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Quantum thermal machine acting on a many-body quantum system:
Role of correlations in thermodynamic tasks
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We study the functioning of a three-level thermal machine when acting on a many-qubit system, the entire
system being placed in an electromagnetic field in a stationary out-of-thermal-equilibrium configuration. This
realistic setup stands between the two so-far-explored cases of single-qubit and macroscopic object targets,
providing information on the scaling with system size of purely quantum properties in thermodynamic contexts.
We show that, thanks to the presence of robust correlations among the qubits induced by the field, thermodynamic
tasks can be delivered by the machine both locally to each qubit and collectively to the many-qubit system: This
allows a task to be delivered also on systems much bigger than the machine size.
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I. INTRODUCTION

The study and the exploitation of out-of-equilibrium quan-
tum properties at micro- and nanoscales, and at the level of few
body systems, are becoming more and more important in pure
and applied research [1–17]. Among the topics recently at-
tracting a great deal of attention, a particular mention deserves
the so-called branch of quantum thermodynamics [18–21]. As
much as its classical counterpart, indeed, its consequences bear
great theoretical, experimental and technological importance.

A central topic of thermodynamics, the concept of the
thermal machine well represents this multidisciplinary spirit
by connecting profound theoretical ideas (such as the notions
of entropy and irreversibility) to direct applicative outcomes.
In the same framework, the fast-paced development of the
idea of quantum thermal machine [8,9,11,22–26] has recently
provided an ideal scenario to explore the possible practical
implications of purely quantum features [15,27–29] as, e.g.,
quantum coherence between single quantum emitters (hereby
referred to as atoms).

Among the possible models of thermal machines available
from classical contexts, remarkable importance in quantum
scenarios has been given to the so-called absorption (or
self-contained) machines [8,9,11,15,22,25]. These systems
can indeed deliver thermodynamic tasks without the need of
external work supplies, avoiding the problem of addressing
and controlling single quantum systems.

The prototype of absorption quantum thermal machine is
nowadays a few-level atom interacting with a target body,
on which the thermodynamic task (refrigeration, heating up,
work) has to be delivered. Two different limiting cases have
so far been explored: On the one hand, many have studied the
situation in which the target body is a macroscopic system
at a certain temperature [22,25,26,30], the task thus being a
stationary heat flux produced by the machine from or into
the target system. In this first case, despite being the setup
of applicative interest, the quantum features of machine and
machine-target interaction are suppressed and their role on
the task becomes mostly irrelevant [26]; the opposite limiting
case, also often studied, is the action of the machine on a single
quantum system, mostly in its simplest form represented as a
two-level atom (or qubit) [9,10,15,27]. Although simplified,

these models allow us to directly highlight the role of
quantum properties (quantum coherence, quantum discord,
entanglement) in the machine-target interaction and in the final
delivery of the task. A gap thus persists in the understanding
of quantum thermal machines. In particular, the questions of
how the quantum properties and their role in thermodynamic
tasks scale with the size of the target system, and whether they
can represent a resource the machine can use to act on bigger
and bigger (quantum) systems, remain unaddressed.

This paper is a first step in filling this gap. Here we study
the thermodynamics of a system composed of a three-level
quantum thermal machine resonantly coupled to nq identical
qubits. This composite atomic system is embedded in an
out-of-thermal-equilibrium (OTE) electromagnetic field pro-
duced by macroscopic objects kept at different temperatures,
analogously to the setup studied in Ref. [15] in the case of
nq = 1. Such a field naturally couples resonant transitions,
allowing both the interaction of the machine with each of the
qubits and the establishment of qubit-qubit correlations in the
target system. Thus, classical and quantum correlations are
built at stationarity and their interplay fundamentally affects
the thermodynamic properties of the qubits, which are studied
both for an exemplary case at fixed qubits number and as a
function of nq .

This paper is structured as follows: In Sec. II we introduce
the setup of both field and atoms and describe their inter-
action and the consequent atomic dynamics and stationarity.
The thermodynamics of the machine-target interaction is in
particular analyzed in Sec. II B. In Sec. III, we investigate, as
an exemplary case, the thermodynamics of the system when
the target body is composed of four qubits. Section IV is
dedicated to the scaling with the number of qubits of some
interesting quantities introduced in Secs. II B and III. Final
remarks and conclusions are drawn in Sec. V. Finally, technical
details about the atomic master equation and all the correlation
quantifiers employed in the text can be found, respectively, in
Appendixes A and B.

II. PHYSICAL SYSTEM

The system we consider here, as depicted in Fig. 1,
consists of a multipartite quantum system embedded in an
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FIG. 1. The physical setup consists of an out-of-thermal-
equilibrium electromagnetic field produced by a sapphire slab of
thickness δ and temperature TS , embedded in a thermal blackbody
radiation at temperature TW �= TS . Such a field plays the role of
Markovian environment for a system of quantum emitters (atoms),
all placed at the same distance z from the slab surface. Four of these
atoms are qubits, placed in a regular disposition along a circle of
radius r , the center of which is occupied by a three-level atom. The
qubit system is the target body, on which the three-level machine M
delivers thermodynamic tasks. For each plot of this paper, the radius
is fixed at r = 0.833 μm, unless otherwise specified.

out-of-thermal-equilibrium (OTE) electromagnetic field. This
field is produced by a macroscopic object, i.e., a sapphire
slab of thickness δ = 0.05 μm and of resonance frequency
ωS = 0.81 × 1014 rad s−1 [31], kept at fixed temperature TS

and placed in a region of space where a thermal blackbody
radiation exists, emitted by some far-away walls at fixed
temperature TW �= TS .

At stationarity, the nonthermal electromagnetic field filling
the space between slab and walls can be precisely characterized
in terms of its correlation functions [32–34]. For a detailed
description of its properties, we refer the interested reader to
Refs. [12,13,32–34]. In this region of space, at a distance
z from the slab surface, a multipartite quantum system is
placed, consisting of nq identical qubits (the target body
B) of frequency ωq = 0.1 × ωS , placed on a circle at the
center of which a three-level atom (the machine M) lies.
The circle is parallel to the slab surface, so z is the same
for every atom. Finally, the radius of the circle is referred to
as r .

M has three allowed transitions between its three levels
|0〉, |1〉, and |2〉. The transition between |1〉 and |2〉, labeled
as 2, has the same frequency of the qubits (ω2 = ωq),
whereas the other two satisfy ω1 �= ω2 and ω3 = ω1 + ω2.
Besides, ω3 = ωS such that the corresponding transition
|0〉 ↔ |2〉 is much more affected by the slab than the other
two [13]. The Hamiltonian of the total field+atoms system then
reads

Htot = Hemitters + Hfield + HI , (1)

in terms of the free emitters and field Hamiltonians Hemitters

and Hfield and the atoms-field interaction Hamiltonian HI .
When expressed under the dipole-approximation limit [35],
HI = −∑

i,n d(n)
i · E(Rn). In the absence of permanent atomic

dipoles, d(n)
i is the field-induced dipole moment of the

i-th transition of the atom n which is located at Rn. The
electromagnetic field at this position is E(Rn).

