
PHYSICAL REVIEW E 93, 022125 (2016)

Anisotropic four-state clock model in the presence of random fields
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A four-state clock ferromagnetic model is studied in the presence of different configurations of anisotropies
and random fields. The model is considered in the limit of infinite-range interactions, for which the mean-field
approach becomes exact. Both representations of Cartesian spin components and two Ising variables are used,
in terms of which the physical properties and phase diagrams are discussed. The random fields follow bimodal
probability distributions and the richest criticality is found when the fields, applied in the two Ising systems,
are not correlated. The phase diagrams present new interesting topologies, with a wide variety of critical points,
which are expected to be useful in describing different complex phenomena.
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I. INTRODUCTION

Spin models represent the most successful applications of
statistical mechanics and have played an important role in
the development of this theory [1,2]. Among those, the Ising
model is by far the most investigated, being able to describe
satisfactorily many magnetic materials [3]. Apart form this,
variations of the Ising model have been considered also for
modeling a wide variety of systems outside of magnetism, like
metallic alloys, lattice gases, biological, social, and financial
systems.

The introduction of disorder in the Ising model, either
in the spin-spin interactions (e.g., interactions following a
symmetric probability distribution, resulting in the Ising spin-
glass model), and/or by means of a random field acting on
each spin variable (defining the random-field Ising model),
has led to further physical realizations, open problems, and
controversial aspects [4–6]. At the infinite-range interaction
limit, for which the mean-field approach becomes exact,
these models have exhibited curious properties, and in some
cases, very rich critical phenomena that has attracted the
attention of many researchers [7–24]). Even though some
properties criticality found at the mean-field level may not
occur in more realistic models, defined in terms of short-
range interactions, random Ising models have been useful for
investigating several systems, out of the scope of magnetism,
like neural networks, proteins (particularly, in the study of
protein folding), optimization problems, and plastic crystals.

The plastic crystals are compounds that present an inter-
mediate stable state (called plastic phase) between a high-
temperature (disordered) liquid phase, and a low-temperature
(ordered) solid phase. In such an intermediate state, rotational
disorder coexists with translational order, characterized by
the centers of mass of the molecules forming a regular
crystalline lattice, with the molecules presenting disorder
in their orientational degrees of freedom. These systems
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were treated in the literature by means of two sets of Ising
spin variables representing, respectively, the orientational and
translational degrees of freedom, in addition to a random field
acting on one set of variables [15,22–25].

Other spin models, mostly defined as generalizations of
the Ising model, have been much studied in the literature [26];
among those, one should mention the p-state Potts model [27],
which appears very often in situations where discrete variables
with more than two states are required for an appropriate
description of a given system. As examples of realizations, one
has mixtures of several fluids, coloring optimization problems,
and monolayers adsorbed on crystal surfaces. Herein, we will
be interested in a particular case of the p-state planar Potts
model (also known as clock model), which may be defined
in terms of spin variables �Si , characterized by two Cartesian
components, �Si ≡ (Six,Siy). Let us introduce a quite general
anisotropic Hamiltonian,

H({hix,hiy}) = − Jx

∑
(ij )

SixSjx − Jy

∑
(ij )

SiySjy − Dx

N∑
i=1

S2
ix

−Dy

N∑
i=1

S2
iy −

N∑
i=1

hixSix −
N∑

i=1

hiySiy,

(1)

where
∑

(ij ) denote sums over all distinct pairs of spins (i =
1,2, . . . ,N ), Jx,Jy > 0 are coupling constants, Dx,Dy > 0
represent anisotropy fields, whereas hix and hiy are random
magnetic fields acting, respectively, on each spin-variable
Cartesian component. The p-state clock variables �Si are
allowed to choose p directions in the xy plane, characterized
by the components

Six = cos θi ; Siy = sin θi ;

θi = 2π

p
ki ; [ki = 0,1,2, . . . ,(p − 1)]. (2)

