
PHYSICAL REVIEW E 93, 022133 (2016)

First-passage phenomena in hierarchical networks

Flavia Tavani1 and Elena Agliari2
1Dipartimento SBAI (Ingegneria), Sapienza Università di Roma, via A. Scarpa 16, 00161, Rome, Italy
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(Received 22 September 2015; revised manuscript received 3 February 2016; published 23 February 2016)

In this paper we study Markov processes and related first-passage problems on a class of weighted, modular
graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two
nodes depends on their distance and is modulated by a parameter σ . We find that, in the thermodynamic limit,
ergodicity is lost and the “distant” nodes cannot be reached. Moreover, for finite-sized systems, there exists a
threshold value for σ such that, when σ is relatively large, the inhomogeneity of the coupling pattern prevails
and “distant” nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs,
where interactions are meant to involve p-plets (p > 2) of nodes, finding that ergodicity is still broken in the
thermodynamic limit, but no threshold value for σ is evidenced, ultimately due to a slow growth of the network
diameter with the size.
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I. INTRODUCTION

In most real-life networks links are associated to weights
accounting for wiring costs that typically depend on the
distance between nodes to be connected. According to the
system considered, such a distance may be a physical distance,
a social distance, or any quantity which measures the cost
associated with the formation of a link [1]. For instance,
in the brain, since axons are expensive in terms of material
and energy, regions that are spatially closer have a greater
probability of being connected than remote regions [2,3]. Also,
in lymphocyte networks, clones that display a larger affinity
(i.e, that are closer in the idiotypic phase space) are more likely
to experience a mutual regulation [4,5].

Here we consider a network embedded in an ultrametric
space, where the coupling Jij between two nodes i and j

scales as Jij ∼ 2−2σdij , dij being the distance between i and
j and σ a proper, positive tunable parameter. This network
was originally introduced by Dyson in the 1960s to describe
non-mean-field spin systems [6] and, more recently, also the
Sherrington-Kirkpatrick model for spin glasses [7–9] and the
Hopfield model for neural networks [10,11] defined on such a
topology have been investigated. Indeed, the peculiar features
(e.g., high degree of modularity) of such a weighted graph play
a crucial role in the statistical mechanics treatability as well as
in the emergent behavior of the above-mentioned models [12].

Here we generalize the original model in order to account
for systems exhibiting p-wise interactions (e.g., p-spin sys-
tems). Basically, as we are going to explain, this implies a
new parameter p tuning the size of the modules making up the
system and, accordingly, Jij ∼ p−dij [p−2(1−σ )].

Our goal is to investigate and to quantify the influence of
the pattern of weights on dynamical processes occurring on
the network. In particular, we focus on Markovian processes
where the probability to move from a state i to a state j is
given by Jij (upon proper normalization) and we calculate the
first-passage probability and the mean first-passage time [13]
to reach a given node or a given set of nodes as a function of
its distance from the starting point.

We find that in the thermodynamic limit, ergodicity is
broken for any value of p, meaning that in the limit of infinite

size distant nodes cannot be reached, no matter how long the
process is run. Moreover, by comparing the probability that the
process jumps on “close” nodes with the probability that the
process jumps on “distant” nodes, we find that, as long as p =
2 (i.e., the basic modules are made by two nodes), there exists a
threshold value for σ such that when σ is relatively large the in-
homogeneity induced by distance-depending weights is strong
and the process actually tends to stay in the neighborhood of
the starting node, while when σ is relatively small the inhomo-
geneity is less effective and the process can move away from
the initial module. On the other hand, when p > 2 (i.e., the
basic modules are made by cliques of size p), inhomogeneity is
always effective for the process which is always (regardless of
σ and of the size) more likely to wonder in the neighborhood of
the starting module. A qualitative difference between the case
p = 2 and the case p > 2 is highlighted also while looking at
the mean time to first reach the farthest node and the closest
node, respectively. In fact, when p = 2 the ratio between these
quantities remains finite for any σ but σ = 1 (in this case, the
ratio grows logarithmically with the system size), while when
p > 2 the ratio is always increasing with the system size.

The paper is organized as follows. In Sec. II we review the
growing algorithm for the network under study and we define
the transition matrix of the related Markov process. Secs. III–V
are devoted to the case p = 2: We first analyze the asymptotic
properties of the stochastic process, and then we move to
the estimate of mean first-passage times and of the splitting
probabilities. Analogous calculations are performed for the
general case p > 2 in Secs. VI and VII. Finally, Sec. VIII
includes discussions and outlooks. The most technical details
and lengthy calculations are collected in the Appendices.

II. DEFINITION OF THE MODELS

In this work we focus on deterministic, weighted, recur-
sively grown graphs, referred to as G(p), originally introduced
to embed statistical mechanics spin systems. We shall consider
not only graphs corresponding to purely pairwise (p = 2)
interactions among spins [6], but we are generalizing the
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structure in order to account for p-wise (N � p � 2) inter-
actions as well [14].

Such systems can be formalized through Hamiltonians
defined recursively, in such a way that at the first iteration one
has a set {S}1 = {Si1 ,Si2 , . . . ,Sip } of p spins coupled together;
at the second iteration one takes p replicas of the previous
system and couples the related spins, hence obtaining a system
containing p2 spins, referred to as {S}2, and so on, for the
following iterations. In particular, for the ferromagnetic case
one has

H0({S}0|σ ) = 0, (1)

H1({S}1|σ ) = − 1

p[p−2(1−σ )]

p∑
i1<···<ip

Si1 · · · Sip , (2)

H2({S}2|σ ) =
p∑

l=1

H1({Sl}1|σ )

− 1

p2[p−2(1−σ )]

p2∑
i1<···<ip

Si1 · · · Sip , (3)

...
...

HK ({S}K |σ ) =
p∑

l=1

HK−1({Sl}K−1|σ )

− 1

pK[p−2(1−σ )]

pK∑
i1<···<ip

Si1 · · · Sip . (4)

Spins are binary and take values +1 or −1. The parameter
σ is bounded as σ ∈ (1/2, 1]: For σ > 1 the interaction
energy goes to zero in the thermodynamic limit, while for
σ � 1/2 the interaction energy diverges in the same limit.
Also, notice that the coupling among spins is positive due to the
ferromagnetic nature of the model which makes neighboring
spins to “imitate” each other.

Now the graph underlying such a system can as well be
built iteratively (see Ref. [12] for the special case p = 2). The
construction begins with p nodes, fully connected with links
carrying a weight J (p)(1,1,σ ) = p−[p−2(1−σ )]. We refer to this
graph asG(p)

1 . At the next step, one introduces p replicas ofG(p)
1

and connects the nodes pertaining to different replicas with
links displaying a weight J (p)(2,2,σ ) = p−2[p+2(1−σ )]; also,
the weight on the existing links is updated as J (p)(1,1,σ ) →
J (p)(1,2,σ ) = J (p)(1,1,σ ) + J (p)(2,2,σ ). The graph G(p)

2
counts now p2 nodes. At the generic k-th iteration, one
introduces p replicas of G(p)

k−1 and inserts p2k−1 new links, each
carrying a weight J (k,k,σ ) = p−k[p+2(1−σ )], among nodes
pertaining to different replicas, and the weights on exist-
ing links are updated as J (p)(d,k − 1,σ ) → J (p)(d,k,σ ) =
J (p)(d,k − 1,σ ) + J (p)(k,k,σ ) for any d < k. If we stop
the iterative procedure at the K-th iteration, then the final
graph G(p)

K counts pK nodes and any pair of nodes which
occur to first be connected at the d-th iteration displays a