A. The master equation

In the weak atom-field coupling limit and under the rotating
wave approximation, a Markovian master equation [36] for the
atomic density matrix ρ can be given [12,13,37,38] under the
form

dρ

dt
= − i

�
[Hsys,ρ] + DB(ρ) + DM (ρ) + Dnl(ρ), (2)

where Hsys = Hemitters + H� represents an effective Hamil-
tonian of the atomic system, in which the dipole-dipole
interaction term

H� =
nq∑

n=1

��nM(σ †
nκ2 + σnκ

†
2) +

nq∑
n�=m

��nmσ †
nσm (3)

has been added to the free atomic Hamiltonian, where σn is
the lowering operator of the n-th qubit and κt is the lowering
operator corresponding to the t-th transition of the machine M.
This interaction couples only resonant transitions in the atomic
system and allows qubits and machine to coherently exchange
excitations. It is worth stressing at this point that we assume
that the physics of our system is robust with respect to a small
detuning, as it is the case in many analogous studies [39].

It is important to stress here that the dipole-dipole in-
teraction amplitudes �nM and �nm crucially depend, for
each pair of atoms, on the mutual orientation of the two
dipoles. In particular, consider a generic pair (n,m) of atoms
(which, possibly, can also include the machine) in a plane
parallel to the slab, and let the x axis be the direction of
the line joining the two atoms. The resonant dipole-dipole
interaction between these two atoms has then only components
x-x, y-y, z-z, and x-z. All these components have both a
contribution from the free field (in the absence of the slab) and
a reflected contribution due to the scattering properties of the
slab (see Eq. (A5) and [37,38] for all the technical details),
with the only exception of the x-z component, whose only
contribution stems from the reflected field. As a consequence,
x-z interactions are weaker than the other components. It is
worth stressing that the reference frame used here changes
each time a new pair is chosen and must then be carefully set
before starting to calculate the coefficients �.

The terms DB(ρ) = ∑nq

n=1 D
(n)
B (ρ), DM (ρ) =∑3

t=1 D
(t)
M (ρ), and Dnl(ρ) = ∑nq

n=1 D
(nM)
nl (ρ) +∑nq

n�=m D
(nm)
nl (ρ) describe dissipative effects in the atomic

dynamics, induced by the interaction with the OTE field. They
are

D
(n)
B (ρ) = �+

n (ωq)
(
σnρσ †

n − 1
2 {σ †

nσn,ρ})

+�−
n (ωq)

(
σ †

nρσn − 1
2 {σnσ

†
n ,ρ}), (4)

representing the single qubit dissipative energy exchange with
the field,

D
(t)
M (ρ) = �+

M (ωt )
(
κtρκ

†
t − 1

2 {κ†
t κt ,ρ})

+�−
M (ωt )

(
κ
†
t ρκt − 1

2 {κtκ
†
t ,ρ}), (5)
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being the machine-field dissipative energy exchange through
the t-th machine transition and, finally,

D
(nM)
nl (ρ) = �+

nM(ωq)
(
κ2ρσ †

n − 1
2 {σ †

nκ2,ρ})

+�−
nM(ωq)

(
κ
†
2ρσn − 1

2 {σnκ
†
2,ρ}) + H.c., (6)

D
(nm)
nl (ρ) = �+

nm(ωq)
(
σmρσ †

n − 1
2 {σ †

nσm,ρ})

+�−
nm(ωq)

(
σ †

mρσn − 1
2 {σnσ

†
m,ρ}) (7)

are nonlocal dissipative terms describing energy exchanges
between the field and any two-atom pair in the open system.
In these terms, the two atoms behave collectively and emit or
absorb photons as a single entity. This can be shown by noting
that the heat flux in or out each two-atom pair is proportional
to the coherence in the reduced two-atom system, indicating
that such emission and absorption processes are due to the
correlations between the atoms. Specifically, as we will show
later, the change in internal energy of each of the two atoms in
a pair, due to such nonlocal dissipation, is exactly the same.

Note that �±
nm and �±

nM can be decomposed in contributions
related to dipole components along the line joining the two
atoms, perpendicular to it on the xy plane and perpendicular
to the slab in exactly the same way as done for �. The only
nonzero contributions are also in this case x-x, y-y, z-z, and
x-z. This is a manifestation of the fact that nonlocal dissipation
and dipole-dipole coupling are related, respectively, to the
imaginary and to the real part of the electromagnetic field
Green function at two different points in space.

All the relaxation rates �±
n , �±

M , �±
nM, and �±

nm and the
dipole-dipole interaction strength � depend on the frequency
of the associated transition, on the ground-excited states matrix
element d of the dipole operator of the transition, on the two
externally fixed temperatures TS and TW , and on the material
properties of the slab. The detailed expressions for all these
parameters can be found in Ref. [38] and are given in the
Appendix A.

B. Quantum thermodynamics of the system

In what follows, we will employ different quantities
describing the thermodynamics of the field+atoms system. In
particular, two classes of parameters will stand out for their
importance in our study: temperatures and heat fluxes. The
definitions and classification we will use throughout this paper
strictly follow the ones given in Ref. [15].

The definition of heat fluxes in Markovian frameworks goes
through the first law for quantum systems [36,40]. Its form
is easily given as the time variation of the mean value of
their Hamiltonian, which represents in quantum contexts the
internal energy of a system. The same fluxes play a major role
in the more delicate generalization of the second law, discussed
in Appendix C.

Given the fact that the unitary term in Eq. (2) commutes
with the Hamiltonian of each atom, and thus also with the
total Hamiltonian of the atomic system, and there being
by construction no external work in our system (such that
∂H/∂t = 0), the only possibility for the change in internal
energy U = 〈H 〉 of an atom or a collection of atoms is given
by heat fluxes. Note that, seen by a subset of atoms, also

the (global) unitary term − i
�

[Hsys,ρ] can produce a change
in the internal energy and in the entropy of the subset. Each
dissipative process D produces a change in U given by

U̇D = tr[HD(ρ)] = Q̇D, (8)

ρ being the state of the atomic system at the time instant of
interest. Equation (8) is the definition of the heat flux generated
in the system with Hamiltonian H due to the dissipative
process D.

Temperature, on the other hand, is a tricky quantity to define
in systems far from their thermodynamic limit. The best one
can do is to recur to some analogy with known properties of
temperature in macroscopic classical systems. The property
we turn to for the characterization of our system is that a
temperature gradient between two bodies imposes a direction
to the heat flux between them.

The (effective) temperature of the OTE field is well defined
in terms of the two real temperatures TW and TS and the
slab material. The temperature of a thermal field can be
inferred from the photon emission and absorption rates of
an atomic transition interacting with it, independently on the
transition frequency. In the case of the OTE field considered
here, however, different transitions naturally “feel” different
field temperatures (or, in other words, the ratio of emission
to absorption rates is not simply an exponential function
of the transition frequency). This effective environmental
temperature felt by the i-th atomic transition of frequency
ωi can be defined as

Ti = �ωi

kB ln[�+(ωi)/�−(ωi)]
, (9)

where the �±(ωi) are the single transition dissipative rates
involved in the master equation (2), whose explicit expression
can be found in Eqs. (A1) and (A2) in Appendix A. This
environmental temperature describes the way the OTE field
exchanges heat with any two-level object having a transition
frequency ωi .

