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This work studies universal finite size scaling functions for the number of one-dimensional spanning avalanches
in a two-dimensional (2D) disordered system with boundary conditions of different nature and different aspect
ratios. To this end, we will consider the 2D random field Ising model at T = 0 driven by the external field H with
athermal dynamics implemented with periodic and forced boundary conditions. We have chosen a convenient
scaling variable z that accounts for the deformation of the distance to the critical point caused by the aspect ratio.
In addition, assuming that the dependence of the finite size scaling functions on the aspect ratio can be accounted
for by an additional multiplicative factor, we have been able to collapse data for different system sizes, different
aspect ratios, and different types of the boundary conditions into a single scaling function Q̂.
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I. INTRODUCTION

The theory of universal finite-size scaling (FSS) functions
has been broadly used in simulations of finite systems close
to criticality in order to extrapolate numerical results to the
thermodynamic limit [1]. In two-dimensional (2D) square
lattices of sizes Lx × Ly , these functions depend on the aspect
ratio a = Ly/Lx [2]. The properties of universal FSS functions
when the aspect ratio, as well as boundary conditions, are
changed have been studied in different works [3–10].

Within the context of percolation theory [11], analysis of the
effects of rectangular boundaries on the spanning probability
was studied by Langlands [3], who numerically showed that at
the critical threshold there exists a universal scaling function of
the aspect ratio. The study was based on symmetry arguments
for the crossing probabilities. Inspired by the numerical results
of Langlands, Cardy [4] derived an analytical expression
using conformal invariance of the spanning probability in
2D percolation. Other numerical studies deal with both this
problem as well as some variations in geometries and boundary
conditions [5–7]. Okabe et al. studied shape effects and
boundary conditions for Ising models [8,9] by analyzing
the Binder parameter and magnetization curves. Hucht also
studied symmetries of universal FSS functions in anisotropic
systems by checking a symmetry hypothesis through Monte
Carlo simulations of the 2D in-plane Ising model [10].

To the best of our knowledge, the effects of having a
rectangular shape as well as different boundary conditions
on FSS functions have not been studied in the 2D random
field Ising model (RFIM) with athermal dynamics [12]. In
this case, we would expect that quenched disorder as well
as the metastable character of the dynamics would strongly
determine the spanning cluster [11].

The athermal (T = 0) RFIM has been commonly used to
explain Barkhausen noise in ferromagnetic materials [13]. In
many cases, ferromagnetic coupling is so strong that it is not
necessary to consider temperature as a relevant parameter in
the model. During the field-driven magnetization process, free
energy barriers are so large that thermally activated events
are negligible. By considering interactions between spins,

quenched disorder in the sample, and the external magnetic
field, the RFIM offers a good explanation of hysteresis and
crackling noise (avalanche dynamics).

The model is also applicable to other physical systems such
as structural transitions, capillary condensation of gases in
porous solids, etc. [13,14]. All of these phenomena commonly
share the existence of a first-order phase transition and
hysteresis. Metastable states separated by high-energy barriers
appear in the free energy landscape.

When the external force is increased (for example, the
magnetic field), the conjugated variable (magnetization)
responds discontinuously. These nonequilibrium collective
events, known as “avalanches,” are essentially due to the sys-
tem jumping from one metastable state to another. The prop-
erties of these avalanches strongly depend on the quenched
disorder present in the system, which determines which sites
of the system are more favorable to nucleate or not.

The lower critical dimension of the RFIM is known to
be dc = 2 in the equilibrium case [15]. This implies that
ferromagnetic order will not occur for d � 2. It is not
completely clear if the lower critical dimension is still dc = 2
for the RFIM with local metastable dynamics at T = 0. Sethna
and coworkers opened the door to a possible existence of
long-range order in this case [16]. Nevertheless, it has been
necessary to examine larger system sizes in order to determine
whether the critical value of the model parameter determining
the amount of quenched disorder σc was finite or not, in
the thermodynamic limit. Recently Spasojević and coworkers
found numerical evidence of a critical point, below which
(σ < σc) the system orders ferromagnetically. This evidence
was based on the FSS collapse of the curves corresponding to
magnetization [17], distribution of avalanche sizes [18], and
number of spanning avalanches [19].