J (2)(2, 2, σ) J (2)(1, 2, σ) J (3)(1, 2, σ)

J (3)(2, 2, σ)

FIG. 1. Example of G(p), with p = 2 (left) or p = 3 (right) and
K = 2. The solid and thicker lines represent links with a larger weight,
while the dashed ones are the links added at the second iteration and
therefore carrying a lower weight.

coupling

J (p)(d,K,σ ) =
K∑

l=d

J (p)(l,K,σ ) =
K∑

l=d

p−l[p−2(1−σ )]

= p(1−d)[p−2(1−σ )] − p−K[p−2(1−σ )]

pp−2(1−σ ) − 1
, (5)

= [J (p)(1,1,σ )]d − [J (p)(1,1,σ )]K+1

1 − J (p)(1,1,σ )
. (6)

The iterative procedure is summarized in Fig. 1.
Remarkably, this procedure allows for a definition of

metric: two nodes i and j in the set of nodes V are said to be at
distance dij = d if they occur to be first connected at the d-th
iteration. Such a distance is ultrametric, in fact, it fulfils the
following conditions: (i) positivity, namely dij � 0 ∀i,j ∈ V
and dij = 0 if and only if i = j , and (ii) symmetry, namely
dij = dji ∀i,j ∈ V , and (iii) ultrametric inequality, namely
dij � max(dik,dkj ) ∀i,j,k ∈ V .

In general, for a given node, the total number of neighbors
at distance d is (p − 1)pd−1.

The resulting weighted graph G(p)
K (simply referred to as

G(p) to lighten the notation) is undirected and fully connected.
Its nodes make up a set V of size N = pK and are labeled as
i = 1, . . . ,N . The pattern of couplings can be encoded by an
N × N matrix J(p), whose entry J

(p)
ij depends on the couple

(i,j ) only through their distance dij , as J
(p)
ij = J (p)(dij ,K,σ ).

The maximum and the minimum of the weights associated
to links are, respectively,

max
i,j∈V

J
(p)
ij = J (p)(1,K,σ ) = 1 − p−K[p−2(1−σ )]

pp−2(1−σ ) − 1
, (7)

min
i,j∈V

J
(p)
ij = J (p)(K,K,σ ) = p−K[p−2(1−σ )]. (8)

Moreover, by construction, G(p) turns out to be modu-
lar [12], where, with “modularity,” we mean the capability of
the graph to be divided into modules (clusters or communities):
High modularity means that there are strong (or dense) con-
nections between elements belonging to the same module and
weak (or sparse) interconnections between different modules;
conversely, low modularity means that the weights (or the links
themselves) are distributed homogeneously. Indeed, in G(p), at
the highest level of resolution, modules are constituted by
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FIG. 2. Representation of the coupling matrix J(p) for the cases
p = 2, K = 4, σ = 1 (left) and p = 4, K = 2, σ = 1 (right). The
related networks G(2)

4 and G(4)
2 result of the same size N = 16, but

their structures are not equal, since they are built following different
laws.

pK−1 cliques of size p; at the next step of resolution modules
are pK−2 cliques of size p2, and so on, for further steps.
Two examples of coupling matrix for different values of p are

shown in Fig. 2: In both cases the ultrametric pattern as well
as the modular structure are evident.

Now we can look at the nodes of G(p) as the states of a
Markov process, characterized by transition rates from state
i to state j given by J

(p)
ij (under proper normalization). This

basically corresponds to a biased random walker on a complete
graph endowed with an ultrametric distance where the bias
favors closer nodes. Thus, this kind of investigation may
shed light on the role of a metric as, for example, diffusion-
reaction processes, traffic models, and epidemics [15–17].
More precisely, we introduce the (doubly) stochastic matrix
P(p), whose entry P

(p)
ij represents the probability that the

process moves from one state i to a state j at distance dij

and it is defined as

P
(p)
ij ≡ J

(p)
ij

w
(p)
i (K,σ )

, (9)

where w
(p)
i (K,σ ) ≡ ∑N

j=1,j �=i J
(p)
ij is the weighted degree of

the node i, which turns out to be

w
(p)
i (K,σ ) ≡ N−(p−2+2σ )[N (1 − pp′) − 1 − p′] + p′(p − 1)

Np−2+2σ p′(p − 1) + pN (1 − p′) + p′ − p
−−−→
K→∞

p′(p − 1)

(p′)2 + p′(p − 1) + p
, (10)

where p′ = pp−2(1−σ ) and N = pK ; notice that, due to the homogeneity of G(p), w
(p)
i (K,σ ) is actually site independent, hence

hereafter we will drop the index i. Thus, P
(p)
ij depends on the couple (i,j ) only through its distance dij and, with a small change

of notation, we can therefore “coarsen” the matrix P(p) into the (discrete) function P (p)(d,K,σ ) representing the probability that
the system moves from one arbitrary state to another state at distance d, that is,

P (p)(d,K,σ ) = J (p)(d,K,σ )

w(p)(K,σ )
= (Np−2+2σ p′(1−d) − 1)(p′ − p)

p′(p − 1)Np−2+2σ + pN (1 − p′) + p′ − p
−−−→
N→∞

(p′ − p)(p′)1−d

p′(p − 1)
. (11)

Of course,

max
i,j∈V

P
(p)
ij (K,σ ) = max

d
P (p)(d,K,σ ) = P (p)(1,K,σ ) = (Np−2+2σ − 1)(p′ − p)

p′(p − 1)Np−2+2σ + pN + 2p − p′ , (12)

min
i,j∈V

P
(p)
ij (K,σ ) = min

d
P (p)(d,K,σ ) = P (p)(K,K,σ ) = (p′ − p)(p′ − 1)

p′(p − 1)Np−2+2σ + pN (1 − p′) + p′ − p
. (13)

Moreover, recalling that the total number of nodes at distance d from a generic site is equal to (p − 1)pd−1, the probability
P̃ (p)(d,K,σ ) to jump to any site at distance d from a given starting point, say, i, is

P̃ (p)(d,K,σ ) =
∑

V �j :dij =d

P
(p)
ij (K,σ ) = (p − 1)pd−1P (p)(d,K,σ ) = (p − 1)pd−1J (p)(d,K,σ )

w(p)(K,σ )

= (p − 1)(p′ − p)[(p/p′)d−1Np−2+2σ − pd−1]

p′(p − 1)Np−2+2σ + pN (1 − p′) + p′ − p
−−−→
N→∞

pd−1(p′ − p)

(p′)d
. (14)

We conclude this section with a remark which will be
useful when computing mean first-passage times (see Sec. V
and Sec. VII). Let us consider P (p)(1,K,σ ) and P (p)(K,K,σ )
[see Eqs. (12) and (13)]: For any given σ , they both decrease
with K , as expected since the support of the distribution gets
larger while normalization must be preserved; conversely, if
we fix K and we let σ vary in the interval ( 1

2 ,1], we see
that P (p)(1,K,σ ) is a monotonic increasing function while
P (p)(K,K,σ ) is a monotonic decreasing function. This means

that, when σ is large, the pattern of transition probabilities is
more inhomogeneous and “close” nodes are more likely to be
reached in a single jump, while, when σ is small, the system
tends to be more homogeneous, see also Fig. 3.