Having now at disposal both the expression of the field
temperature and of the heat flux between the field and an atomic
transition, one can identify an equivalent parameter describing
the way the transition exchanges heat with the field. Indeed,
employing Eq. (8) to calculate the local heat flux produced by
the local dissipative process in either Eq. (4) (for each qubit)
or Eq. (5) (for each machine transition), one obtains

Q̇i = Xi(e
�ωi
kB θi − e

�ωi
kB Ti ), (10)

where Xi > 0 and

θi = �ωi

kB ln
(
p

g

i /p
e
i

) , (11)

having introduced the ground (excited) state of the i-th
transition p

g

i (pe
i ). As one easily sees, θi (hereby referred

to as the population temperature) plays here the role of
temperature for atomic transition, as now Ti and θi characterize
the heat exchanged by the transition with the external field
in a symmetric way. Moreover, the heat now matches the
requirement to flow from the hotter into the colder object.

Aside from the heat exchanged locally between each atom
and the field, two other fluxes affect the internal energy of
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atoms, stemming respectively from the atom-atom dipolar
coupling � in Eq. (3) (resonant heat flux Q̇r ) and from the
collective nonlocal dissipation in Eqs. (6) and (7) (nonlocal
heat flux Q̇d ). Both of these fluxes couple only resonant
atomic transitions. Whereas the first flux does not change the
total energy of the atomic system, representing a hopping of
excitations from one atom into another one, the nonlocal flux
Q̇d implies a net flux going in and out of the atomic system
and being sustained by the environment: Due to such nonlocal
dissipation terms, the presence of an atom triggers collective
emission or absorption of photons with any other atom being in
resonance with it. Seen from the point of view of the internal
energy of each atom in the pair, these phenomena produce
heat fluxes with the environment, caused by the presence of a
second atom.

Straightforward specialization of the definition (8) for either
dipole-dipole coupling or collective dissipation for a pair (n,m)
of atoms (possibly including the machine M) gives

Q̇r (m → n) = 2�ωμ�nmIm[cnm], (12)

Q̇d (n,m) = −�ωμRe[cnm(�+
nm − (�−

nm)∗)], (13)

where cnm is the coherence in the reduced two-atom state
ρnm = trp �=n,m(ρ), when expressed in the ordered basis
{|gngm〉,|gnem〉,|engm〉,|enem〉}, |gn〉 (|en〉) being the ground
(excited) state of the transition of atom n. Note that Q̇r (m →
n) is the flux flowing from m to n, meaning that Q̇r (m → n) >

0 represents energy going out of atom m and into atom n. On
the other hand, Q̇d (n,m) has the same sign for both atoms:
Q̇d (n,m) > 0 means that both n and m are absorbing photons
from the field.

Through these two heat fluxes, atoms can exchange energy
and, in particular, the machine can deliver thermodynamic
tasks on the target qubit system. As comes clear from Eqs. (12)
and (13), the thermodynamics of the machine functioning is
based on the presence of quantum coherence between the
machine and its target body.

These energy fluxes will have the effect of changing the
qubit population temperatures with respect to their correspond-
ing environmental temperatures: Equations (9) and (11) are
the main quantities we will study for our system. In particular,
being Ti the temperature at which each qubit would thermalize
in absence of the rest of the atomic system, we will define a
thermodynamic task as a stationary modification of the qubit
temperature θi with respect to the corresponding value of Ti .

Previous works on this model [15] have shown that the
machine is able to deliver different tasks when interacting
with a single qubit. In particular, under certain conditions,
qubit population inversion can be achieved. For this reason,
throughout this paper, for graphical and technical purposes,
we will work with the parameter −β = −θ−1, which is an
increasing function of θ and avoids the divergent behavior
shown by the temperature in correspondence to a point of
population inversion.

III. FOUR-QUBIT SYMMETRIC CONFIGURATION

As an exemplary case, we study the symmetric configu-
ration represented in Fig. 2, where four qubits are regularly

FIG. 2. Geometric configuration of the atomic sytem. The qubits
are regularly distributed along a circle centered on the machine M .
Every atom has the same z. The dipole of each qubit points toward
the machine, whereas the machine’s one points toward qubit 1. The
interaction between two atoms depends on the projection of their
dipoles along the axis joining them. For example, the qubit 2 does
not interact with M but interacts with 1.

distributed on a circle centered on the machine and parallel to
the slab.

This means that every atom has the same z. In this case, the
dipole of each qubit is pointing toward the machine (labeled
as M) whose dipole points toward one of the qubits which we
label as 1. The rest of the qubits is indexed from 2 to 4 in
the counterclockwise direction. We begin the analysis of this
system with Fig. 3 where the inverse of both environmental
and population temperatures of the resonant transition of the
machine, as well as the inverse of the population temperature
of each qubit are plotted versus z.

Since every dipole is parallel to the slab, the environmental
temperature is the same for every qubit and also for the
resonant transition of the machine. For small values of z,

FIG. 3. Left vertical scale: −βM (solide black line), −1/TM of
the resonant transition of the machine (dot-dashed green line), −β1 =
−β3 (short-dashed blue line), and −β2 = −β4 (long-dashed red line)
versus the slab-atom distance z for the configuration of Fig. 2. Right
vertical scale: Temperatures in correspondence with the left scale,
externally fixed temperatures TW = 300 K and TS = 900 K (gray
dot-dashed lines). The equalities −β1 = −β3 and −β2 = −β4 are
due to the symmetry of the system. Panels (a) and (b) show the
extremum of heating (a) and cooling (b). Notice that in the heating
region, the population temperatures can reach negative values (−β

positive), meaning that the qubits undergo population inversion.
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the environmental electromagnetic field is mainly affected
by the contribution of the slab. In this situation TM in then
extremely close to TS . On the contrary, for very large z, the
contribution of the walls to the environmental electromagnetic
field is dominant, thus TM gets close to TW . For intermediate
values of z, the environmental temperature as defined through
the transition rates in Eq. (9), has intermediate values in
[TW ,TS]. These rates depend on several parameters such as
z, TS , TW , and the slab dielectric properties and its thickness
(see Appendix A).

Due to the OTE configuration, the environmental tempera-
tures of the machine can differ from their population ones. In
particular, for its resonant transition one has TM �= θM . This
is due to the fact that each transition of M feels a different
environmental temperature, which in turn depends on z. Thus a
change in z modifies the populations distribution of M and, as a
consequence, tunes θM (for more details see Refs. [12,13,15]).
Note that, unlike TM , θM reaches higher (lower) temperatures
than the highest (lowest) temperature externally fixed (TW

and TS). Notably, θM can also be brought to negative values,
meaning that the resonant transition of M is in population
inversion.

