. The plot for the change of Sd (t), which is the average
domain size (normalized by the size of the lattice) for particles with
the same velocity with time t . The inset shows the change of the
lattice domain size Sld(t) (normalized by the size of the lattice) for
the particles with the same velocity with time t .

negative velocity particles (with 50% probability) at very late
time.

At some late time, but before the crossover, that is, in the
region where c(t) ∼ t−3/4, the average interparticle distance
increases as t3/4. Now Sld(t), the average lattice domain
size, increases linearly in time due to the ballistic nature
of the particles (see the inset of Fig. 8). Hence Sd (t), the
average domain size for particles with the same velocity,
increases with time as t/t3/4 = t1/4 in this region (Fig. 8).
After the crossover, there exists only one domain and hence
Sld(t) becomes constant. In this region after the crossover,
Sd (t) ∼ t−1/4 as the concentration of particles decreases as
t−1/4 (Fig. 8). We have also computed the average interparticle
distance between two neighboring particles with different
velocities (not shown), which should increase linearly with
time. This quantity increases with time with an effective
exponent 0.93 in our simulation, which is a little ambiguous
but agrees with the observation made in [6].

The persistence probability does not show any finite-size
dependence before the crossover, and it fits quite well to the
form (Fig. 9)

P (t) � a
log(t)

t
+ b

t
(24)

with a = 0.45 ± 0.01 and b = 1.27 ± 0.05, obtained by least-
squares fitting of the numerical data. Although the fit is
certainly quite good and the functional dependence remarkably
simple, we would like to mention that we have no rationale
at all for this behavior. After the crossover, the persistence
probability decays exponentially as the remaining ballistic
particles with the same velocity wipe out the persistence of
all the remaining sites.

C. Results for 0 < ε < 1/2

In this section, we will present the numerical results for the
cases in which the number of positive velocity and negative
velocity particles are not equal on average. For ε �= 0, as previ-
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FIG. 9. Decay of the persistence probability P (t) with time t

for different system sizes. The theoretical fitting curve is plotted
following Eq. (24), where the fitting parameters are a = 0.45 and
b = 1.27.

ously mentioned, there exist three different dynamical regimes
where the concentration decays with different exponent values.
However, due to the finiteness of the system, the numerics is
challenging because the regimes are not that well separated,
thus the crossover times are not very clean. This can be seen
in Fig. 10, where we plot the behavior of c(t).

To better analyze the behavior of the concentration, we have
computed the function φ(t) defined as

φ(t) = d

d[log(t)]
{log[

√
tc(t)]}. (25)

Thus, when c(t) ∼ t−3/4, φ(t) = −1/4 and so on. In particular,
when c(t) ≈ at−3/4 + bt−1/4, φ(t) changes from −1/4 to 1/4,
whereas when c(t) ≈ bt−1/4 + ct−1/2, φ(t) changes from 1/4
to 0. The inset of Fig. 10 shows the change of φ(t) with time t

for ε = 0.08.
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FIG. 10. The decay of c(t), the concentration for the total number
of particles, with time t is plotted in the main plot. The inset shows
the change of φ(t) with time t .
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FIG. 11. The decay of c(t) for different finite sizes, starting from
c(0) = 1. The decay of c(t) is size-independent for any ε �= 0. The
plots here are for ε = 0.1.

In this case cex(t), the concentration for the excess number
of particles, decays as t−1/4 initially and then as t−1/2 at late
times.

The concentration of the total number of particles is a
function of ε also, so we write it explicitly as c(L,ε,t). We now
turn to the scaling behavior of c(L,ε,t). As the first crossover
time is t1(ε) ∼ ε−2 [Eq. (21)], the dimensionless quantity
controlling the crossover between the first two dynamical
regimes will be ε2t . Similarly, the dimensionless quantity for
the crossover between the second and third regimes will be
ε4t , as the second crossover time is t2(ε) ∼ ε−4 [Eq. (22)].

Unlike the case of ε = 0, in this case we are considering
infinite systems, since finite-size effects would only be
significant when ε � 1. Hence the first scaling ansatz is that,
except for very long times,

c(L,ε,t) = c(ε,t) for all ε �= 0. (26)

That is, there will be no system size dependence of c(t) for
a constant ε �= 0 (for all ε), which is indeed borne out by
the simulations (Fig. 11), except for the long-time exponential
decay where this scaling ansatz does not hold.

Now we will discuss the scaling laws involving ε and t ,
which hold for |ε| � 1. The scaling function describing the
first two dynamical regimes can be written as

c(ε,t) ∼ ε2δf (ε2t) for ε � 1, (27)

where f (x) → x−δ with δ = 3/4 for x � 1 and f (x) → x−1/4

when x 	 1. The raw data as well as the scaled data using
δ = 3/4 are shown in Fig. 12. The collapse is good for the first
two regimes.