III. ASYMPTOTIC PROPERTIES OF G(2)

Let us consider a stochastic process {Xn} defined in G(2)

and such that, at any time step n, Xn can assume a value

022133-3



FLAVIA TAVANI AND ELENA AGLIARI PHYSICAL REVIEW E 93, 022133 (2016)

0.6 0.8
1

5

10

σ

d

 

 

0.6 0.8
1

10

20

σ

d

 

 

0.6 0.8

10

20

30

σ

d

 

 

−12

−10

−8

−6

−4

−2

−25

−20

−15

−10

−5

−40

−35

−30

−25

−20

−15

−10

−5

K = 10 K = 20 K = 30

FIG. 3. In order to highlight how σ and K affect the degree of homogeneity of the network G(p)
K , we plot log2[P (2)(d,K,σ )], evaluated

according to Eq. (9), as a function of d ∈ [1,K] and σ ∈ ( 1
2 ,1], respectively, fixing K = 10,20,30. Notice that, for relatively small values of

d , by increasing σ the probability P (2)(d,K,σ ) also grows, while, for relatively large values of d , by increasing σ the probability P (2)(d,K,σ )
also decreases.

in [1, . . . ,N ]. The probability for this system to move from
state Xn = i to Xn+1 = j is given by P

(2)
ij = P (2)(dij ,K,σ )

[see Eq. (9)]. As highlighted by the expression in Eq. (11),
P (2)(d,K,σ ) is decreasing exponentially with the distance
d and, as remarked in the previous section, the decrease is
amplified when σ is large. In particular, for large sizes (i.e.,
K � 1), P (2)(K,K,σ )/P (2)(1,K,σ ) ≈ 2−2Kσ .

However, if one looks at the probability P̃ (2)(d,K,σ ) to
reach any site at distance d, the fast decrease of P (2)(d,K,σ )
with respect to d is smoothened by the exponential growth
of the number of nodes at distance d from the starting one.
We therefore expect an interplay between d and σ that selects
which class of nodes (either the “close” or the “distant” ones)
is more likely to be reached. This can be obtained by solving
the following inequality:

P̃ (2)(d,K,σ ) =
d∑

l=1

2l−1P (2)(l,K,σ ) >

K∑
l=d+1

2l−1P (2)(l,K,σ )

= 1 − P̃ (2)(d,K,σ ), (15)

where in the left-hand side of the inequality we have the
total probability to move within a distance d, while in
the right-hand side we have the probability to overcome
the distance d. In particular, in the limit K → ∞, we
get

lim
K→∞

[
d∑

l=1

2l−1P (2)(l,K,σ )

]
> lim

K→∞

[
K∑

l=d+1

2l−1P (2)(l,K,σ )

]

(16)

⇒ 1 − 2d−2dσ > 2d−2dσ ⇒ σ >
d + 1

2d
. (17)

Thus, the Markov process is more likely to jump within a
distance d, as long as we fix σ large enough (according to the
value of d). On the other hand, for a given σ , nodes within a
distance �1/(2σ − 1)� are more likely to be reached (and, a
fortiori, this holds for any larger distance d > �1/(2σ − 1)�).
In particular, when σ = 1, one gets that the inequality (16)
holds for any d > 1, while if σ → 1/2, then the threshold for
d tends to increase, consistently with the growing homogeneity
of the underlying network.

These results nicely match with those obtained in Ref. [11],
where, for the Dyson ferromagnetic model, the stability of spin
configurations pertaining to a small module corresponding to
G(2)

k>1 is shown not to be influenced by the behavior of spins of
different modules.

Also, it is worth noting that, as long as d is finite, none
of the probabilities in the inequality (16) is exactly equal to
1 in the infinite size limit (i.e., for K → ∞), that is, there is
no certainty that a stochastic process surely jumps to a “near”
state or surely jumps to a “distant” state. On the other hand, if
we consider d = d(K), Eq. (16) can be rewritten as

lim
K→+∞

d(K)∑
l=1

2l−1P (2)(l,K,σ ) > lim
K→+∞

K∑
l=d(K)+1

2l−1P (2)(l,K,σ )

lim
K→+∞

4σ − 2 + (2N )2σ − 2d(K)[4σ − 2 + (2N )2σ 2−2σd(K)]

(2N )2σ + (2N − 1)(22σ + 1)
> lim

K→+∞
2d(K)[4σ − 2 + (2N )2σ 2−2σd(K)] − 2N (4σ − 1)

(2N )2σ + (2N − 1)(22σ + 1)
,

(18)
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and, by requiring d(K) −→
K→∞

∞, we get that the left-hand side

of the inequality (18) tends to 1, while, of course, the right one
tends to 0. Therefore, in the limit of infinite size, the process
cannot reach the largest distance K , but it remains constrained
in an infinite-sized subgraph G(2)

d(K). This holds in the case
lim

K→+∞
d(K)/K = β, with β ∈ (0,1], including, for instance,

d(K) = K − l (with l finite) or d(K) = αK (with 0 < α <

1), and also in the case lim
K→+∞

d(K)/K = 0, including, for

instance, d(K) = log(K).
In order to further investigate whether the pattern for

couplings J(2) does induce any “trap” effect for the Markov
process, which would be then confined in the neighborhood of
the starting node, we consider two extreme cases, namely we
evaluate (i) the mean time to first escape from the starting dimer
[i.e., a couple of nodes at distance 1, namely the subgraph
corresponding to G(2)

1 ] and (ii) the mean time to first escape
from the starting main branch [i.e., the subgraph corresponding
to G(2)

K−1].
Let us start with the former and consider a couple of nodes i

and j such that dij = 1, and let us compute the probability for
a stochastic process to eventually escape from this “dimer.” Of
course, due to the symmetry of this subgraph, P (2)

ij = P
(2)
ji and

both equal P (2)(1,K,σ ), here denoted with qK for simplicity.
Then the probability to bounce between i and j for n time
steps, without ever leaving this original dimer, is

qn
K =

[
(4σ − 2)(N2σ − 1)

22σ (N2σ + 1) + 2N (1 − 22σ ) − 2

]n

. (19)

This probability is asymptotically vanishing regardless of
whether we first let n → ∞ and then take K → ∞ (this case
is trivial since qK < 1,∀K > 0), or we first let K → ∞ and
then take n → ∞:

lim
K→∞

lim
n→∞ qn

K = 0, (20)

lim
n→∞ lim

K→∞
qn

K = lim
n→∞

(
4σ − 2

4σ

)n

= 0. (21)

Moreover, the mean time t(1) necessary to first escape from
the original dimer is

t(1) =
+∞∑
n=1

nqn−1
K (1 − qK )

= 22σ (2N )2σ + 2N (1 − 22σ ) + 22σ − 2

2[(2N )2σ + N (1 − 22σ ) + 22σ − 2]
−→
N→∞

22σ−1.

(22)

As expected, t(1) increases with σ , consistently with the fact
that P (1,K,σ ) is monotonically increasing with σ ; also, t(1)
remains finite for any choice of the parameters σ and K .

Let us now evaluate the probability that the process
eventually arrives at distance K , i.e., it escapes from the
starting subgraph G(2)

K−1. To this aim it is convenient to look

at G(2)
K as a bipartite graph, where the sites belonging to the

two largest modules are coalesced into two “super nodes.”
The process is therefore described by a sequence of random
variables Xn = {0,1} such that when Xn = 0 the process

is in the starting subgraph G(2)
K−1, while if Xn = 1, then it

is in the complementary subgraph. At the initial time step
X0 = 0 and for the successive steps the probability that Xn =
Xn+1 is 1 − 2K−1P (2)(K,K,σ ), denoted with fK , while the
probability that Xn �= Xn+1 is 2K−1P (2)(K,K,σ ) = 1 − fK .
The probability to stay for n steps in the same branch of the
graph is

f n
K = [1 − 2K−1P (K,K,σ )]n ≈ e−n N (1−2σ )

2 , (23)

whose limits are

lim
K→+∞

lim
n→+∞ f n

K = 0, (24)

lim
n→+∞ lim

K→+∞
f n

K = 1. (25)

The noncommutability of the limits suggests that the distance-
dependent couplings encoded by J(2) induce the breakdown
of ergodicity in the thermodynamic limit. As shown in
Refs. [12,18], this has also important effects on the thermody-
namic performances of the network.