In the present work we will investigate the case p = 4 of the
model above, for which the spin components in Eq. (2) may be
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expressed in terms of two Ising variables. In the next section
we rewrite the Hamiltonian of Eq. (1) with these variables,
discussing its properties both in the Cartesian and two-Ising
representations; in this later case, we derive expressions for the
free energy and order parameters. In Sec. III we analyze the
phase diagrams of the model, by considering bimodal proba-
bility distributions for the random magnetic fields acting on the
two sets of Ising variables; the physically distinct situations of
fully correlated and uncorrelated fields in these sets of variables
are investigated. It is shown that the second case, namely,
the independent probability distributions for each set of Ising
variables, presents a rich variety of phase diagrams and may
exhibit two distinct ferromagnetic phases, with curious phase
boundaries, ordered critical points, tricritical, and triple points.
We also give heuristic domain-wall arguments for estimating
the lower critical dimension, above which an ordered state
should appear in the corresponding nearest-neighbor version
of the model. Such a rich multicritical behavior is expected
to be useful for describing magnetic systems, as well as other
systems outside the area of magnetism, as occurs frequently
in many other spin models. Finally, in Sec. IV we present our
main conclusions.

II. THE TWO-ISING REPRESENTATION: FREE ENERGY
AND EQUATIONS OF STATE

From now on we will be restricted to the case p = 4 of
the model above; hence, the spin components in Eq. (2) may
be expressed in terms of two Ising variables (τi = ±1 and
σi = ±1), through the relations

Six = 1
2 (τi + σi); Siy = 1

2 (τi − σi). (3)

Considering isotropic coupling constants, i.e., Jx = Jy , the
Hamiltonian of Eq. (1) can be rewritten as

H
({

hτ
i ,h

σ
i

}) = −J
∑
(ij )

σiσj − J
∑
(ij )

τiτj − D

N∑
i=1

τiσi

−
N∑

i=1

hτ
i τi −

N∑
i=1

hσ
i σi, (4)

where J > 0 (J = Jx/2 = Jy/2) favors ferromagnetic order-
ing in both Ising systems, and the random fields on each
set of variables are related to those of Eq. (1) through
hτ

i = (hix + hiy)/2 and hσ
i = (hix − hiy)/2.

Comparing Eqs. (1) and (4) one sees that, through this
change of variables, the anisotropy fields in the Cartesian-
component representation result in D = 2(Dx − Dy), leading
to a coupling parameter between the two Ising systems. Hence,
D > 0 favors a parallel alignment of the spins {τi} and {σi},
corresponding in Eq. (1) to a stronger anisotropy in the
x-direction, whereas the antiparallel alignment of {τi} and {σi}
is preferred if D < 0, a consequence from a larger anisotropy
field in the y-direction.

The analysis of Ref. [22] was inspired on a model for
plastic crystals [15,23–25], defined by means of two Ising
variables, representing, respectively, the translational and
rotational degrees of freedom of a molecule. Certainly, these
variables express very different characteristics of a molecule,
and particularly, the rotational variables are expected to

change more freely than the translational ones; for this
reason, one introduces a random field acting only on the
rotational degrees of freedom. In such a model, hσ

i = 0 (∀i)
was considered, which corresponds in the Hamiltonian of
Eq. (1) to hix = hiy (∀i). In other systems, e.g., magnetic
systems, random fields may result from a uniform external
field applied in disordered magnetic media, as happens for
diluted antiferromagnets [28–30]; in such cases one should
have hix �= hiy throughout the material, and one expects both
random fields hτ

i and hσ
i to play an important role in the

Hamiltonian of Eq. (4). This represents the situation to be
considered in the present investigation.