Similarly to Ref. [15], where the machine is acting on
a single qubit, M delivers thermodynamic tasks on qubits 1
and 3. These qubits are indeed the only ones interacting both
with their local environment and with the resonant transition
of M. As such, they reach a steady temperature which is in
between TM and θM . In particular, due to the strong coupling
with the machine [�M1(M3) � �±

1(3)], θ1(3) will be much closer
to θM than to TM . Remarkably, also in this configuration M
can perform strong heating or cooling: θ1(3) can indeed be
brought to values outside the range [TW ,TS] and, in particular,
to negative values (population inversion). These interactions
are notably due to the fact that the dipoles of M, qubit 1
and qubit 3, are collinear. However, the dipoles of 2 and 4
are orthogonal to the one of the machine, therefore M is not
coupled to them. Yet, as one can see in Fig. 3, qubits 2 and 4
undergo the same thermodynamic tasks as 1 and 3.

Indeed, even though there is no x-x or y-y interaction for
the pairs {M,2} and {M,4}, this is not the case for {1,2} ({1,4})
and {3,2} ({3,4}), thus inducing nonzero interactions between
all the qubits. Therefore, similarly to the task undergone by 1
(3), the population temperature of qubit 2 (4) reaches a steady
temperature θ2(4) ∈ [TM,θ1]. In other words, qubits 1 and 3
relay the tasks delivered on them by M to qubits 2 and 4,
despite these latter ones have no direct interaction with the
machine.

As just discussed, the machine can heat up or cool down
qubits that are not necessarily coupled to it thanks to qubit-
qubit interactions. A way of understanding how subparts of a
quantum system interact with each other is to look into their
correlations.

First, in Fig. 4(a) we consider the bipartite mutual infor-
mation MI [41,42] (Appendix B 1). MI quantifies the total
correlations between two subparts of a system. To bring out
the essential role of qubits 1 and 3 in the thermodynamic tasks
undergone by 2, we plot the mutual information along the
bipartition (2,{1,3}) versus z [solid black line of Fig. 4(a)].
As one can see, MI is zero if and only if no task is achieved
(i.e., when θ2 = T2), whereas the changes of −β2 correspond

FIG. 4. [Panel (a)] Left vertical scale: Mutual information MI
(solid black line) and geometric quantum discord DG (short-dashed
blue line) of the bipartition (2,{1,3}) in the qubits system versus
z (slab-atoms distance). [Panel (b)] Left vertical scale: Tripartite
correlations for the tripartitions (1,2,4) (solid black line) and (M,1,3)
(blue short-dashed line) versus z. The right vertical scale of both
panels shows the values of inverse of the population temperature
−β2 of qubit 2 (long-dashed red line) and the inverse of the atomic
environmental temperature −1/TM (dot-dashed green line).

to the ones of MI(2:{1,3}). In particular, the two local maxima
of MI(2:{1,3}) are reached in correspondence to the peak in
refrigeration and population inversion induced by M.

The bipartite correlations quantified by MI make no
distinction between classical and quantum ones. One might
wonder whether the correlations MI(2:{1,3}) are of classical
or quantum nature. To answer this question, we employ the
quantity known as geometrical quantum discord DG [43,44]
with the expression given in Ref. [45], which quantifies
purely quantum correlations in bipartite systems. In particular,
DG measures the distance in the state space between the
bipartite state under investigation and the closest classical state
(Appendix B 2). From Fig. 4(a), it is clear that DG(2,{1,3})
is almost constantly zero, thus implying that the correlations
between 2 and {1,3} are mostly of classical nature. Note,
however, that the correlations between the machine and
qubits 1 and 3 (not plotted) show a non-negligible quantum
contribution [15].

Another quantifier supplying an important piece of infor-
mation about correlations in this many-body quantum system
is the tripartite mutual information τ [46,47] (Appendix B 3). It
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measures the total correlations in a tripartite system that cannot
be expressed as a combination of bipartite correlations in any
of its subsystems. In other words, τ characterizes the total
genuinely tripartite correlations. Figure 4(b) shows τ for two
of the subsystems mainly involved in the two-step delivery
of thermodynamic task previously described: the subsystem
{M,1,3}, where the task is exerted by the machine on the
qubits system, and the subsystem {1,2,4}, where such an effect
is passed on by qubit 1 to 2 and 4.

One notices two interesting features. First, −β2 reaches
its maximum at the same z as τ (1,2,4), showing how the
steady temperature distribution is ultimately due to qubit-qubit
correlations. Second, it shows that the two stages of the
task (M → {1,3} and {1,3} → {2,4}) imply a comparable
amount of tripartite correlations: The maximum of τ (M,1,3)
is indeed around twice as high as τ (1,2,4). Given the fact
that, due to symmetry, τ (1,2,4) = τ (3,2,4), one concludes that
τ (M,1,3) 
 τ (1,2,4) + τ (3,2,4), which allows an optimal
distribution of the task among all the qubits.

Until now, we have analyzed local temperatures of each
qubit in the system. However, for several applications a
collective many-qubit thermal state could be needed. Strictly
speaking, due to the presence of qubit-qubit correlations, the
collective qubit state ρq cannot be in the Gibbs form. A
legitimate question is thus: How distinguishable is ρq from
a collective thermal state ρth(T ) at temperature T of the qubit
system? To answer this, we employ the quantity known as
trace distance Dt [48] (Appendix B 4), which tells us how
the outcome of a measurement on ρq statistically differs from
the one of same measurement on ρth(T ). The temperature
minimizing such a distance is thus what one can define as
collective qubit temperature TC .

Figure 5 shows Dt (TC) = Dt (ρq,ρth(TC)) and the quantity
−1/TC . Remarkably, the behavior of the temperature of the
thermal state is very similar to the one of the population tem-
perature of a single qubit. In particular, also TC can go beyond

FIG. 5. Left vertical scale: Trace distance Dt (TC) (solid black
line) between the qubits state ρq and the closest thermal state ρth(TC)
versus z. Right vertical scale: Inverse of the collective temperature
of the qubits state −1/TC (red long-dashed line). On this plot, we
have computed Dt (TC), which is the trace distance between ρq and
ρth(T ) after minimization over T for each value of z. The temperature
minimizing this trace distance is TC .

the interval [TW ,TS] and reach negative values. The trace dis-
tance (i.e., the maximal distinguishing probability) has small
values, its maximum being of 0.65% reached when −1/TC is
maximum. Therefore the collective state of the qubits is almost
undistinguishable from ρth(TC). This means that M delivers
thermodynamic tasks not only on the qubits individually but
also on the collective state of the qubits system as a whole. The
tasks performed by the machine on this global state correspond
quite strictly to the ones delivered on single qubits.

A. Scaling with temperature

The functioning of the machine is based on the fact that the
system is in an OTE configuration, namely the temperatures of
the slab and of the walls differ (TS �= TW ). Besides, one of the
main features of the machine is its aptitude to perform strong
thermodynamic tasks on qubits, i.e., to bring their population
temperatures outside the range defined by TS and TW . Note that
the atoms-slab distance z and the two external temperatures TS

and TW are the only parameters on which one can easily exert
a detailed control. It is then natural to wonder what happens
to the ability of the machine to heat up or cool down the
many-qubit system if one changes the values of TS and TW

rather than z.
To perform this investigation, let us now consider the same

configuration of Fig. 2, with an atoms-slab distance fixed at
z = 2.72 μm. This distance corresponds to the one for which
the maximum values of −βM and −β2 are reached (see Fig. 3),
i.e., when the action of the machine is strongest. Let us now
change the external temperatures through the parameter ε ∈
[0,1] as TW (ε) = εTW and TS(ε) = εTS . Figure 6 shows the
behavior of population temperature of both M and qubit 2
(through −βM and −β2) as ε is tuned.