The mean time t(K) to first reach the opposite branch of
the network is

t(K) =
∞∑

n=1

nf (1 − fK )n−1 = 1

fK

−→
K→∞

∞,

and for finite-size systems it grows exponentially with the size.

IV. SPLITTING PROBABILITIES ON G(2)

As shown in the previous section, by tuning σ we can
modulate the degree of homogeneity of the pattern of weights
with qualitative consequences on the probability to reach far
(d ∼ K) and close (d = 1) nodes. Here we provide another
perspective to quantify how σ controls the reachability of
distant nodes; namely we look at the splitting probability
P (1|K) to first reach the single node at distance 1 without ever
visiting any node at distance K . P (K|1) is similarly defined
as the probability to first reach any node at distance K without
ever visiting 1. For these quantities, we expect the emergence
of a critical value σc (possibly depending on K) such that, for
σ < σc, the large number of nodes at distance K prevails and
P (K|1)/P (1|K) > 1, while for σ > σc, the inhomogeneity of
the pattern of weight prevails and P (K|1)/P (1|K) < 1.

Again, we consider a Markov chain defined on G(2) and
characterized by the transition probability P (2)(d,K,σ ) [see
Eq. (9)]. Since the nodes at the same distance from i are
indistinguishable, we can consider a simplified version of
G(2) where equivalent nodes are collapsed (see Fig. 4). The
resulting graph has size K + 1, accounting for nodes which
are at distance 1,2, . . . ,K from i and i itself (dii = 0).

In this way we build up a (K + 1) × (K + 1) transition
matrix M whose entry Mlm is the probability to jump from
a node j , such that dij = l, to another node k, such that
dki = m.1 We stress that M never coincides with the transition

1Notice that, in order to keep the notation simple, in Mlm the indices
actually run from 0 to K , which is the range of possible distances
among nodes.
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d = 0
d = 1 d = 2

d = 3

FIG. 4. Upper panel: Representation of G(2) for K = 3, where
the thickness and the darkness of links mirror the magnitude of the
related coupling. Lower panel: Fixing the leftmost node as starting
node, all the nodes sharing the same distance have been collapsed
into a unique “super node” whose size mirrors the number of nodes
collapsed; this number scales with the distance as 2d−1. Notice that
super nodes at distance d > 1 display a probability to remain on the
same node, represented by a self-loop. Again, the thickness and the
darkness of links mirror the magnitude of the related coupling.

matrix P(2) of the network, since the elements of M are
states of a random variable whose values are distances from
a generic starting node and not the nodes of the graph itself.
This formalization permits us to deal with transition matrices
with smaller dimensions [i.e., (K + 1) × (K + 1), rather than
2K × 2K ], maintaining a full consistency with the model. We
can now fix T = {0,2, . . . ,K − 1}, the set of transient states,
such that |T | = K − 1, and A = {1,K}, the set of absorbing
states, such that |A| = 2. If we reorder the columns and the
rows in a such a way that the transient states come first, then

we can write the following canonical form for M:

M =
(

Q R

0 I

)
, (26)

where the block Q is the transition (K − 1) × (K − 1)
submatrix whose elements are the probabilities to jump from
a transient state to another transient state, while R is the
(K − 1) × 2 submatrix whose entries are the probabilities
to jump from a transient state to an absorbing one. Also,
I is a 2 × 2 identity matrix representing the two absorbing
states, while 0 is a 2 × (K − 1) zero matrix that accounts for
the fact that it is impossible to escape from the absorbing
states. One can see that the probability that the process is
eventually absorbed is 1 for all K , that is, limn→∞ Qn = 0,
since the entries Qij < 1, ∀i,j = 1, . . . ,K − 1, with K <

+∞. Moreover, for an absorbing Markov chain, the matrix
I − Q has an inverse N, whose entries are the expected number
of times the process arrives in state j if it starts in state i.
Our goal is to determine the matrix E defined as E = NR
and of size (K − 1) × 2, where the elements Eij are the
probabilities that the stochastic process is absorbed in state
j if it starts in transient state i. The splitting probabilities
considered here correspond, respectively, to Ei1 = P (1|K)
and to Ei2 = P (K|1), where i is the starting generic node.

In Appendix A we show some algebraic passages which
allows us to simplify the expression for E in such a way that
its numerical calculation is fastened. Having an estimate for
P (K|1) and for P (1|K), we focus on the ratio

r(K,σ ) = P (K|1)

P (1|K)
, (27)

and we study its behavior as a function of σ when K

is fixed. As can be inferred from Fig. 5, the probability
P (1|K) of eventually reaching the node at distance 1 without
ever reaching any node at distance K is larger than its
complementary P (K|1) [i.e., r(K,σ ) < 1], provided that σ

is large enough (how large depends on the size of K). The
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FIG. 5. Left panel: Splitting probabilities P (K|1) and P (1|K) of being absorbed, respectively, at distance K and at distance 1, as functions
of σ and for different values of K (i.e., K = 10,15,20, as shown in the legend). Data are obtained via numerical simulations, with average over
103 realizations. The point where the curves intersect corresponds to σc and when σ > σc it is easier to jump to distant nodes rather than closer
nodes. Right panel: The values of σc extracted in this way are plotted as a function of K . Notice that σc grows with K , possibly reaching an
asymptotic value ≈0.8 represented by the solid line.
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threshold value, referred to as σc, can be estimated using the
matrix E [see also Eq. (A5)] and requiring Ei1 = Ei2. We find
that the critical value σc grows with K: A large size requires
a relatively large degree of inhomogeneity (i.e., large σ ) to
compensate for the fact that the number of nodes at maximum
distance is exponentially growing with K .

V. HITTING TIMES ON G(2)

In the previous sections we outlined that in infinite size
systems ergodicity can be broken and distant nodes cannot
be reached (see Sec. III). On the other hand, even in finite-
size systems inhomogenity induced by distance can be strong
enough (for large values of σ ) that far nodes are unfavored even
if their number is much larger than that of close nodes (see
Sec. IV). Hence, one would naively expect that if we look at a
single node at distance K and compare the mean first-passage
time τ (K) to that single node and the mean first-passage τ (1)
to the single node at distance 1, then τ (K)/τ (1) must increase
fast with the system size.

Actually, as we are going to show, even in a regime of high
inhomogeneity for G(2) (i.e., for σ relatively large), this ratio
exhibits a slow growth (if any). In general, the mean time to
first reach a vertex j starting from the vertex i depends on the
couple (i,j ) only through its distance dij . Thus, posing dij = d,
the mean time from i to j , referred to as τ (d) can be written as

τ (d) = P (d) +
d−1∑
l=1

2l−1P (l)[τ (d) + 1] +
d−1∑
l=1

2l−1P (d)

× [τ (l) + 1] +
k∑

l=d+1

2l−1P (l)[τ (l) + 1]. (28)

We remark that, to lighten the notation, the probability
P (d,K,σ ) to move toward a node at distance d from
our starting point is simply denoted as P (d), i.e.,
P (d) = P (2)(d,K,σ ) = J (2)(d,K,σ )/w(2)(K,σ ).