Due to the infinite-range character of the interactions, one
can write the Hamiltonian of Eq. (4) in the form

H
({

hτ
i ,h

σ
i

}) = − J

2N

(
N∑

i=1

σi

)2

− J

2N

(
N∑

i=1

τi

)2

−D

N∑
i=1

τiσi −
N∑

i=1

hτ
i τi −

N∑
i=1

hσ
i σi, (5)

from which one may calculate the partition function associated
with a particular realization of the fields {hτ

i ,h
σ
i },

Z
({

hτ
i ,h

σ
i

}) = Tr exp
[−βH

({
hτ

i ; hσ
i

})]
, (6)

where β = 1/(kT ) and Tr ≡ Tr{τi ,σi=±1} indicates a sum over
all spin configurations. One can now make use of the Hubbard-
Stratonovich transformation [5,6] to linearize the quadratic
terms, so that the dependence on the index i disappears,

Z({hτ ,hσ }) = 1

π

∫ ∞

−∞
dx dy exp(−x2 − y2)

×{Tr exp[H (τ,σ,hτ ,hσ )]}N, (7)

where H (τ,σ,hτ ,hσ ) is given by

H (τ,σ,hτ ,hσ ) =
√

2βJ

N
xτ +

√
2βJ

N
yσ − βDτσ

+βhτ τ + βhσσ. (8)

Performing the trace over the spins and defining new
variables, related to the respective order parameters,

mτ =
√

2kT

JN
x; mσ =

√
2kT

JN
y, (9)

one obtains

Z({hτ ,hσ }) = βJN

2π

∫ ∞

−∞
dmτ dmσ exp[NGhτ ,hσ (mτ ,mσ )],

(10)
where

Ghτ ,hσ (mτ ,mσ )

= − 1
2βJm2

τ − 1
2βJm2

σ

+ log{2eβD cosh[βJ (mτ + mσ + hτ/J + hσ /J )]

+ 2e−βD cosh[βJ (mτ − mσ + hτ/J − hσ /J )]}. (11)

As usual, one considers the thermodynamic limit (N →
∞), and applies the saddle-point method to obtain Z({hτ ,hσ })
[5,6]. So, the free-energy density functional f (mτ ,mσ ) results
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from a quenched average of −Ghτ ,hσ (mτ ,mσ ) in Eq. (11), over
the joint probability distribution P (hτ ,hσ ),

f (mτ ,mσ ) = 1

2
Jm2

τ + 1

2
Jm2

σ − 1

β

∫ ∞

−∞

∫ ∞

−∞
dhτdhσ

×P (hτ ,hσ ) log Q(hτ ,hσ ) (12)

with

Q(hτ ,hσ ) = 2eβD cosh[βJ (mτ + mσ + hτ/J + hσ/J )]

+ 2e−βD cosh[βJ (mτ − mσ + hτ/J − hσ /J )].

(13)

If there is no correlation between the random fields {hτ
i }

and {hσ
i }, the Hamiltonian in Eq. (4) presents a symmetry

D → −D, together with the inversion of one set of spin
variables and its associated random field [e.g., σi → −σi and
hσ

i → −hσ
i (∀i)]. Since D = 2(Dx − Dy) [from Eqs. (1) and

(4)], this symmetry corresponds to two physically equivalent
situations, namely, Dx > Dy (D > 0) and Dx < Dy (D < 0).
The expression for the free energy above follows this symmetry
[e.g., by considering D → −D, hσ → −hσ , and mσ → −mσ

in Eq. (13)].
The extremization of the free-energy density above, with

respect to the parameters mτ and mσ , yields the following
equations of state:

mτ =
∫ ∞

−∞

∫ ∞

−∞
dhτdhσP (hτ ,hσ )

R+(hτ ,hσ )

Q(hτ ,hσ )
, (14)

mσ =
∫ ∞

−∞

∫ ∞

−∞
dhτdhσP (hτ ,hσ )

R−(hτ ,hσ )

Q(hτ ,hσ )
, (15)

where

R±(hτ ,hσ ) = eβD sinh[βJ (mτ + mσ + hτ/J + hσ/J )]

± e−βD sinh[βJ (mτ − mσ + hτ/J − hσ /J )].