In order to study the effect of both the aspect ratio and
boundary conditions on universal FSS functions, we will focus
on the number of spanning avalanches in one direction [19,20].
Spanning avalanches, strictly speaking, are well-defined ob-
jects only in finite-size simulations with square or rectangular
boundaries. They correspond to magnetization events of size
S that extend, at least, from one side of the system to the
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opposite one. They can be classified as one-dimensional (1D)
spanning or 2D spanning, depending on whether they span the
system in one or two spatial directions. Nevertheless, in the
thermodynamic limit such avalanches correspond to infinite
objects not necessarily massive (i.e., S/L2 → 0) similar to the
infinite cluster [11] within percolation theory.

Different strategies may help in understanding the critical
nature of such objects. A first possibility is to study their
behavior when the shape of the finite system is changed by
simulating not only square, but also rectangular, boundary
conditions with a certain aspect ratio a. A second strategy
is to study spanning objects when the physical nature of the
finite boundaries is changed. Numerical simulations often use
periodic boundary conditions (PBCs). Such spatial boundaries
are the most adequate to minimize finite-size effects when
studying a first-order phase transition that occurs due to a
local nucleation process. However, some forced boundary
conditions may help in the understanding of models with
propagating front dynamics. Typically, this is done by keep-
ing periodic boundaries in one direction, while fixing the
boundaries in the other direction to be in the two different
coexisting phases. We will refer to these as fixed boundary
conditions (FBCs). Seppälä et al. [21] found evidence of front
roughening effects in the equilibrium RFIM at T = 0 with
FBCs without an external field. The model has metastable
dynamics but is restricted to nucleation close to the interface.
This model was studied within the context of a depinning
transition [22] and was also used for the study of morphological
changes in the invading front [23]. The ground state of the
equilibrium three-dimensional (3D) RFIM was studied by
Middleton and Fisher by using a variety of fixed boundary
conditions, and then the results were compared with periodic
boundaries [24].

In this work, we present a numerical study of the number
of 1D spanning avalanches N1 in the metastable 2D RFIM
using the two strategies described above. The subscript 1 is not
relevant for this paper but will be kept in order to be consistent
with previous works [19,20]. The model and the simulation
details are presented in Sec. II. Results corresponding to the
FSS analysis for rectangular PBCs are presented in Sec. III A.
We will obtain FSS functions that include the dependence on
the aspect ratio a. The analysis of FBCs and different aspect
ratios is presented in Sec. III B. In this case we obtain FSS
functions with two additive contributions: the first is the same
as for PBCs, and the second one is related to a roughening
transition of the interface. Finally, a summary and conclusions
are presented in Sec. IV.

II. MODEL

Ising models consist of an ensemble of N interactive spins
situated at the nodes of a D-dimensional lattice. Spins can take
the values si = ±1. The RFIM is a variant of these kinds
of models, which includes quenched disorder (impurities,
dislocations, vacancies, etc.), that distorts the free-energy
landscape. The Hamiltonian describing this model is

H = −
∑
〈ij〉

J sisj −
∑

i

(H + hi)si . (1)

The first term accounts for the ferromagnetic interaction with
nearest neighbors. For simplicity, we consider J = 1. H is the
external field and {hi} are local quenched random fields, which
are independent and Gaussian distributed according to