Now Eq. (28) contains four contributions to be computed.
The first one represents the probability to move directly from
the source i to the target j ; in the second one the process jumps
at the beginning toward one of the nodes h such that dih < dij

(implying dhj = dij ) and then it arrives on the target; the third
one describes the probability to jump toward one of the sites
at distance d but differing from j and then to arrive on j ; and,
finally, one considers the stochastic process going away from
the target toward a node h such that dhj > dij and then arriving
on the target.

With some algebraic manipulations we build up the differ-
ences between terms for d + 1 and d and between terms for
d + 2 and d + 1, obtaining the following expression:

τ (d + 2) − [1 + A(d,K,x)]τ (d + 1) + A(d,K,x)τ (d) = 0,

(29)

where A(d,K,x) = [xK+1−d − 1]/[2(xK−1−d − 1)], and x =
22σ−1. As shown in Appendix B, starting from Eq. (29), one
can prove that

τ (K)

τ (1)
= 1 + (x−1)

xK − 1

2K

K−1∑
m=1

(2x)m

(1 − xm)(1 − xm+1)
. (30)

By further handling this expression (again details can be found
in Appendix B), one can see that the behavior of τ (K)

τ (1) with
respect to K depends qualitatively on σ . In fact, in the limit of
large K , when σ = 1 the ratio between times grows linearly
with K (i.e., logarithmically with the system size), while for
σ < 1 it always reaches an asymptotic value corresponding
to 1/(2 − x). This means that, in order for τ (K) to scale
qualitatively faster than τ (1) as the size is increased, a very
inhomogeneous patter of couplings is required; as long as
σ < 1, τ (K) and τ (1) remain comparable. Basically, when σ

is small, the pattern of weights is rather homogeneous and
the mean time to reach any node2 is comparable to τ (1),
similarly to what is expected for the (bare) complete graph case
(recoverable in the limit σ → 1/2). On the other hand, even in
a regime of rather high heterogeneity (say, σ = 0.9) and for a
size N = 2K ≈ O(103), the time to first reach a particular node
at distance K is only 4 times larger (roughly) than the mean
time to reach the closest node, although the related transition
probabilities are P (K,K,σ )/P (1,K,σ ) ≈ N−2σ . This picture
is corroborated numerically, as shown in Fig. 6.

VI. ASYMPTOTIC PROPERTIES ON G( p)

In this section we extend the analysis of the asymptotic
properties already accomplished on G(2) (see Sec. III) to
the general case of G(p) [again G(p)

K = G(p) holds]. The
deterministic modularity characterizing G(p) allows us to carry
on the same analysis already explained for the case with p = 2,
but, as we will see, the differences in the nature of couplings
give rise to qualitative differences.

Let us consider a Markov process on G(p) with transition
matrix P(p) of size N × N with N = pK , and such that P (p)

ij =
P (p)(dij ,K,σ ) = J (p)(dij ,K,σ )/w(p)(K,σ ), as defined in (5);
as usual, dij represents the distance between the nodes i

and j .
Now let us evaluate under which conditions, if any, the

transition probability favors close nodes, namely where the
following inequality holds:

P̃ (p)(d,K,σ ) =
d∑

l=1

(p − 1)pl−1P (p)(l,K,σ )

>

K∑
l=d+1

(p − 1)pl−1P (p)(l,K,σ )

= 1 − P̃ (p)(d,K,σ ), (31)

where pl−1(p − 1) is the total number of nodes at distance l.
In the limit K → ∞ we get

1 − p−d(p−3+2σ ) > p−d(p−3+2σ ) ⇒ σ >
3d − pd + logp(2)

2d
.

(32)

The previous result provides the interval where a stochastic
process living on the graph G(p) is favored to reach a site at

2Indeed, if this holds for τ (K), then it holds a fortiori for any τ (d)
with d < K .
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FIG. 6. Left panel: Trend of the ratio τ (K)/τ (1) versus σ ∈ (0.5,1] and for different choices of K as shown in the legend; the rate of growth
increases with the size. Right panel: Trend of τ (K)/τ (1) versus K ∈ [2,12] and for different choices of σ as shown in the legend. Notice that
τ (K)/τ (1) exhibits a peak at a value of K which depends monotonically with σ . The values of τ (1) and τ (K) are obtained via the inverse
pseudo-Laplacian method.

distance less or equal than d. Of course, if we fix p = 2 we
recover the interval already obtained in Sec. III. Moreover,
for p � 3, the right-hand side of the inequality is always
(i.e., ∀d � 1) < 1/2 in such a way that, for any σ ∈ 91/2,1],
jumping to the p − 1 nearest nodes is still the most likely
outcome.

Now let us estimate the probabilities to stay for n steps
at minimum distance. In this general case, where p � 3, the
stochastic process can remain within a distance 1 from the
origin choosing uniformly among a set of (p − 1) other sites.
We call qK = P (p)(1,K,σ ) the probability to jump to one of
the closest nodes, so we can compute the probability to remain
up to the time step n in the subset made of the p sites at distance
1. In this case we have

qn
K =

[
(p′ − p)(1 − Np−2+2σ )

(N − 1)(p′ − p) + p′Np−2+2σ (1 − p)

]n

. (33)

Considering the limit for K → ∞ and n → +∞, we have that

lim
n→∞ lim

K→∞
qn

K = lim
n→∞

[
(p′ − p)

p′(p − 1)

]n

= 0, (34)

lim
K→∞

lim
n→∞ qn

K = 0, (35)

since qK < 1. Therefore, it is not possible to force the process
to stay permanently in the same p-plet of sites. Of course,
fixing p = 2, we recover the same computations of Sec. III.
The time to first escape from a fixed p-plet is

t(1) =
+∞∑
n=1

nqn−1
K (1 − qK )

= (p′p − 1)Np−2+2σ + pN (p′ + 1) + p(p′ − 1)

(pp′ − 2p′ − p)Np−2+2σ + pN + 2(p′ − p)

−−−→
N→∞

pp′ − 1

pp′ − 2p′ − p
. (36)

Analogously to the case p = 2, t(1) increases as σ

increases, consistently with the fact that P (p)(K,1,σ ) is

monotonically increasing with respect to σ ; also, t(1) remains
finite regardless of the parameters σ and K .

We can also look at G(p) as a network composed by p

modules at distance K from each other and evaluate the
probability to stay for n steps in one of the p communities.
This can be formalized as already shown for the case with
p = 2 (see Sec. III): We consider a sequence of random
variables Xn = {0,1} such that when Xn = 0 the process
is in the original community, while if Xn = 1, then it is
in one of the sites of the other p − 1 branches. Denoting
with fK the probability that Xn+1 = Xn, namely fK = 1 −
(p − 1)pK−1P (p)(K,K,σ ), and, accordingly, with 1 − fK the
probability that Xn+1 �= Xn, we can write the probability to
stay for n steps in the same community as

f n
K = [1 − (p − 1)pK−1P (p)(K,K,σ )]n ≈e

−n
p−1
p

NP (p)(K,K,σ )
.

(37)

Computing the limits for K → +∞ and n → +∞ we get

lim
K→+∞

lim
n→+∞ f n

K = 0,

lim
n→+∞ lim

K→+∞
f n

K = 1,

where we used the fact that P (p)(K,K,σ ) tends to zero as K

tends to infinity for all p � 2. Hence, again, in the limit of
infinite size, ergodicity is broken.