(16)

Now, in order to proceed with the calculations, one has
to define the joint probability distribution P (hτ ,hσ ), which
appears in Eqs. (12), (14), and (15). Herein, we will consider
the quite interesting (characterized by a rich critical behavior)
case of bimodal probability distributions [8] in two extreme
situations, namely, fully correlated and totally uncorrelated
fields hτ and hσ .

In the first case we will consider hτ = hσ = h, with h

following:

P (h) = 1
2 δ(h − h0) + 1

2 δ(h + h0). (17)

This represents a situation where in each position i the
fields {hτ

i } and {hσ
i } are the same, and may be associated

to effects due to the randomnesses and anisotropies of the
medium only. In the Cartesian-component representation it
corresponds to hiy = 0, so that hτ

i = hσ
i = hix/2 (∀i). Due

to this correlation in the random fields, the symmetry of
the Hamiltonian in Eq. (4), D → −D, together with the
inversion of one set of spin variables and its associated random
field, is broken. Moreover, since hiy = 0, this case yields two

physically distinct situations, namely, D > 0 (Dx > Dy) and
D < 0 (Dx < Dy).

For D > 0 the system may be described by a single order
parameter m, such that m = mτ = mσ , leading to the following
free energy:

f = Jm2 − 1

2β
log[2 exp(βD) cosh[2βJ (m + h0/J )]

+ 2 exp(−βD) cosh[2βJ (m + h0/J )]]

− 1

2β
log[2 exp(βD) cosh[2βJ (m − h0/J )]

+ 2 exp(−βD) cosh[2βJ (m − h0/J )]], (18)

and equation of state

m = 1

2

[
sinh[2βJ (m + h0/J )]

cosh[2βJ (m + h0/J )] + exp(−2βD)

]

+ 1

2

[
sinh[2βJ (m − h0/J )]

cosh[2βJ (m − h0/J )] + exp(−2βD)

]
. (19)

On the other hand, for D < 0 one considers m = mτ =
−mσ , which yields

f = Jm2 − 1

β
log[2 exp(βD) cosh(2βh0)

+ 2 exp(−βD) cosh(2βJm)] (20)

and

m = sinh(2βJm)

exp(2βD) cosh(2βh0) + cosh(2βJm)
. (21)

As a second possibility for the random fields, we take hτ and
hσ uncorrelated, so the joint probability distribution is given
by

P (hτ ,hσ ) = P (hτ )P (hσ ), (22)

and we consider

P (hσ ) = 1
2 δ(hσ − h0) + 1

2 δ(hσ + h0), (23)

P (hτ ) = 1
2 δ(hτ − h0) + 1

2 δ(hτ + h0), (24)

as the probability distribution functions for the random fields
acting on each Ising system.

In the Cartesian-component representation this typifies
a situation characterized by local anisotropies, leading to
hix �= hiy , so that both random fields, hτ

i = (hix + hiy)/2 and
hσ

i = (hix − hiy)/2, play important roles separately. These
realizations, where in each position i one has independent
fields, {hτ

i } and {hσ
i }, may result from randomnesses of the

medium, as well as from other possible effects (e.g., from
the remaining spin variables), such as to act distinctly on the
systems {τi} and {σi}. As mentioned before, this case follows
the symmetry D → −D in Eq. (4), and so an investigation of
D � 0 becomes sufficient.

After performing the integrals in Eqs. (12), (14), and
(15), one can show that mτ = mσ appears as a solution [due
the symmetry of the Hamiltonian in Eq. (4), the equivalent
solution mτ = −mσ appears in the case D < 0]. It should
be mentioned that, in our numerical analysis, we did not
find any physically distinct solution from this one for finite
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temperatures; however, as will be shown below, solutions
characterized by mτ �= mσ appear at T = 0. Hence, for T > 0,
similarly to the previous case (fully correlated random fields),
the system will be described by a single order parameter m,
with m = mτ = mσ . The resulting expressions for the free
energy and order parameter are

f = Jm2 − 1

4β
log[2 exp(βD) cosh[2βJ (m + h0/J )]

+ 2 exp(−βD)]