ρ(h) = 1√
2πσ 2

exp

(
− h2

2σ 2

)
, (2)

where σ characterizes the amount of disorder present in the
system. We study a 2D square lattice with a rectangular shape
(N = Lx × Ly,a = Ly/Lx). In order to generate metastable
dynamics, it is necessary to establish a criterion to determine
under which conditions the system remains at a local minimum
of the energy landscape. Following Sethna’s rule [12], a spin
is stable when it is aligned with its effective field:

heff
i =

z∑
k

sk + H + hi, (3)

where the sum extends over the z neighbors of the spin si ,
which in the case of a 2D square lattice is z = 4. Following
this deterministic rule, a spin flips when its effective field
changes sign. A flipping event changes the value heff

k of its
nearest neighbors, and any of these could become unstable.
The process continues in the same way analyzing successive
shells and originating an avalanche of flipping spins. The size
S of the avalanche corresponds to the number of spins that
have changed their state, whereas the duration T corresponds
to the number of shells needed to complete the avalanche.
Simulations start with all the spins pointing downwards ({si =
−1}) and H = −∞. The external field is increased until a spin
triggers an avalanche. The external field is then kept constant
until there are no more unstable spins and the system reaches
a metastable state again. The dynamical process finishes when
all the spins are pointing up ({si = +1}) for a very large
positive value of the field H . The Sorted List algorithm has
been implemented [25]. Since our intention is not to discuss
the behavior in the thermodynamic limit but to understand FSS
relations, it has been preferable to study characteristic sizes of
Lx,Ly � 1024 and perform a number of averages over many
(105) realizations of the random fields. The results presented
in this work are valid for aspect ratios ranging from a = 1/2 to
a = 2. For illustrative purposes we will also show numerical
results for smaller values of a (a = 1/4 and a = 1/8).

III. RESULTS

A. Periodic boundary conditions (PBCs)

The field-driven, athermal RFIM with the standard PBCs
and Lx = Ly ≡ L has been broadly studied [16–19]. By
numerical analysis it is shown that there exists a continuous
transition for a finite value of disorder σc = 0.54 which
separates two different regimes [16,17]. For σ < σc, there
is an infinite avalanche, which is usually 2D spanning [see
Figs. 1(a)–1(c), which correspond to increasing field values].
When disorder approaches its critical value σc, there is a peak
in the average number of 1D spanning avalanches [19] [see
Figs. 1(d)–1(f)]. Power-law distributions are found for some
magnitudes related to avalanches for this model (sizes and
durations). For the regime σ > σc, the magnetization process
takes place by nucleation of small domains that grow and
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(a) PBC H
σ < σc

(b) (c)

H(d)PBC
σ ∼ σc

(e) (f)

(g) PBC H (h)
σ > σc

(i)

FIG. 1. Sequence of configurations during the magnetization
process in different disorder regimes for the RFIM with metastable
dynamics for a system (L = 128) with PBCs. The values of the
disorder are σ = 0.80,0.95,1.20 for sequences (a–c), (d–f), and (g–i),
respectively. The external field H is increased from left to right
bringing the system from negative magnetization (white regions)
to positive magnetization (colored regions). Black colored spins
correspond to regions that have been transformed due to nonspanning
avalanches. Green regions correspond to spanning avalanches.

coalesce, and there is no presence of spanning avalanches
[see Figs. 1(g)–1(i)]. The average number of 1D spanning
avalanches during the full magnetization process from H =
−∞ to H = +∞ as a function of the disorder σ is presented
in Fig. 2 for square systems (Lx = Ly = L; a = 1).

In Fig. 2(a), the number of 1D spanning avalanches exhibits
a peak at the value of disorder σc(L) as found by Spasojević
et al. [19]. These peaks present the following scaling behavior:

NPBC
1 (σ,L) = LθcP

(
L1/νc

σ − σc

σ

)
, (4)

where σc = 0.54 ± 0.03, 1
νc

= 0.19 ± 0.02, θc = −0.10 ±
0.03, and P is the FSS function related to the number of 1D
spanning avalanches for PBCs [see Fig. 2(b)]. These values are
compatible with those of Ref. [19].The error bars of the fitted
parameters account for variations that still offer acceptable
collapses. We use the calligraphic letter P for the scaling
functions with PBCs. Note that in this case, as opposed to
what happens in the 3D case [20], the number of 1D spanning
avalanches vanishes in the thermodynamic limit due to the
negative sign of the exponent θc.