VII. HITTING TIMES ON G( p)

We now investigate the mean time τ (1) to first reach a node
at distance 1 and the mean time τ (K) to first reach a node at
distance K on G(p) with p � 3. To this aim we start extending
Eq. (28) as

τ (d) = P (d) + (p − 2)pd−1P (d)[τ (d) + 1]

+
d−1∑
l=1

(p − 1)pl−1P (l)[τ (d) + 1]
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FIG. 7. Left panel: Trend of the ratio τ (K)/τ (1) with respect to K for p = 3 and for three different values of σ , as explained by the legend.
As one can easily see, there is a strong increasing trend of this ratio that grows linearly with respect to K as showed in Eq. (42) and that outlines
how a stochastic process cannot easily reach sites at maximum distance, since the time necessary to arrive there for the first time is extremely
large with respect to the time necessary to reach the p nearest neighbors. Right panel: The same analysis was carried on for p = 6, outlining
again the same behavior explained for p = 3.

+
d−1∑
l=1

(p − 1)pl−1P (d)[τ (l) + 1]

+
K∑

l=d+1

(p − 1)pl−1P (l)[τ (l) + 1], (38)

where, again, we posed P (d) = P (p)(d,K,σ ). The contribu-
tions of the previous expression are the same as the ones for
G(2), but, in this case, we have to consider that, for example,
at the k-th level, the network is formed by p communities
each formed by pk−1 elements. Thus, the stochastic process
could make a jump toward a node at distance d that is in a
different community than the one where the target is. This
fact is accounted for by the term (p − 2)pd−1P (d)[τ (d) + 1].
With some algebraic manipulations we write again a difference
equation involving τ (d + 2), τ (d + 1) and τ (d), obtaining

τ (d + 2) − [1 + B(d,K,x)]τ (d + 1) + B(d,K,x)τ (d) = 0,

(39)

where B(x,K,d) = (xK+1 − xd )/[p(xK − xd+1)], and x =
pp−3+2σ . Now Eq. (39) has the same form of (29), and we
can proceed analogously (see also Appendix B), obtaining the
following expression for τ (K):

τ (K) = τ (1)[1 + (xK+1 − xK )(xK − 1)]

×
K−1∑
j=1

xjp−j

(xj − xK )(xj − xK+1)
, (40)

= τ (1)[1 + (x − 1)(xK − 1)]
1

pK

×
K−1∑
m=1

(px)m

(1 − xm)(1 − xm+1)
, (41)

where in the last line we reshuffled the sum with proper new
indexes. Proceeding in the same way as we did for the case
with p = 2, we can study the asymptotic behavior of the ratio

τ (K)/τ (1), arriving at

τ (K)

τ (1)
≈ 1 + C(x,p)Np−4+2σ , σ ∈ (1/2,1],

(42)
p > 2, as K → ∞,

where C(x,p) is a constant depending on the choice of x and p.
It is worth noticing that the exponent of N is always positive,
due to the restrictions made on p and σ . This allows us to
state that, as p � 3, the ratio τ (K)/τ (1) scales with the size
of the system for every choice of σ as checked in Fig. 7. Thus,
differing from the case p = 2, no asymptotic value is retained.
This means that when the size of the modules that compose the
network is larger than 2, the time necessary to reach nodes at
maximum distance from a starting point grows with the system
size faster than the time necessary to reach the nearest sites,
regardless of the value of σ . This is consistent with fact that,
in the thermodynamic limit, a stochastic process is, for any
choice of σ , more likely to jump to the closest node (see the
first part of Sec. VI) despite the number of farthest nodes is
much larger.

Before concluding we stress that a qualitative difference in
the first-passage features of G(2) and G(p) can be highlighted
also by looking at the splitting probabilities. In fact, as
discussed in Appendix C, when p > 2 the stochastic process
is always (i.e., regardless of σ and of K) more likely to first
visit the closest node rather than any node set at the largest
distance despite the latter subset grows exponentially with K .

VIII. CONCLUSIONS

In this work we focused on the influence of the topology
of hierarchical, recursively grown, weighted graphs G(p) on
the stochastic processes embedded on them. These structures
provide interesting generalizations for mean-field models
in statistical mechanics and, in particular, the case p = 2
corresponds to the Dyson ferromagnetic model, while the case
p > 2 corresponds to systems with p-wise interactions (e.g.,
p-spin models). The main feature of this class of networks
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is the metric induced by their construction: A couple of
nodes are said to be at distance d if they are connected at
the d-th iteration. In particular, if one performs overall K

iterations, links between nodes connected at the first iteration
(so at distance 1) display a higher weight with respect to
links between nodes connected at the K-th iteration (i.e.,
at the maximum distance K). Further, weights on links are
modulated by a tuneable, positive parameter σ .

For the stochastic process considered, the probability to
move from one state to another state is given (upon proper
normalization) by the weight associated to the link connecting
the two corresponding nodes. We therefore expect that its
behavior crucially depends on σ and on the size p of the
smallest module.

First, we focused on the case p = 2 and we analyzed the
asymptotic properties showing that ergodicity breaks down in
the infinite size limit and, in a single jump, as long as σ is large
enough, “distant” nodes are unlikely to be reached despite their
number is exponentially larger than that of “close” nodes.

Further, we dealt with the splitting probabilities to first
reach sites at distance 1 without ever reach sites at distance
K (i.e., P (1|K) and vice versa [i.e., P (K|1)]. We recovered
the existence of a critical value σc such that P (K|1) > P (1|K)
for every σ < σc, while P (1|K) > P (K|1) if σ > σc. This fact
outlines how the pattern of couplings is shaped by σ : For large
values of σ the pattern is rather inhomogeneous in such a way
that the stochastic process is more likely to reach the nearest
neighbors with respect to any node at maximum distance,
despite their number is much larger. Conversely, for small
values of σ the pattern of weights is rather homogeneous and
the interaction strength between two sites at minimum distance
cannot compensate the larger number of sites at maximum
distance. Interestingly, this feature matches with the findings
obtained from a statistical mechanics perspective for the Dyson
ferromagnetic model [19], where a threshold value for σ is
found, such that if σ � 3/4, then the mean-field approximation
is correct, while if 3/4 < σ � 1 the model has a non-mean-
field behavior.

Moreover, we studied the ratio between the hitting time
τ (K) to first reach a single node at the maximum distance K

and the hitting time τ (1) to first reach the nearest neighbor.
Also in this case, the role of σ is crucial, in fact, despite the
fact that τ (K) > τ (1) always holds, the lower σ and the closer
τ (K)/τ (1) to 1. In this case the existence of an asymptotic
value for τ (K)/τ (1) for σ ∈ (1/2,1) emerges while for σ = 1
the ratio scales linearly with K .

Finally, we extended these analyses to the general case G(p),
when p > 2. Again, we studied the asymptotic properties of

the stochastic processes living on G(p), and in this case it
turns out that, in the infinite-size limit, nodes within any fixed
distance d � 1 are always (i.e., for any choice of σ ) most
likely to be reached, that is to say, inhomogeneity always
prevails. Moreover, as long as the size of the graph is finite, the
study performed on the splitting probability and hitting times
does not highlight the existence of any threshold value of σ

able to qualitatively affect the behavior of P (1|K)/P (K|1)
and τ (K)/τ (1), and the logarithm of the latter scales linearly
with K .