As shown before, thanks to their highly symmetric config-
uration, all the qubits tend to distribute the task delivered on
them and to equilibrate their population temperatures, such
that all their θ are almost the same. Thus, the behavior of the
temperature of qubit 2 we are studying is well representative of
the behavior of the rest of the qubits. Figure 6 clearly illustrates
that, in a large portion of values of ε (approximately in the
range [0.6,1], i.e., 180 K � TW � 300 K and 540 K � TS �
900 K) the thermodynamics of the qubits-machine system
is almost unaffected, highlighting how robust thermal tasks
are against a change of TW and TS . For smaller values of
ε, however, −βM and −β2 start to decouple. This effect is
most clearly seen in the small ε regime around ε 
 0.05
(TW 
 15 K, TS 
 45 K), where the difference between −βM

and −β2 becomes maximal.
This modification of qubits-machine coupling can be

interpreted in terms of tripartite correlations in the atomic
system. As a matter of fact, as we already pointed out in the
previous section, in order for the two-step thermodynamic
task to be effective on all qubits, a balance is needed between
correlations in the subsystem {M,1,3} and in the subsystems
{1,2,4} and {3,2,4}. This is the case for the large ε interval
[0.6,1], where the curves of τ (M,1,3) and τ (1,2,4) are almost
superimposed. However, for ε < 0.6, these two curves are no
longer similar and, in particular, for small ε the qubit-qubit-
qubit correlations are much stronger than the M-qubit-qubit
ones. This means that one of the two steps of the task cannot
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FIG. 6. Left vertical scale: Tripartite correlations for tripartitions
(M,1,3) (solid blue line) and (1,2,4) (black dashed line) versus ε.
Right vertical scale: Inverse of the population temperature of the
resonant transition of the machine −βM (red long-dashed line) and
inverse −β2 of the population temperature of qubit 2 (green double-
dot-dashed line). The curve −β2 is plotted as a representative of the
individual population temperatures of the qubits, their behavior being
the same. The parameter ε tunes the externally fixed temperatures as
TS(ε) = εTS and TW (ε) = εTW , such that TS(1) = 900 K and TW (1) =
300 K. All the quantities of this plot have been calculated at z =
2.72 μm. Note that, at ε = 1, the configuration is exactly the same as
Fig. 3 at z = 2.72 μm, at which the machine is heating up the qubits
the most effectively (population inversion).

be accomplished anymore: The machine is less and less able to
affect the qubits state due to the very strong correlations in it.
A strong signature of this effect is the fact that the difference
τ (1,2,4) − τ (M,1,3) is maximal exactly when −βM and −β2

differ the most, as shown in the inset of Fig. 6. Moreover, in
correspondence with this point, no tripartite correlations exist
involving the machine [τ (M,1,3) = 0], suggesting that qubits
and machine are fully decoupled for low-enough temperatures.
Notice that the existence of strong entanglement has been
predicted in symmetric qubits configurations in exactly this
regime of temperatures [49]. Finally, as thermal equilibrium
approaches [TW (ε) = TS(ε), i.e., when ε = 0], all the atomic
correlations vanish and all the population temperatures (both
of machine and of qubits) collapse on the environmental ones.

B. Scaling with radius

The previous subsection showed the importance of
machine-qubit and qubit-qubit interactions in the delivery
of thermodynamic tasks in our system. It is now natural to
investigate the dependence of the strength of these interactions
between two atoms with respect to the distance separating
them. In this subsection, we consider this dependence through
the modifications of population temperatures when the radius
of the circle along which the qubits are placed changes.

Figure 7 reports the changes in population temperatures
−βM , −β1, and −β2 for fixed z = 2.72 μm, when the radius
is changed from the value 0.833 μm to the value 500 μm.

FIG. 7. Left vertical scale: Population temperature of the resonant
transition of the machine −βM (solid black line), and population
temperatures of qubit 1 (−β1, blue dotted line) and qubit 2 (−β2,
red long-dashed line) versus the radius of the circle r . Right vertical
scale: Temperature in correspondence to the left scale. Inset: Dipole-
dipole interaction amplitude between the machine and qubit 1: �M1

(green dashed-dotted line) versus r . All the quantities of this plot
have been computed at z = 2.72 μm, such that at r = 0.833 μm, the
configuration is precisely the same as Fig. 3 at z = 2.72 μm.

The external temperatures are here again fixed at TW = 300 K
and TS = 900 K. The first and most important feature worth
stressing here is the fact that, for a remarkably large range
of r , all the temperatures stay practically constant. Indeed, the
curves show a plateau up to r as large as 30 μm. In such a range,
all the thermodynamics we have previously described stays
unchanged. As such, our previous choice of r = 0.833 μm is
not a limitation, as the same results would have been obtained
with any other r in [0.833,30] μm. Therefore, the functioning
of the machine is extremely robust against any uncertainty on
the machine-qubits distance.

After such a plateau, a very rapid drop of qubits tem-
peratures is witnessed, together with a slight increase of
−βM . This marks the transition from the strong to the weak
machine-qubit coupling regime. The resonant transition of
the machine goes indeed to values very close to the one it
would have in the absence of qubits; the same effect can
be seen in the qubits temperatures, since they rapidly reach
the value of the corresponding environmental temperature, to
which they would thermalize in the absence of the machine and
which corresponds to the values of the temperatures minimum
around r = 102 μm. Finally, some temperature oscillations
are seen for larger r . These three regimes can be readily
explained through the r behavior of the machine-qubit resonant
coupling �M1, shown in the inset of Fig. 7. As discussed in
the Appendix A [see Eq. (A5)], such an interaction has two
contributions, one due to the presence of the slab and one
induced by the zero-temperature correlations of the field in
the absence of matter. This latter is usually dominant, and an
analytical expression can be given to it [38]. This term has
two clear limiting behaviors for small and for large atomic
separation: When the two atoms are very close (with respect
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to c/ωq), the interaction has a 1/r dependence. On the other
hand, for r � c/ωq , this interaction depends on r as a sum of
sin(r) and cos(r) terms, with a decreasing amplitude.

The plateau of Fig. 7 is thus a consequence of the rapid
growth of �M1 with decreasing r: After a certain threshold,
when �M1 becomes much greater than any other rates involved
in the master equation (2), a saturation effect occurs and all the
temperatures become independent of r . On the other hand, for
r ∼ c/ωq = 37 μm, the transition between these two regimes
happen; �M1 rapidly decreases, bringing the temperatures
with it; and machine and qubits become almost decoupled.
Finally, the oscillatory regime of �M1 produces the residual
oscillations of −βM , −β1, and −β2.

This analysis provides also a way to generalize our results to
different atomic frequencies: One can be sure that the qubits-
machine distance is optimal for thermodynamic tasks as long
as it is smaller than the critical value c/ω.

C. Gaussian noise

Until now we have analyzed the changes induced in the
physics of the atoms by parameters on which an external
control is easily achievable. A natural problem could, however,
arise if our results were not robust against parameters much
harder to control, such as the relative positions of atoms. In
preparing realistic systems, indeed, it is not trivial to precisely
fix the position of each single constituent. In this subsection,
we investigate the robustness of our results against such
uncertainty.