In the present work, we will study rectangular PBCs, and
thus we have to separate spanning avalanches in the ŷ and
x̂ direction. Therefore, we will measure N

y;PBC

1 (σ,Lx,a),
N

x;PBC
1 (σ,Lx,a), where we have chosen a dependence on
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FIG. 2. (a) Average number of 1D spanning avalanches per
magnetization process versus the disorder σ for different sizes in
a square systems a = 1 with PBCs. Lines are guides to the eye.
(b) Curve collapse for different system sizes by using Eq. (4). The
solid black line represents a Gaussian fit of the scaled data.

the disorder σ , the horizontal width Lx and the aspect ratio
a = Ly/Lx . In order to perform the FSS analysis we need to
find a scaling variable for this rectangular case. The geometric
average length L = √

LxLy is used in Ref. [7] for FSS of
asymmetric systems of percolating sticks. We have checked
that, with this choice of the scaling length, it is not possible
to achieve collapses for different aspect ratios. We propose an
alternative choice of the scaling length that enables curves to
collapse both for different sizes as well as for different aspect
ratios a. Due to asymmetry (a �= 1), there is an easy direction
for the system to percolate, which is min(Lx,Ly). In an infinite
system, the correlation length at the critical point will diverge
symmetrically in the x̂ and ŷ directions as

ξ ∼
(

σ − σc

σ

)−ν

. (5)

Note that we measure the distance to the critical point σc with
the same function as in Ref. [19], instead of the standard choice
(σ − σc)/σc. This issue was already proposed in the previous
works on the RFIM [12] and was extensively discussed in
Ref. [20]. The direction for easy percolation is the one which
first limits a 1D spanning avalanche. Thus, in the limits of
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FIG. 3. Curve collapses Py
a (z) for the number of 1D spanning

avalanches in the ŷ direction with the same aspect ratio a and different
sizes.

a 
 1 and a � 1, a finite system will experience pseudo-
critical effects when the correlation length approaches

ξ ∼ L = min(Lx,Ly). (6)

The function min (Lx,Ly) exhibits a discontinuous derivative
at a = 1. In order to avoid it, we propose measuring the limit
of the correlation length as

L = Lx

a

(1 + a1/νc )νc
, (7)

and the corresponding scaling variable

z = L1/νc

x

(
a1/νc

1 + a1/νc

)
σ − σc

σ
. (8)

Note that this choice results in z = min(Lx,Ly)1/νc ((σ −
σc)/σ ) for the limits a 
 1 and a � 1. As shown in Fig. 3,
curve collapses for 1D spanning avalanches in the x̂ or ŷ

direction are achieved independently for each aspect ratio.
Furthermore, the peaks are aligned on the same abscissa:

N
x,PBC
1 (σ,Lx,a) = Lθc

x Px
a (z), (9)

N
y,PBC

1 (σ,Lx,a) = Lθc

x Py
a (z), (10)

with the same parameters θc, νc, and σc as in Eq. (4). Strictly
speaking, we show only data for N

y,PBC

1 , but one must take into
account the fact that the number of 1D spanning avalanches
satisfies the following symmetry:

N
y,PBC

1 (σ,Lx,a) = N
x,PBC
1

(
σ,aLx,

1

a

)
. (11)

A similar expression was proposed in Ref. [3] for the spanning
probability in percolation theory. If one applies this symmetry

10−3
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P
x
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a
(z

m
a
x
)

a

λy(a) = baαeγa

λx(a) = baθc−αeγ/a

FIG. 4. Log-log plot of the peak heights Px,y
a (zmax) as a function

of the aspect ratio a and fits of functions λx(a) and λy(a) as described
in the text.

to Eq. (10), the following relation between FSS functions must
be fulfilled:

Px
a (z) = aθcPy

1/a(z). (12)

In order to assert the dependence of the scaling functions on
the aspect ratio a, we propose that these functions Px

a (z) and
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FIG. 5. Curve collapses for 1D spanning avalanches in the ŷ

direction for different aspect ratios and sizes. Same point and color
code as in Fig. 3. The black solid line corresponds to the Gaussian fit
of Fig. 2(b). Example of typical error bars corresponding to a = 2 is
shown.
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Py
a (z) can be written in the following way:

Px
a (z) = λx(a)P̂x(z), (13)

Py
a (z) = λy(a)P̂y(z), (14)

where λx(a), λy(a) are functions of the parameter a. Note that
the functions λx(a) and λy(a) are different if one considers 1D
spanning avalanches in the x̂ or ŷ direction. From the study
of the peak heights Px,y

a (zmax) a good fit (see Fig. 4) can be
obtained with

λx(a) = baθc−αeγ/a, (15)

λy(a) = baαeγa, (16)

where b = 80 ± 42, α = 1.2 ± 0.4, and γ = −5.5 ± 0.5. One
must take into account the fact that b, α and γ have an empirical
character and play no role in the following developments. Note
that this choice satisfies the following symmetry requirement:

λx(a)

λy(1/a)
= aθc . (17)

From this last equality and Eqs. (13) and (14) one obtains

P̂x(z) = P̂y(z) ≡ P̂(z), (18)

which means that, in fact, we can formulate a scaling function
P̂ independent of the spatial direction. Taking into account
all these premises, satisfactory collapses of the whole set
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(b)
------
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(c)
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(d)σr < σ < σc (e)
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(f)
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(g)σ ∼ σc
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++++++

(h)
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(i)
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(j)σ > σc
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++++++

(k)
------
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(l)

FIG. 6. Sequence of configurations during the magnetization
process for the field-driven, athermal RFIM with metastable dynamics
under FBCs for a system with Lx = 512 and aspect ratio a = 1/8.
The values of the disorder are σ = 0.25,0.50,0.90,1.20 for sequences
(a–c), (d–f), (g–i), and (j–l), respectively. The external field H

increases from left to right. Symbols (+) and (−) correspond to
spins which have values si = +1 and si = −1, respectively, and
conform the fixed boundaries. Black colored regions correspond
to nonspanning avalanches, whereas 1D spanning avalanches are
represented by different shades of green. A front that advances from
right to left is easily identified in sequences (a–c), (d–f), and (g–i).

of numerical data are obtained with the following FSS
hypothesis:

Nx
1 (σ,Lx,a) = Lθc

x λx(a)P̂(z), (19)

N
y

1 (σ,Lx,a) = Lθc

x λy(a)P̂(z). (20)

Overlaps for peaks corresponding to N
y,PBC

1 are shown in
Fig. 5.

B. Fixed boundary conditions (FBCs)

The idea behind imposing FBCs is to force simulations to
exhibit a domain wall which can be identified as an advancing
front (see Fig. 6). From a physical point of view, this would
represent a situation in which the system under study is a subset
of a larger one with an already formed interface. By keeping
periodic boundaries in the vertical ŷ direction, the horizontal
x̂ direction is subjected to the following condition: at the
boundary x = Lx + 1, there is a column of spins {si = +1}
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FIG. 7. (a) Average number of 1D spanning avalanches in the ŷ

direction as a function of the disorder for a system with a = 1 and
different sizes. (b) Average number of 1D spanning avalanches in the
ŷ direction as a function of disorder for different aspect ratios for a
system with Lx = 512. Lines are guides to the eye.
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(+ symbols in Fig. 6), while at x = 0 there is a column of
spins {si = −1} (− symbols in Fig. 6). Under these specific
conditions, 1D spanning avalanches in the ŷ direction are more
common in a regime of low disorder. A minuscule fraction of
1D spanning avalanches are found in the x̂ direction, while 2D
spanning avalanches have no relevant statistical weight.