We can conclude that inG(p) the interplay between σ , which
rules the interaction strength between nodes, and p, which
represents the size of the smallest module, can qualitatively
change the features of the network. Moreover, by tuning
p from p = 2 to p > 3, the emerging properties for the
stochastic process defined on G(p) change abruptly, somehow
analogously to what happens in the statistical mechanics
ferromagnetic (mean-field) models, where the phase transition
looses criticality for p > 2 (see e.g., Ref. [20]).
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APPENDIX A: SPLITTING PROBABILITIES ON G(2)

Let us consider the transition matrix M defined in Eq. (26):
As the size K grows, the number of transient states grows, and,
in particular, we can define a recurrence law for the definition
of Q. In fact, one has a sequence of matrices {Q}K of size
(K − 1) × (K − 1), where K = 2, . . . , + ∞ is the value of
the maximum distance of the system, such that

Q2 = 0, for K = 2,
(A1)

QK =
(

QK−1 b
c γ

)
, for K > 2,

where b is a (K − 2) × 1 column vector whose entries are bi =
2(K−1)P (2)(K,K,σ ), for every i = 1, . . . ,K − 2, c is a 1 ×
(K − 2) row vector whose entries are ci = 2i−1P (2)(K,K,σ ),
with i = 1, . . . ,K − 2, γ = ∑K−2

l=1 2l−1P (2)(l,K,σ ), and on
the top left we have a block matrix of dimension (K − 2) ×
(K − 2) whose entries are the same of the matrix Q when the
generation of the system is K − 1 but computed with respect
of the total number of level K . This means that, for example,
for K = 3, K = 4, and K = 5, respectively, the matrix Q, has
the following form:

Q3 =
[

0 2P (2,3,σ )
P (2,3,σ ) P (1,3,σ )

]
, K = 3,

Q4 =
⎡
⎣ 0 2P (2,4,σ ) 4P (3,4,σ )

P (2,4,σ ) P (1,4,σ ) 4P (3,4,σ )
P (3,4,σ ) 2P (3,4,σ ) P (1,4,σ ) + 2P (2,4,σ )

⎤
⎦, K = 4, (A2)

Q5 =

⎡
⎢⎢⎣

0 2P (2,5,σ ) 4P (3,5,σ ) 8P (4,5,σ )
P (2,5,σ ) P (1,5,σ ) 4P (3,5,σ ) 8P (4,5,σ )
P (3,5,σ ) 2P (3,5,σ ) P (1,5,σ ) + 2P (2,5,σ ) 8P (4,5,σ )
P (4,5,σ ) 2P (4,5,σ ) 4P (4,5,σ )

∑3
l=1 2l−1P (l,5,σ )

⎤
⎥⎥⎦, K = 5,
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where we posed P (d,K,σ ) = P (2)(d,K,σ ) [see Eq. (11)], dropping the index p = 2 to simplify the
notation.

One can prove that at every iteration k, the matrix Qk contains a top-left block, equal to the matrix Qk−1, with corresponding
entries depending on its effective size. In general, once the structure of {Q}l , l = 1, . . . ,K has been defined, we are going to
lighten the notation, writing only Q, to refer to the iteration of a fixed K . The most important argument is that, for all K ∈ N,
K � 1, Q has always the same block form. Using this fact, the computation of the matrix N becomes easier, since one knows
that

N = (I − Q)−1 =
(

I − Q b
c 1 − γ

)−1

=
(

A b
c δ

)−1

=
(

A−1 + δ−1A−1bcA−1 −δ−1A−1b
−δ−1cA−1 δ−1

)
=

(
S v
u δ−1

)
, (A3)

where, in the second line, we posed A = I − Q and δ = 1 − γ , while, in the last line, we posed S = A−1 + δ−1A−1bcA−1,
v = −δ−1cA−1b, and u = −δ−1cA−1. In particular, in the third line, we applied the formula for the inversion of block matrices,
in fact, N is still formed by four blocks of size (K − 2) × (K − 2), (K − 2) × 1, 1 × (K − 2), and 1 × 1. Multiplying N and R,
that has the form

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P (1,K,σ ) 2K−1P (K,K,σ )

P (2,K,σ ) 2K−1P (K,K,σ )
...

...
P (K − 2,K,σ ) 2K−1P (K,K,σ )

P (K − 1,K,σ ) 2K−1P (K,K,σ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

we obtain the following:

E = NR =

⎛
⎜⎜⎜⎜⎜⎝

∑K−2
j=1 s1,jP (j,K,σ ) + v1P (K − 1,K,σ )

∑K−2
j=1 s1,j 2K−1P (K,K,σ ) + v12K−1P (K,K,σ )

...
...∑K−2

j=1 sK−2,jP (j,K,σ ) + vK−2P (K − 1,K,σ )
∑K−2

j=1 sK−2,j 2K−1P (K,K,σ ) + vK−22K−1P (K,K,σ )∑K−2
j=1 ujP (j,K,σ ) + δ−1P (K − 1,K,σ )

∑K−2
j=1 uj 2K−1P (K,K,σ ) + δ−12K−1P (K,K,σ )

⎞
⎟⎟⎟⎟⎟⎠,

(A5)

where sij are the entries of the matrix S and vj are the elements of the vector v defined in (A3). The entry Eij of the matrix E is
just the probability to jump from a node at distance i from n to a node at distance j from n. Since we took as starting point of the
stochastic process the node n, which corresponds to be in the state 0 (i.e., at distance 0), we consider only the first row of E, which
represents the probability to jump from n toward a state at distance one (first column), or the opposite branch (second column).

APPENDIX B: MEAN FIRST-PASSAGE TIMES ON G( p)

We start our discussion referring to the case p = 2, and then we are going to generalize the results on p > 2. The finite
difference equation (29) can be solved analytically, obtaining the following expression for the mean time τ (d) to first arrive to a
given node at distance d:

τ (d) = τ (1) + τ (1)

[
xK−1(x − 1)

2(xK−1 − 1)

] d−1∑
j=1

j−1∏
l=1

A(j,K)

= τ (1) + τ (1)

[
xK−1(x − 1)

2(xK−1 − 1)

] d−1∑
j=1

21−j xj (xK − 1)(xK − x)

(xj − xK )(xj − xK+1)
(B1)

= τ (1) + τ (1)

(
xK − xK−1

xK−1 − 1

)
(xK − 1)(xK − x)

d−1∑
j=1

2−j xj

(xj − xK )(xj − xK+1)

= τ (1)

⎡
⎣1 + xK (x − 1)(xK − 1)

d−1∑
j=1

xj

2j (xj − xK )(xj − xK+1)

⎤
⎦, (B2)

with τ (1) the mean time to first reach a node at distance 1 on a graph with 2K nodes.
In particular, let us focus on the case d = K , then Eq. (B2) becomes

τ (K) = τ (1)[1 + xK (x − 1)(xK − 1)]
K−1∑
j=1

2−j xj

(xj − xK )(xj − xK+1)
,
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that is

τ (K)

τ (1)
= 1 + [xK (x − 1)(xK − 1)]

K−1∑
j=1

2−j xj

(xj − xK )(xj − xK+1)
, (B3)

where, we recall, x = 22σ−1.
Our goal is to study the behavior of the ratio τ (K)/τ (1) with respect to σ and to K . First, we can rewrite the Eq. (B3) in a

more convenient way, that is,

τ (K)

τ (1)
= 1 + (x − 1)

xK − 1

2K

K−1∑
m=1

(2x)m

(1 − xm)(1 − xm+1)

= 1 + (x − 1)
xK − 1

2K

[
m∑

m=1

(2x)m

(1 − xm)(1 − xm+1)
+

K−1∑
m=m

(2x)m

(1 − xm)(1 − xm+1)

]
, (B4)

where m < K is a suitable integer number. Since we are interested in the asymptotic behavior of τ (K)/τ (1), we can fix K � 1
and m � 1, the latter being independent of K . Therefore, we can approximate the second sum in Eq. (B4) as

K−1∑
m=m

(2x)m

(1 − xm)(1 − xm+1)
≈

K−1∑
m=m

(2x)m

x2m+1
= 1

x

K−1∑
m=m

2mx−m = 1

x − 2

[
2m

xm
− 1

2K(2σ−2)

]
. (B5)

Plugging Eq. (B5) into Eq. (B3), we can state that, for large
K , the ratio τ (K)/τ (1) can be approximated as

τ (K)

τ (1)
≈ 1 + x − 1

x − 2

xK − 1

2K

[
C(m,x) + 2m

xm
− 1

2K(2σ−2)

]
,

(B6)

where C(m,x) is the contribution of the first term of the right-
hand side of Eq. (B4).