To simulate such an uncertainty, we introduce a Gaussian
noise on the position of each atom, thus also including the
machine. In order to allow for a larger variation of the atomic
positions, we use here a larger radius than before, r = 10 μm,
which is, however, still fully in the plateau zone of Fig. 7.
The position of each atom is randomly chosen according to a
two-dimensional Gaussian distribution, centered on the regular
atomic position in Fig. 2, and with standard deviation on both
dimensions fixed at σ = r/10 = 1 μm. Each time the position
of a qubit is randomly fixed, its dipole orientation is chosen
such that all the dipoles always point toward the machine. The
dipole of the resonant transition of the machine, on the other
hand, is always kept fixed in the same direction used in the
deterministic cases previously studied.

For each value of z previously explored we have simulated
1000 random configurations and evaluated, for each of them,
all the thermodynamic parameters of interest. We show
in Fig. 8 the averaged temperatures of each qubit and of
the resonant machine transition. The z behavior of all the
temperatures closely resembles the one shown previously for
deterministic positions (see Fig. 3), but the maximum of −β

for each atom is slightly reduced. This is due to the fact that the
atomic dipole-dipole coupling is statistically reduced due to
the randomness in the relative dipoles orientations stemming
from the stochasticity of the atomic positions.

Despite this effect, one sees again that the thermodynamics
of the system is very robust also against such a relatively
intense random noise: All the qubits still undergo the same
thermodynamic tasks as before, in correspondence to the same
atoms-slab distances.

FIG. 8. Same quantities and same parameters as Fig. 3, except
for the radius which has been set here to r = 10 μm. Note that the
difference of radius does not change anything with respect to Fig. 3
(see Fig. 7). These curves have been obtained after averaging over
1000 realizations. For each realization, the position of each atom
has been chosen randomly according to a Gaussian distribution of
standard deviation σ = 1 μm, on the two dimensions of the plane
containing the atomic system. The dipole of each qubit points toward
the machine. The dipole of M points along the direction joining M

and the regular position of qubit 1 (similarly to Fig. 2).

IV. SCALING WITH NUMBER OF QUBITS

Finally, in this section we study the scaling of our results
with the number of qubits nq , always distributing them
regularly along a circle of radius r = 0.833 μm centered on
M. We have fixed nq = 4 in all the previous sections as it
represents a particularly interesting situation of a two-step
task, where the role of correlations is clearer. However, as
one sees in Fig. 9, similar thermodynamic effects are achieved
also with a different number of qubits. Fig. 9(a) shows the

FIG. 9. [In both panels] Left vertical scale: Inverse of the
population temperatures of each atom versus the number of qubits
nq . Right vertical scale: Temperatures in correspondence to the left
scale. Panel (a) [respectively (b)]: Maximum (respectively minimum)
of the temperatures with respect to the parameter z ∈ [0.1,100] μm.
The other parameters are the same as the ones of Fig. 3.
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scaling of the maximum in z of −β for all the qubits and
for M (i.e., the maximal population inversion induced in each
configuration), while Fig. 9(b) shows the minimum of −β

(maximal refrigeration).
For both of these tasks, two things are worth stressing.

First, the extremal temperatures of M scale linearly with
nq , suggesting that each additional qubit extracts from M or
delivers into M (directly or indirectly) the same amount of heat
as the qubits already present.

Second, the extremal temperatures of the qubits do not
follow such a linear scaling but rather tend to group together
based on the symmetry of the qubits configuration and on
the parity of nq : For even qubits numbers, the temperatures
collapse to two possible values only, as happens in the case of
four qubits discussed throughout this paper. On the contrary,
for odd qubits numbers, the temperatures tend only partially
to group together, there always being an isolated atom at some
temperature that differs from the rest (as easily visible in
the case of nq = 3 and nq = 5). This suggests a collective
mechanism of redistribution of the heat exchanged with the
machine: Pairs of atoms have coupled temperatures if their
position along the circle is symmetric with respect to the line
joining M and qubit 1. Indeed, the couple {M,1} is a privileged
one, having always collinear dipoles independently on nq : This
also explains why −β1 is always the closest one to −βM .

Since in this case the radius is constant, adding more and
more atoms implies that the qubits are closer and closer to
each other, thus increasing their mutual coupling: This has the
effect of reducing the difference between their temperatures.
Thus, as indeed shown in Fig. 9, all the qubits temperatures
tend to the same value as the qubits number is increased.

As a further investigation on the nq dependence shown by
physical quantities in our system, we study in Fig. 10 the
scaling with nq of the three correlation quantifiers employed
in the previous analyses: the mutual information MI, the
quantum discord DG, and the total tripartite correlations τ .
These three quantities have been maximized, for each nq ,
over both z and over every possible bi- or tripartition of
relevance for the related quantity: every possible bipartition
in the atomic system for MI, every possible tripartition for τ ,
and every possible bipartition of the form 2 × dB (i.e., with
one isolated qubit) for the quantum discord, as the analytic
formula we employ in its evaluation is valid only under this
condition [45].

The scaling behavior of the mutual information rescaled
to its theoretical maximum as MIRes = MI/ max(MI) is also
shown: As noted in Appendix B, the theoretical maximal value
max(MI) of MI for a bipartition of dimension dA × dB is
2 ln ( min(dA,dB)), since MI quantifies the amount of informa-
tion stored under the form of correlations between subsystems
A and B. Since the Hilbert space dimension grows as 2nq , more
qubits allow more “memory space” to store information. The
scaling of MI therefore provides information on the interplay
between the growing Hilbert space dimension and the more and
more diluted interactions between subparts. On the other hand,
MIRes singles out only the nq scaling of interaction-induced
correlations by providing the relative amount of information
with respect to its theoretical maximum. It is interesting to note
that the scaling of MIRes is very similar to the scaling of the
quantum discord, i.e., of the other quantity whose values are

FIG. 10. Maximum of respectively mutual information MI (red
squares), rescaled mutual information MIRes (green triangles),
geometric quantum discord (blue diamonds), and tripartite total
correlations (black dots) versus the number of qubits nq . The
maximization of each quantifier has been performed for each nq

over every possible subsystems on which it is defined (e.g., on
every tripartitions for tripartite correlations) and with respect to the
parameter z ∈ [0.1,100] μm.

normalized in the interval [0,1], independently on the Hilbert
space dimension.

Finally, a more technical remark: Despite its definition
in Eq. (B2) of Appendix B, one should not look here
at the difference between MI and discord as measuring
some classical correlations: Indeed, the geometric measure of
discord employed here [45] is based on the so-called Bures
distance (a legitimate metric in the state space), whereas
MI employs an entropic distance as (pseudo-)metric. No
numerical comparison is therefore possible.

V. CONCLUSIONS

In this paper we have studied the functioning of a three-
level atom as an absorption thermal machine acting on a
many-qubit system. This configuration stands between the
two cases studied of thermal absorption tasks being delivered,
respectively, on macroscopic objects or on single qubits. The
extension to the many-qubit case provides a first step to
the application of quantum absorption tasks (i.e., based on
quantum features) to realistic scenarios and to systems of
applicative interest. Moreover, it represents a fundamental
advancement in the understanding of the role of correlations
in the thermodynamics of multipartite quantum systems.