− 1

4β
log[2 exp(βD) cosh[2βJ (m − h0/J )]

+ 2 exp(−βD)]

− 1

2β
log[2 exp(βD) cosh(2βJm)

+ 2 exp(−βD) cosh(2βh0)], (25)

m = 1

4

[
sinh[2βJ (m + h0/J )]

cosh[2βJ (m + h0/J )] + exp(−2βD)

]

+1

4

[
sinh[2βJ (m − h0/J )]

cosh[2βJ (m − h0/J )] + exp(−2βD)

]

+1

2

[
sinh(2βJm)

cosh(2βJm) + exp(−2βD) cosh(2βh0)

]
. (26)

In the next section we present and discuss the phase diagrams
of the model, considering these two choices for the the joint
probability distribution P (hτ ,hσ ). In both cases, the equation
of state for the single order parameter may be expanded as
a power series in m, in the neighborhood of a continuous
(second-order) phase transition,

m = A1(β,D,h0)m + A3(β,D,h0)m3 + A5(β,D,h0)m5

+A7(β,D,h0)m7 + · · · . (27)

As usual, the continuous frontiers can be obtained by solv-
ing numerically the equation A1 = 1, provided that A3 < 0.
In cases where these frontiers end at a tricritical point, such a
point is obtained by setting A1 = 1 and A3 = 0, conditioned to
A5 < 0. Furthermore, the so-called fourth-order critical point,
after which tricritical points do not occur (as a single critical
point), is located by A1 = 1, A3 = 0, and A5 = 0, provided
that A7 < 0. The first-order critical frontiers are obtained
by standard Maxwell constructions; nevertheless, numerical
analysis can produce spurious solutions, so one must always
check if the free energy is minimized.

All phase diagrams will be represented in terms of di-
mensionless variables, by rescaling conveniently the energy
parameters of the system, namely, kT /J , h0/J , and D/J .
Both ordered (m �= 0) and disordered (m = 0) phases have
appeared in our analysis, and as usual, they will be labeled by F
(ferromagnetic) and P (paramagnetic) phases, respectively. In
some of our phase diagrams we find two distinct ferromagnetic
phases (to be labeled by F1 and F2), separated by a first-
order phase transition, characterized by a jump in their
respective magnetizations, m1 �= m2. It should be emphasized
that the solution mτ = mσ still holds throughout both phases
F1 and F2.

A wide variety of critical points appeared in our analysis,
and herein we follow the classification due to Griffiths [31]:
(i) a tricritical point signals the encounter of a continuous
frontier with a first-order line with no change of slope;
(ii) an ordered critical point corresponds to an isolated critical
point inside the ordered region, terminating a first-order line
that separates two distinct ordered phases; (iii) a triple point,
where three distinct phases coexist, signals the encounter of
three first-order critical frontiers; (iv) a critical end point,
where three phases coexist, corresponding to the intersection
of a continuous line that separates the paramagnetic from
one of the ferromagnetic phases, a first-order line separating
the paramagnetic and the other ferromagnetic phase, and a
first-order line separating the two ferromagnetic phases; (v) a
multicritical point, where several phases coexist. The location
of the critical points defined in (ii)–(v), as well as of the
first-order critical frontiers, were determined by a numerical
analysis of the free-energy minima. In the phase diagrams we
shall use distinct symbols and representations for the critical
points and frontiers, as described below:

(i) Continuous (second-order) critical frontier: continuous
line.