When the system presents a stripe geometry (a < 1), it is
easy to distinguish four different regimes for the dynamics of
1D spanning avalanches as a function of the disorder σ . Below
a certain value of the quenched disorder, σ < σr , a sequence
of massive spanning avalanches with a flat interface appears
during the magnetization process [see Figs. 6(a)–6(c)]. As
disorder increases, there exists a regime (σr < σ < σc) where
the advancing front presents a rough profile and there is a
negligible presence of nucleated domains in front of the ad-
vancing interface [Figs. 6(d)–6(f))]. When disorder approaches
its critical value (σ ∼ σc), the critical interface advances
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FIG. 8. Curve collapse for average number of 1D spanning
avalanches per magnetization process for different system sizes in
a system with a = 1/2. (a) Partial curve collapse in the regime
dominated by roughening. The step can be appreciated in the inset
plot where the same figure is represented using a logarithmic scale
on the horizontal axis. (b) The partial curve collapse for the regime
dominated by the bulk critical transition.

interacting with many nucleated domains [Figs. 6(g)–6(i)].
Above σc, it is unlikely to find a 1D spanning avalanche
so the front is ill-defined except for some very rare cases
[Figs. 6(j)–6(l)]. For higher disorders, a pure nucleation and
growth process is recovered.

The main goal of this section is to study the consequence
of changing the nature of the boundaries on the FSS functions
and to relate them with those found with PBCs for any aspect
ratio a in the regime dominated by critical effects.

As can be observed in Fig. 7(a), two steps are clearly
distinguished in the behavior of the number of 1D spanning
avalanches N

y,FBC

1 (σ ). The higher step on the left is related
to the morphological transition of the propagating front. This
transition separates the regimes where there is a sequence
of 1D spanning avalanches with a flat profile (faceted growth)
and the regime where 1D spanning avalanches exhibit a certain
rough profile. The second step occurs in the region σ ∼ 0.8
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FIG. 9. Curve collapse for average number of 1D spanning
avalanches per magnetization process for different system sizes in
a system with a = 3/4. (a) The partial curve collapse in the regime
dominated by roughening. The step can be appreciated in the inset
plot where the same figure is represented with a logarithmic scale
on the horizontal axis. (b) The partial curve collapse for the regime
dominated by the critical transition.
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where, in the case of PBCs, the peaks are found. This suggests
that the steps are related to the critical transition.

Note that at low disorder the average number of spanning
avalanches N

y,FBC

1 reaches values above five, whereas for
similar system sizes and disorder NPBC

1 with PBCs is
negligible [see Fig. 2(a)]. A qualitative argument to justify such
a difference is given as follows: in the low disorder regime,
local fields take values around zero. As spins near the boundary
x = Lx have a neighbor which is pointing upwards {si = +1}
the external field needs to be around H = 2 in order to flip
it and create a nucleation center for a 1D spanning avalanche
that propagates in the ŷ direction. In the model with PBCs, the
external field needs to be around H = 4 in order to flip a spin
and generate a nucleation center which can span the system in
one or two directions. When the system is subjected to FBCs, it
is very difficult to find a horizontal spanning avalanche which
connects both sides of the system with fixed boundaries as
well as 2D spanning avalanches.

In order to elucidate how the height of the observed steps
depends on system size and shape, simulations at different Lx
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FIG. 10. Curve collapse for average number of 1D spanning
avalanches per magnetization process for different system sizes in a
square system Lx = Ly ≡ L. (a) Partial curve collapse in the regime
dominated by roughening effects. The step can be appreciated in the
inset plot where the same figure is represented with a logarithmic
scale on the horizontal axis. (b) Partial curve collapse for the regime
dominated by the critical transition.
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FIG. 11. Curve collapse for average number of 1D spanning
avalanches per magnetization process for different system sizes in
a system with a = 2. The step can be appreciated in the inset plot,
where the same figure is represented with a logarithmic scale on
the horizontal axis. In this case, critical effects have been hindered
and the contribution of spanning avalanches in the critical region is
negligible.

and Ly have been performed. Results for fixed Lx and different
aspect ratios are shown in Fig. 7(b). Note that the height of
the step on the left does not depend on a. This indicates that
the horizontal length Lx controls the number of 1D spanning
avalanches at low disorders. By changing the aspect ratio, the
morphology of the curves in Fig. 7(b) changes. When a is
lower than unity, which means that the system is dominated
by periodic boundaries, critical effects are strengthened and
what seemed to be a step for a = 1 becomes a clear peak. As
the aspect ratio increases, the sides of the system which are
subjected to fixed boundaries take over and critical effects are
gradually hindered. This suggests that, in the critical region,
invariance under 90-degree rotations is recovered for disorders
close to σc and the same analysis as in the previous section can
be performed.