We have indeed demonstrated that thermodynamic tasks
can be delivered even if the machine Hilbert space is much
smaller than the one of the target body, thanks to the fact
that inner correlations in the target body relay and distribute
the task on all its parts. This is possible thanks to a realistic
and rich out-of-thermal-equilibrium configuration of a single
electromagnetic field which acts as a reservoir for the machine
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functioning. The thermodynamics is therefore based on the
interaction with a single, nonequilibrium steady environment.

We have demonstrated the possibility of a detailed control
over local temperatures of each qubit in the multipartite system
and over the collective state of all of them. Such a state, despite
formally not being under a Gibbs form, is experimentally
almost undistinguishable from it as we have shown by the use
of the so-called trace distance. Our configuration is therefore
able to achieve both a global task on a large quantum system
and the same local task on all of its constituents, without the
need of either a large thermal machine or of many elementary
ones.

We have found a strict correspondence between the change
in local and global temperatures induced by the machine and
the correlations both inside the target body and between it and
the machine itself.

This correspondence, and its consequence of strong and
stable thermodynamic tasks, survive over a broad range of
temperatures externally fixed to maintain the electromagnetic
field in its nonequilibrium steady state.

In addition, we have studied our system under practically re-
alistic conditions, introducing uncertainty on atomic positions
and dipole orientation and tuning the machine-body distance.
We have shown that all the tasks delivered by the machine are
remarkably robust against these parameters, paving the way
for a direct experimental realization of them.

As a suggestion for possible experimental implementations,
the role of the qubits could be played by GaAs or InAs
quantum dots [50–52] or by the rotational energy levels of
water molecules [53]. Another possibility is the exploitation
of hyperfine structure of atoms, such as oxygen [54]. On the
other hand, it has been shown [55] that mercury and hydrogen
could be good candidates for the realization of a three-level
atomic system needed for the machine. Surface array traps
have already been used to place atoms above the surface of a
material and thus could be exploited to control the positions
of the emitters of our system with respect to the sapphire
slab [56,57].

Our results provide a simple and realistic configuration to
have thermodynamic tasks on many-body quantum systems.
Remarkably, quantum features in the machine-body interac-
tion and classical correlations inside the body can cooperate
in order to achieve absorption thermodynamics with a single
elementary quantum machine and a single nonequilibrium
environment as its reservoir.

Our findings might be relevant in the recently emerging
field of micro- and nanoscopic biosensing, as well as for the
local control of many-qubit state during quantum-information
tasks [28].
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APPENDIX A: RATES OF THE MASTER EQUATION

Each term contributing to the master equation (2), whose
expressions are given in Eqs. (3)–(7), involves either dipole-
dipole interaction strengths �nM and �nm or dissipation

rates �±
n , �±

M , �±
nM, and �±

nm. All of these quantities are
obtained within the rotating-wave approximation and under
the Markovian limit and are functions of all the system
parameters, including properties of the OTE electromagnetic
field [38]. Introducing the vacuum spontaneous emission rate
γ

(i)
0 (ω) = |di |2ω3/(3�πε0c

3) for the transition i (which could
be both a qubit or a machine transition) with dipole moment
di and frequency ω, the expressions for the single-transition
dissipative rates are

�+
i (ω)

γ
(i)
0 (ω)

= [1 + n(ω,TW )]α(i)
W (ω)

+ [1 + n(ω,TS)]α(i)
S (ω), (A1)

�−
i (ω)

γ
(i)
0 (ω)

= n(ω,TW )α(i)
W (ω)∗ + n(ω,TS)α(i)

S (ω)∗, (A2)

with n(ω,T ) = (exp( �ω
kBT

) − 1)−1, whereas the nonlocal col-
lective dissipative rates for two transitions i and j of frequency
ωq (which can either both be qubit transitions or one of them
can be the machine transition resonant with qubits) are given
by

�+
ij (ωq)√

γ
(i)
0 (ωq)γ (j )

0 (ωq)
= [1 + n(ωq,TW )]α(ij )

W (ωq)

+ [1 + n(ωq,TS)]α(ij )
S (ωq), (A3)

�−
ij (ωq)√

γ
(i)
0 (ωq)γ (j )

0 (ωq)
= n(ωq,TW )α(ij )

W (ωq)∗

+ n(ωq,TS)α(ij )
S (ωq)∗. (A4)

The functions α
(i)
W (ω), α

(i)
S (ω), α

(ij )
W (ωq), and α

(ij )
S (ωq) depend

on the geometrical configuration of the atomic system through
their distance z from the slab and each atom-atom distance and
on the geometrical and dielectric properties of the slab. In their
explicit expression, not given here for the sake of brevity [the
interested reader is referred to Eq. (33) of Ref. [38] for all the
details, where, however, the factor π in the fraction in front
of the integrals has to be removed], the dielectric function of
the slab material is involved in characterizing the transmission
and reflection coefficient of the slab itself. These coefficients
come into play when calculating the self-correlation functions
of the OTE electromagnetic field, it being given by four
contributions: The field coming directly from the walls (under
the form of blackbody thermal radiation), the field emitted by
the slab, and the two contributions of walls field either reflected
by or transmitted through the slab.

Finally, the dipole-dipole interaction strength �ij (ωq),
coupling only pairs (i,j ) of resonant transitions, has the
expression

�ij (ωq) = �
(ij )
0 (ωq) +

√
γ

(i)
0 (ωq)γ (j )

0 (ωq)Kij (ωq), (A5)

where �
(ij )
0 (ω) is the standard free contribution in the absence

of matter (slab) stemming from the zero-point correlations
of the field, and Kij (ω) is the reflected contribution which
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takes again into account the dielectric properties of the slab
through its scattering terms. The explicit expressions of �

(ij )
0

and Kij can be found respectively in Eqs. (39) and (C.10)
of Ref. [38], where the vector r̃ has to be replaced with r̂ =
(R − R′)/|R − R′|.

APPENDIX B: CORRELATIONS AND OTHER MEASURES

Here we briefly introduce and discuss the measures of
correlations employed in the main text when analyzing the
thermodynamics of the atomic steady state. We will give
here only a few pieces of information, the interested readers
being referred to the more specialized literature cited in each
subsection.

1. Mutual information: A measure of total bipartite correlations

When studying any interaction between two subparts A and
B of a multipartite system, the natural question arises about
how correlated these two subparts are. This question can be
answered by means of the well-known mutual information
MI(A : B) [41,42], an entropic measure of shared information.
It measures the amount of total bipartite correlations (i.e.,
quantum plus classical bipartite correlations) and it is defined
as

MI(A : B) = S(ρA) + S(ρB) − S(ρAB), (B1)

where S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy of
the quantum state ρ. This parameter quantifies the difference
between information (as measured by entropy) one has about
a composite system AB if only knowledge about the two
subparts’ state ρA and ρB is available and the one at disposal
by knowing the total state ρAB .