(ii) First-order critical frontier: dotted line.
(iii) Tricritical point: located by a black circle.
(iv) Fourth-order critical point: located by an empty

square.
(v) Ordered critical point: located by a black asterisk.
(vi) Triple point: located by an empty triangle.
(vii) Critical end point: located by a black triangle.
(viii) Multicritical point: located by an empty diamond.
These types of behavior appear frequently in many real

systems, e.g., magnetic compounds and fluid mixtures [1,32–
34]; next, we describe some concrete examples. (i) Mul-
ticritical phenomena occur along the surface of magnetic
systems, if the atomic interactions of the surface layer differ
significantly from those of the bulk [32]. In these systems the
corresponding phase diagrams may present distinct ordered
phases, as well as regions of coexisting ordered-ordered and
ordered-disordered states. Along these coexistence regions,
evidence of bicritical, tricritical, and triple points, have been
found. (ii) A first-order critical line in the plane magnetic
field versus temperature, terminating at a critical-end point,
has been detected in the magnetic compound MnFeAsyP1−y,
for y = 0.26 [35]. (iii) Some binary compounds, like PrGe1.6

and CeGe1.6 (rare-earth germanides), have shown evidence
of a coexistence of two distinct ferromagnetic phases [36];
in particular, the former compound has shown Pr atoms at
given sites with a substantially larger magnetic moment than
those of Pr atoms at other sites [37]. The coexistence of two
ferromagnetic phases represents one of the main results of the
present work. (iv) Diluted antiferromagnets in the presence of
a uniform field are considered as physical representations of
a ferromagnet under random fields [28–30]; as a well-known
example one could mention the compound FexMg1−xCl2. A
curious crossover from a first-order to a second-order phase
transition has been observed by decreasing x (this crossover
is estimated to happen for x ≈ 0.6) [38,39]. One expects such
an effect to occur, not as an abrupt change, but rather through
the appearance of some type of multicritical behavior; hence,
a fine tuning of the parameter x in the range 0.6 � x � 1.0
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is highly desirable, and should indicate interesting aspects.
(v) Fluid mixtures may be, in many cases, mapped into
magnetic models, in such a way that discrete variables
characterized by more than two states, like those of the present
investigation, are necessary for an appropriate description of
some ternary and quaternary fluid mixtures. These mixtures
are good candidates for exhibiting multicritical phenomena
[1,33,34]; it should be mentioned that tricritical points have
been observed in several multicomponent-fluid mixtures (a
vast list of them may be found in Ref. [40]).

Before starting a detailed quantitative investigation of the
phase diagrams and critical points of the model, we first carry
out a ground-state analysis, based on the Hamiltonian of Eq. (4)
[or equivalently, in Eq. (5)]. One notices important competing
contributions in the Hamiltonian of Eq. (5), namely, the two
quadratic ones, associated with ferromagnetic orderings of
each system, characterized by a coupling J , random fields
acting on each Ising system with an intensity h0, and the
coupling between the two systems, given by an intensity |D|.
In the limit where the random field dominates (h0 	 J ), one
expects a disordered state (P phase), where the quadratic
terms yield zero to the total internal energy U . However,
the resulting energy depends strongly on the coupling D,
and particularly in the case of fully correlated random fields,
on the sign of D, i.e., through a tendency for aligning the
two systems parallel to each other if D > 0, or antiparallel
if D < 0. Hence, for the P phase one has several possible
situations, as described next. (a) For uncorrelated random
fields, the two systems become disordered independently,
so that (u/J ) = −(2h0/J ), for both signs of D. (b) For
fully correlated fields and D > 0, each system becomes
disordered, but aligned with respect to each other, leading
to (u/J ) = −(2h0/J ) − (D/J ); however, for D < 0 each
system becomes disordered and antiparallel to each other,
so that the random-field contribution cancels out, leading to
(u/J ) = (D/J ). Another important regime concerns the one
where the ferromagnetic ordering becomes relevant, prevailing
over the random-field contributions (h0 
 J ). Considering in
the present analysis only the zero-temperature ferromagnetic
ordering with maximum magnetization, each quadratic term
in the Hamiltonian of Eq. (5) contributes with −JN/2 to the
total internal energy. Therefore, one obtains the internal energy