We have now to focus on two separated cases corresponding
to σ ∈ (1/2,1) and to σ = 1, respectively (Fig. 8). In the
former case, letting K grow, and considering the infinite
size limit, we show the existence of an asymptotic value for
τ (K)/τ (1) as

τ (K)

τ (1)
−−−→
K→∞

1 − x − 1

x − 2
= 1

2 − x
, x ∈ (1,2). (B7)

In the latter case σ = 1 (that is x = 2), and the sum in Eq. (B5)
grows linearly with K in such a way that Eq. (B6) becomes

τ (K)

τ (1)
≈ 1 + 1

2
K. (B8)

It is worth noting that as σ → 1/2, the asymptotic value of
the ratio tends to 1, and this confirms that as σ tends to its lower
bound, and the size of the graph grows, the graph G(2) recovers
a fully connected network with homogeneous weights of the
links. Conversely, when σ = 1, the asymptote disappears and
the linear growth of the ratio highlights that the dependence of
τ (1) and of τ (K) on the system size qualitatively differs.

Finally, we deepen another feature characterizing the
dependence of τ (K)/τ (1) from K: As one can see in Fig. 6,
τ (K)/τ (1) exhibits a peak in such a way that for relatively
small values of K the ratio between times grows with K , while
for relatively large values it decreases asymptotically towards
1/(2 − x). To this aim, let us focus on the difference �(K) =
τ (K + 1)/τ (1) − τ (K)/τ (1) and let us study its behavior as
a function of K and of σ . Basically, �(K) represents the
numerical derivative of the ratio and the peak of τ (K)/τ (1)

corresponds to the vanishing of �(K). As one can see in Fig. 9,
�(K) does change sign and this effect is especially pronounced
for small values of σ . On the other hand, when σ gets closer
to 1, �(K) vanishes at larger and larger values of K and its
minimum value is, in magnitude, smaller and smaller. When
σ = 1, �(K) never vanishes and tends to 1/2 asymptotically.
This is perfectly consistent with the results outlined above.

This discussion can be extended to the case p > 2; in fact,
recalling that x = pp−3+2σ and starting from

τ (K)

τ (1)
= 1 + (x − 1)

xK − 1

pK

K−1∑
m=1

(px)m

(1 − xm)(1 − xm+1)
,

(B9)
we can again study the trend of the sum in such a way that

τ (K)

τ (1)
≈ 1 + (x − 1)

xK − 1

pK

×
[
C(x,m) +

K−1∑
m=m

(px)m

(1 − xm)(1 − xm+1)

]

≈ 1 + (x − 1)
xK − 1

pK

[
C(x,m) +

K−1∑
m=m

(px)m

x2m+1

]

= 1 + x − 1

x − p

xK − 1

pK

[
C(x,m) +

(
p

x

)m

−
(

p

x

)K]
,

(B10)

where m � 1, m � K , and K � 1. Now, considering the limit
k → ∞ of Eq. (B10), we obtain

τ (K)

τ (1)
≈ pK(p−4+2σ ) −−−→

K→∞
∞, (B11)

since, in this case x > p, for every choice of σ ∈ (1/2,1] and
p > 2.
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FIG. 8. Left panel: The ratio τ (K)/τ (1) is plotted versus K ∈ [10,40] for several choices of σ ∈ (1/2,1), as shown in the legend. Data
obtained by numerical evaluating Eq. (B2) (symbols) are compared with the asymptotic value obtained analytically in Eq. (B7). Right panel:
The ratio τ (K)/τ (1) is plotted versus K ∈ [10,40] for σ = 1. As one can see, its behavior qualitatively differs from the one shown in the left
panel and characterizing the case σ < 1, in fact, here τ (K)/τ (1) grows linearly with K . Data obtained by numerical evaluating Eq. (B2) (◦)
are compared with the result obtained analytically in Eq. (B8).

These results corroborate the estimates presented in
Sec. VII about the trend of the ratio of the mean first-passage
times for graphs with p > 2.

APPENDIX C: SPLITTING PROBABILITIES ON G( p)

In this Appendix we summarize the results found for the
splitting probabilities on G(p), analogously with the treatment
followed for G(2) and presented in Sec. IV. Once again, fixing
generic site i, we are going to define a Markov chain whose
states are {0,1, . . . ,K}, that is, all the possible distances from
i. In particular, as already shown for G(2), we are going to
consider the states 1 and K as absorbing states, while all the
others are transient. In this way we build up a transition matrix
M whose entry Mlj is the probability to jump from a node at
distance l from i toward a node at distance j from i. We can

now proceed using the same arguments proposed in Sec. IV,
since the only difference between this model and the one with
p = 2 is in the specific probabilities necessary to jump from
a state to another. In this case, as one expects, we recover a
completely different result: The probability P (K|1) of being
absorbed at distance K , where K is the maximum reachable
distance, is, for all p > 2, always close to 0, while P (1|K) is
always almost or equal to 1 (see Fig. 10). This means that a
stochastic process starting its path on a generic node n will
almost surely be absorbed at sites at distance 1, while the
probability of being absorbed at any node at distance K is
vanishing, although their number grows exponentially with K

as N = pK . This confirms again that in G(p) the overall weight
of the longest links is negligible with respect to the the overall
weight of the shortest links.

0 20 40
−0.1

0

0.1

0.2

K

τ
(K

+
1
)

τ
(1

)
−

τ
(K

)
τ
(1

)

0 20 40
−0.1

0

0.1

0.2

K
0 20 40

0

0.2

0.4

K

0 20 40

0

0.2

0.4

K

τ
(K

+
1
)

τ
(1

)
−

τ
(K

)
τ
(1

)

0 20 40
0

0.2

0.4

K 0 20 40
0.4

0.6

0.8

1

K

σ = 0.5001 σ = 0.6 σ = 0.7

σ = 0.8 σ = 0.9 σ = 1

FIG. 9. We calculate the mean first passage time to the farthest node τ (K) and to the closest node τ (1) via numerical evaluation of Eq. (28)
and we consider their ratio τ (K)/τ (1). Then, the discrete derivative τ (K + 1)/τ (1) − τ (K)/τ (1) is evaluated and plotted versus K ∈ [2,40].
Several choices of σ ∈ (0.5,1] are displayed in different panels, as indicated. Notice that the observable considered displays a minimum which
gets smoother and corresponds to larger values of K as sigma is made larger.
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FIG. 10. Splitting probabilities P (1|K) and P (K|1) for p = 3 (left panel) and p = 4 (right panel) as a function of σ and with K = 5 fixed.
Data points are obtained via numerical simulations with average over 103 realizations. Notice that, for all values of σ , the stochastic process
never reached any state at distance K before the state at distance 1. This markedly differs from the behavior obtained for p = 2 and shown in
Fig. 5.
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