The discussion above suggests that we should propose
a combined FSS relation with parameters related to both
transitions (σc,σr ) in order to achieve a partial curve collapse.
For a certain aspect ratio, the scaling hypothesis is

N
y

1 (σ,Lx,aLx) = Lθr

x
ˆ̂Fa(z̃) + Lθc

x λy(a)F̂(z), (21)

where z̃ = Lxe
−λ/σ 2

is the scaling variable in the roughening
regime with λ = 0.64 ± 0.03 and θr = 0.16 ± 0.01. This
choice of the scaling variable z̃ had already been proposed in
Refs. [16] and [26]. It means that the roughening transition
occurs for a certain value of the disorder only due to
finite-size effects. Faceted growth will not be present in the
thermodynamic limit for Gaussian random fields, as also
explained by Ji and Robbins [23]. We will use the calligraphic
letter F for the FSS functions corresponding to FBCs. Partial
collapses in the roughening regime are shown in Fig. 8(a)
for a = 1/2, Fig. 9(a) for a = 3/4, Fig. 10(a) for a = 1, and
Fig. 11 for a = 2. Curves clearly overlap when the scaling
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FIG. 12. Overlaps of FSS functions with FBCs and PBCs. Equation (22) is satisfied for a = {1/2,3/4,1,4/3}.

variable is below 50 approximately. The second term of
Eq. (21) has the same form and the same scaling variable as
in Eq. (20) from the previous section. Partial curve collapses
in the critical region are shown in Fig. 8(b) for a = 1/2, in
Fig. 9(b) for a = 3/4 and in Fig. 10(b) for a = 1. Note that
the hypothesis of combined FSS remains valid for different
aspect ratios, where the critical effects have a greater presence
(Fig. 8) or have practically disappeared (Fig. 11).

Finally, let us test the relation between FSS functions for
PBCs and FBCs in the critical region. Figure 12 shows that
indeed, both FSS functions are equivalent:

P̂(z) = F̂(z) ≡ Q̂(z). (22)

Note that we achieve partial overlaps of data corresponding
to FBCs and PBCs corresponding to a = {1/2,3/4, 1, 4/3}.
Consequently, the FSS function Q̂(z) does not depend on a or
on the nature of the boundary conditions. Note that the smaller
(larger) the aspect ratio, the broader (smaller) the range of
agreement between FSS functions. This makes sense since,
as explained in Fig. 7(b), for aspect ratios greater than unity
critical effects are hindered. The left-hand tails of peaks found
for PBCs cannot be related to the curves for FBCs. In this
regime and for the studied system sizes the presence of the
FBCs is still too strong to appreciate critical effects.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented results corresponding to the
field-driven, athermal RFIM with local relaxation dynamics
with PBCs and FBCs and rectangular geometries with different
aspect ratios a. We have proposed a new scaling variable

z = L1/νc

x

(
a1/νc

1 + a1/νc

)
σ − σc

σ
. (23)

With this choice, the average number of 1D spanning
avalanches in x̂ and ŷ directions can be scaled as

N
x,y

1 (σ,Lx,a) = Lθc

x λx,y(a)Q̃(z), (24)

where the functions λx,y depend on whether we study 1D
spanning avalanches in the x̂ or ŷ direction and satisfy

λx(a)

λy(1/a)
= aθc . (25)

The physical meaning of these prefactors λx,y accounts for the
relative increase or decrease of the number of 1D spanning
avalanches when the aspect ratio is changed. With these
definitions, the scaling function Q̂ is thus independent of the
aspect ratio a and, even more, independent of the nature of the
boundary conditions. To observe the collapses corresponding
to Eq. (20) for the case of FBCs, it is only possible for large
enough values of z so that the effects caused by the faceted
growth of the interfaces become irrelevant.

In future works it would be interesting (a) to perform the
same study for the 3D case and (b) to study the morphological
properties of the advancing front and its dynamics for different
amounts of disorder.
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