The scaling analysis for the second and third dynamical
regimes (where ε4t is the relevant dimensionless quantity) can
be carried out using the scaling form

c(ε,t) ∼ ε4ηg(ε4t) for all ε � 1, (28)

where g(x) → x−η with η = 1/2 for x → ∞ and g(x) →
x−1/4 when x � 1.

The behavior of c(ε,t) for ε2t 	 1 in Eq. (27) is the same
as that of Eq. (28) for ε4t � 1 [in both cases, one gets that
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FIG. 12. The collapsed plot of the scaled data of the concentration
of particles with δ = 0.75 for different ε �= 0. The inset shows the raw
data. The scaled data show a good collapse for the first two dynamical
regions where the exponent values are 3/4 and 1/4, respectively.

c(ε,t) ∼ εt−1/4], so both scaling laws are consistent with each
other.

The raw data as well as the scaled data using η = 1/2 are
shown in Fig. 13. The collapse is good for the second and third
dynamical regimes.

Sld(t), the average lattice domain size, does not increase
linearly in time, rather it increases faster than that (though it
does not appear to grow as a well-defined power of time t) and
then saturates. Sd (t), the average domain size for particles with
the same velocity, again increases with time initially and then
follows the concentration c(ε,t) at late times when minority
particles do not exist anymore.
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FIG. 13. The collapsed plot of the scaled data for the concentra-
tion of particles with η = 1/2 for different ε �= 0. The inset shows
the raw data. The scaled data show a good collapse for the second
and third dynamical regions where the exponent values are 1/4 and
1/2, respectively. Of course, data collapse does not occur for the
exponentially decaying part, as the scaling theory applies only to
the power-law regions. The average number of particles is again
considerably less than 1 in this exponentially decaying region.
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P (t), the persistence probability, decays exponentially for
all values of ε �= 0. This is due to the presence of more particles
with one velocity instead of the other; the majority particles
wipe out the persistence of all the sites very quickly.

V. CONCLUSION

To summarize, we have considered the model of annihilat-
ing particles moving ballistically with superimposed diffusion.
As shown in [5,6], the particle concentration was found to
decay as t−3/4, that is, faster than either the purely ballistic or
the purely diffusive case, both of which decay as t−1/2. This
result, however, fails once all particles are of the same species,
that is, either right- or left-going. If the initial condition has
an equal concentration of the two kinds of particles, there will
nevertheless remain a number N1/4 of particles of one velocity
after all the particles of opposite velocity are annihilated. This
follows from the fact, which we confirmed numerically, that the
number of excess particles decays as t−1/4. Since this number
starts out at

√
N , it decays as

√
Nt−1/4, which becomes equal

to t−3/4 when t ∼ N . From this, it immediately follows that
the number of particles remaining at this time scales as N1/4.

Thus the number of particles remaining after one kind of
particle has been eliminated goes to infinity as N does. It
therefore makes sense to ask the following: with what power
of t do the remaining particles decay? We have shown that
they decay with the exponent t−1/4, and we have provided a
rationale for this behavior in terms of Alemany’s result, namely
that annihilating particles that start out distributed on a fractal
of dimension df decay as t−df /2. Since it can be argued that the
excess particles are constrained to lie on a fractal of dimension
df = 1/2, the result readily follows.

Finally, we have also looked at the case in which the initial
concentrations of left- and right-going particles differ, their
initial values being given by 1/2 − ε and 1/2 + ε, respectively.
If ε � 1, we have shown that two crossovers arise: one
from the usual t−3/4 behavior to the t−1/4 behavior described
in the preceding paragraph. This crossover arises at a time
t(ε) ∼ ε−2. A second crossover to an ordinary t−1/2 decay,
characteristic of ordinary diffusion-limited annihilation in one
dimension, is observed at a crossover time t2(ε) ∼ ε−4. This
second crossover is not observed for ε = 0, since the number
of remaining particles for that regime turns out to tend to zero
as N → ∞.
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APPENDIX A: DIFFUSION CONSTANT

When all the particles are of the same velocity (say +v),
the only source of diffusion is the random update rule. So
whenever a particle is randomly chosen, it will move forward

a single lattice site and one Monte Carlo update will be over.
After N such updates, one Monte Carlo time step will be over
if there are N particles in the lattice.

We calculate the relative diffusion constant Deff between
two neighboring particles. Let P (l,n) be the probability that
the relative distance between two chosen neighboring particles
be l after the nth Monte Carlo update, where 0 < n < N . At
the (n + 1)th update, any one of the two particles can be chosen
with a probability 1/N , in which case the distance l will be
increased or decreased by one lattice site; or neither of these
particles will be chosen with a probability (1 − 2/N), in which
case the distance between the particles remains unchanged.
Thus we can write the following equation:

P (l,n + 1) = 1

N
[P (l − 1,n) + P (l + 1,n)]

+
(

1 − 2

N

)
P (l,n). (A1)