Clearly, if A and B are not correlated, the knowledge of
the reduced states equals the knowledge of the composite
state and MI(A : B) = 0. On the other hand, if ρAB is a pure
state maximally entangled, for which S(ρAB) = 0, then A

and B are maximally correlated. In this case, if dA < dB ,
dA(B) being the dimension of the Hilbert space of A (B),
one has (stemming from the Schmidt decomposition of ρAB)
trA(ρAB) = 1

dA
diag(IdA

,0dB−dA
) and trB(ρAB) = 1

dA
IdA

, where
diag(IdA

,0dB−dA
) is the block diagonal matrix composed of

the identity matrix of dimension dA and the null matrix
of dimension dB − dA. Then, for any composite system
AB, the maximum of mutual information is MI(A : B) =
2 ln ( min(dA,dB)).

2. Geometric quantum discord

Another possible question regarding a bipartite system
(A,B) is the amount of purely quantum correlations in its state.
One can answer this question by studying the quantity called
quantum discord [43,58] between A and B (in this order),
whose original expression reads

D(A → B) = MI(A : B) − C(A → B), (B2)

having defined C(A → B) as the purely classical correlations
between A and B (again, the order is here crucial, it
being a nonsymmetric measure). Clearly, the difficulty of
calculating (B2) stems from the evaluation ofC, which involves

in general a complicated optimization over the set of POVMs
(positive-operator valued measures) on A. To overcome such
an obstacle, one can introduce a new related measure of discord
DG as

DG(A,B) = g(ρAB,χAB), (B3)

where g is any valid metric in the state space and χAB is
the closest classical state (i.e., zero-discord state) to ρAB .
The quantity in Eq. (B3) is known as geometrical quantum
discord [43,44].

The advantage of this definition lies in the fact that an
analytic formula for g(ρAB,χAB) is available for some specific
cases. In particular, an expression for it is given in Ref. [45]
for bipartitions 2 × d, where one of the two subsystems is a
qubit and the second one can be seen as a d-level quantum
system. This formula employs the Bures distance B [48] as
the reference metric.

3. Tripartite correlations

Another possible piece of information about the distri-
bution of correlations among the different constituents of a
multipartite system comes from the study of total tripartite
correlations [46,47]. Consider thus a tripartite (sub-)system
(A,B,C): The amount of total (i.e., classical plus quantum)
correlations in it is defined as

τ (A,B,C) = MI3(A : B : C) − μ(A,B,C), (B4)

where MI3(A : B : C) = S(ρA) + S(ρB) + S(ρC) − S(ρABC)
is the total correlation information on the tripartite state ρABC

and μ(A,B,C) = max{MI(A : B),MI(A : C),MI(B : C)}. In
other words, τ measures the amount of correlations present in
ρABC which cannot be explained by considering any possible
subsystem of {A,B,C}.

4. Trace distance

The trace distance Dt (ρ,σ ) between two quantum states ρ

and σ is defined as [48]

Dt (ρ,σ ) = 1
2 tr

√
(ρ − σ )2. (B5)

It is a metric in the state space, with values always in the
interval [0,1]. In particular, Dt (ρ,σ ) = 0 if and only if ρ =
σ and Dt (ρ,σ ) = 1 if and only if ρ and σ have orthogonal
supports (i.e., all their eigenvectors with nonzero eigenvalues
are orthogonal).

Among its several useful properties, a very operatively
clear meaning can be given to its value: The trace distance
between ρ and σ gives the probability of distinguishing the
two states with a single optimal measurement. In slightly more
technical words, suppose that one wants to understand, with
a single measurement, whether a system is in the state ρ or
in the state σ , these two density matrices having the same
a priori probability. It can be demonstrated [48] that, when
employing the optimal measurement to distinguish ρ and
σ , the probability that the measurement outcome allows to
understand the state of the system is

P = 1
2 [1 + Dt (ρ,σ )]. (B6)
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Indeed, if ρ and σ have orthogonal supports (thus Dt = 1), a
definitive answer with P = 1 can be obtained, provided one
measures the system on one of the two supports of ρ or σ . On
the other hand, the more similar the two states are, the less
probable is for them to give different measurement outcomes,
and the more Dt 
 0, leaving one with the only choice to
(almost) randomly guess the state of the system with P 
 1

2 .

APPENDIX C: GENERALIZED SECOND LAW

The study of the second law in our configuration is non-
trivial due to the nonequilibrium structure of the environment.
In particular, applying the Clausius inequality would require
the knowledge of the heat fluxes between each component
of the system and real thermal reservoirs, which in our case
are the slab at TS and the walls at TW . Nevertheless, it is not
possible to determine if a photon emitted by an atom will end
up reaching the slab or the walls. Thus the second law in its
standard formulation cannot be properly applied here.

This problem has already been encountered in previous
works [25] and tackled in the context of Markovian dynamics
by means of a generalization of the second law, reading

dStot

dt
=

∑
i

tr
[
D(i)(ρ) ln

(
ρss

i

)] + dS(ρ)

dt
� 0, (C1)

where Stot is the total entropy (of the open system and its
environment), S is the von Neumann entropy of the quantum
system, ρss

i is the kernel of the i-th dissipator, and i runs
over the set of dissipators. The validity of Eq. (C1) is a direct
consequence of the Markovian and linear structure of master
equation. Note that in the case of real thermal reservoirs, each
ρss

i has a Gibbs form and thus we are left with the standard
Clausius inequality. In the case of nonthermal reservoirs such
as ours, Eq. (C1) allows us to define a parameter playing
effectively the role of temperature in entropic fluxes. This can
be found by imposing, if possible, a Gibbs structure to ρss

i . In
our specific case, this leads to an expression of the effective
temperatures equivalent to Eq. (9).

Equation (C1) allows us to follow the total entropy pro-
duction both during the system dynamics and at stationarity.
Figure 11 reports the value of dStot/dt for the steady state of
the system studied in Fig. 3 as a function of the distance from
the slab. As expected, entropy is an increasing function of time
for any atoms-slab distance.

FIG. 11. Total entropy production in the nonequilibrium steady
state of the system as a function of the distance from the slab. The
magnitude of the dipoles is 10−30 C m.

One could also wonder whether the heat exchanged by
the emitters system with the electromagnetic field has any
perceivable effects on the radiative heat transfer between the
slab and the walls. Using Eq. (91) of [32], one can evaluate
the heat transfer between slab and wall. For an SiC slab at
TS = 900 K in a blackbody radiation at TW = 300 K, such
heat transfer turns out to be 
5.5 × 104 J s−1 m−2. This means
that, for a slab of 1 cm2, the net heat transfer from the slab to
the walls would be of 
5.5 J s−1.

Employing now Eq. (8) to evaluate all the heat exchanged
by the total emitters system and its environment, one finds
for z = 2.87 μm and r = 0.88 μm a total heat flux of 
 −2 ×
10−26 J s−1, which is some 26 orders of magnitude smaller than
the slab-walls radiative heat transfer. As such, the presence
of the atomic system does not affect the energy exchanges
between macroscopic objects and in particular does not reverse
the direction of radiative transfer, which still brings heat from
the warmer to the colder body, in accordance with the standard
macroscopic second law of thermodynamics.
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