Taking the Fourier transform of (A1), we get

P̂ (ω,n + 1) =
(

1 − 2

N
+ 2

N
cos ω

)
P̂ (ω,n), (A2)

where P̂ (ω,n) is the Fourier transform of P (l,n).
We have to repeat this update N times to complete one

Monte Carlo time step. Initially, for n = 0,

P̂ (ω,n) = P̂ (ω,0) = exp(iω�),

where � is the initial distance between these two particles.
After N updates, Eq. (A2) becomes

P̂ (ω,N ) =
(

1 − 2

N
+ 2

N
cos ω

)N

P̂ (ω,0). (A3)

After t such time steps, Eq. (A3) becomes

P̂ (ω,t) =
(

1 − 2

N
+ 2

N
cos ω

)Nt

exp(iω�). (A4)

Doing a Taylor series expansion of cosine and exponential
functions in (A4),

P̂ (ω,t) =
(

1 − 1

N
ω2 + · · ·

)Nt(
1 + iω� − ω2�2

2
+ · · ·

)

= 1 + iω� − 1

2
(2t + �2)ω2 + · · · , (A5)

from which we get

〈l〉 = � and 〈l2〉 = 2t + �2,

which implies that

〈l2〉 − 〈l〉2 = 2Defft = 2t. (A6)

This in turn gives

Deff = 1. (A7)

APPENDIX B: DECAY OF CONCENTRATION STARTING
FROM THE INITIAL FRACTAL
DISTRIBUTION OF PARTICLES

Let F (x,t) be the probability at time t in which a random
walker, starting at x = 0, reaches site x for the first time. For
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any lattice with translational invariance, the Laplace transform
of F (x,t) will be given by F̃ (x,u) [13,14]. It can be written as

Lu{F (x,t)} = F̃ (x,u) = ξ̃ (u)−x,

with ξ̃ (u)−x = 1 + (u/D) +
√

2(u/D) + (u/D)2, (B1)

where D = Deff is the relative diffusion constant. If P̃ (v) is
the Laplace transform of the probability distribution function
P (x) for initial interparticle distances for two nearest particles,
then the number of particles n(t) at time t [normalized by the
initial number of particles n(0)] will be [10]

n(t) = L−1
u

{
u−1 1 − P̃ [v = ln ξ̃ (u/2)]

1 + P̃ [v = ln ξ̃ (u/2)]

}
. (B2)

If initially the particles are distributed on a fractal with fractal
dimension df (0 < df < 1), then we can write

P (x) = 1

ζ (λ)

∞∑
l=1

l−λδ(x − l), (B3)

where λ = df + 1 and hence 1 < λ < 2. The Laplace trans-
form of Eq. (B3) will be

P̃ (v) =
∫ ∞

0
e−xvP (x)dx

= 1

ζ (λ)

∞∑
l=1

l−λe−lv

= 1

ζ (λ)
�(e−v,λ,1), (B4)

where �(z,s,a) is defined in [17], Sec. 1.11. Thus we can
write, following Eq. (8) of the same section of [17].

P̃ (v) = 1

ζ (λ)

[
�(1 − λ)vλ−1 +

∞∑
k=0

ζ (λ − k)

k!
(−v)k

]

� 1 + �(1 − λ)

ζ (λ)
vλ−1 − ζ (λ − 1)

ζ (λ)
v + · · · . (B5)

Note that this function has no special name in [17]. It
is, however, related to functions denoted as polylogarithms,
treated, for example, in [18,19]. Now we have the elements to
evaluate n(t) given in (B2) [20]. First we write

v = ln ξ̃ (u/2) ≈ (u/D)1/2 − 3
8 (u/D)3/2 + · · · (B6)

and hence, to leading order, we have

vλ−1 = (u/D)(λ−1)/2[1 + O(u/D)]. (B7)

Then inserting P̃ (v) given by Eq. (B5), along with Eq. (B7),
in Eq. (B2), we get

n(t) = L−1
u

{
u−1 −�(1 − λ)(u/D)(λ−1)/2 + ζ (λ − 1)(u/D)1/2

2ζ (λ) + �(1 − λ)(u/D)(λ−1)/2 − ζ (λ − 1)(u/D)1/2

}
. (B8)

This implies

n(t) ≈ L−1
u

{
−�(1 − λ)

2ζ (λ)

u(λ−3)/2

D(λ−1)/2
+ �(1 − λ)2

4ζ (λ)2

uλ−2

Dλ−1
+ ζ (λ − 1)

2ζ (λ)

u−1/2

D1/2
+ O(D−λ/2uλ/2−1)

}
,

which in turn leads to

n(t) = a1τ
−(λ−1)/2 + a2τ

−(λ−1) + a3τ
−1/2 + O(τ−λ/2), (B9)

where τ = Dt and

a1 = − �(1 − λ)

2ζ (λ)�( 3−λ
2 )

, (B10a)

a2 = �(1 − λ)

4(1 − λ)ζ (λ)2
, (B10b)

a3 = ζ (λ − 1)

2ζ (λ)
√

π
. (B10c)
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