per particle (u/J ) = −1 − (D/J ), for uncorrelated fields (any
D), as well for fully correlated fields and D > 0. However, the
case of fully correlated fields and D < 0 has shown to be
more subtle, deserving a careful quantitative study, as will be
discussed in the next section. On the basis of this analysis,
one may equate the corresponding internal energies to obtain
the zero-temperature first-order critical frontiers separating the
paramagnetic and ferromagnetic phases, for fully correlated
random fields (D > 0), as well as for uncorrelated fields (any
D). As will be seen in the next section, in the first case one gets
the zero-temperature critical field (h0c/J ) = 1/2 (any D > 0),
whereas in the latter, the critical frontier (D/J ) = (2h0/J ) − 1
separates the phases P and F1. However, the most interesting
and rich critical behavior will appear in the case of uncorrelated
fields, when the parameters J , D, and h0, in the Hamiltonian
of Eq. (5), become of the same order of magnitude, i.e.,
(D/J ) ≈ (h0/J ), where a multicritical point emerges; such
a zero-temperature point will have an important influence on
the finite-temperature phase diagrams.

III. RESULTS AND DISCUSSIONS

A. Correlated fields

As discussed above, for fully correlated fields (hτ = hσ =
±h0) one needs to analyze separately the different signs of the
coupling parameter D; the free energy and order parameter
are given, respectively, by Eqs. (18) and (19) in the case
D > 0, whereas for D < 0 one should use Eqs. (20) and (21).
The associated phase diagrams are shown in Fig. 1 in the
plane of dimensionless variables kT /J versus h0/J . From the
qualitative point of view, all phase diagrams are similar to
the one of an Ising ferromagnet in the presence of a bimodal
random field [8] [which corresponds to the case D = 0 in
Fig. 1(a), i.e., two independent Ising models]. In analogy to
Ref. [8], the two phases P and F are separated by a continuous
frontier at high temperatures, followed by a first-order one
for lower temperatures; these two critical lines meet with no
change of slope at a tricritical point (black circle).

The quantitative differences of the phase diagrams pre-
sented in Figs. 1(a) and 1(b) correspond to the enlargement of
phase F as |D| increases, characterized by solutions m > 0,
where m = mτ = mσ (D > 0), or m = mτ = −mσ (D < 0).
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FIG. 1. Phase diagram in the plane of conveniently rescaled variables, kT /J (dimensionless temperature) versus h0/J (dimensionless field
strength), in the case of fully correlated fields hτ and hσ . (a) Typical values of the dimensionless coupling (D/J ) � 0; (b) typical negative
values of the dimensionless coupling D/J .
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FIG. 2. Zero-temperature analysis of the model defined in Eq. (4), in the case of uncorrelated fields hτ
i and hσ

i . (a) Phase diagram in the
plane of dimensionless variables D/J versus h0/J ; all critical frontiers are first order, whereas at the multicritical point (represented by an
empty diamond) one has a coexistence of several solutions, as described in the text. (b) The dimensionless internal energy per particle u/J is
shown versus h0/J for typical values of D/J ; the two limiting values, i.e., (u/J ) = −1 − (D/J ) (for h0 
 J ) and (u/J ) = −(2h0/J ) (for
h0 	 J ), predicted in the ground-state analysis at the end of the previous section, are verified.

Indeed, for (h0/J ) = 0, the critical temperature is determined
in both cases by solving the equation

kTc

J
= 2

1 + exp(−2|D|/kTc)
, (28)

which comes from setting the coefficient A1(β,D,0) = 1 in
the Landau expansion [cf. Eq. (27)] for the order parameter
given in Eq. (19) (D > 0), or in Eq. (21) (D < 0). In both
cases one sees that (kTc/J ) → 2, for sufficiently large values
of |D|, as shown in Fig. 1. From Eq. (28) one notices that the
symmetry D → −D is recovered in this particular limit, as
expected from the Hamiltonian in Eq. (4) in the absence of
random fields.

However, at zero temperature the system is sensitive to the
sign of D, and the first-order phase transitions are obtained by
equating the free energies (i.e., internal energies per particle,
u) of the phases P and F. The corresponding critical points
h0c/J may be calculated analytically either from Eq. (18),

uF = −(J + D); uP = −(2h0 + D);

⇒ h0c

J
= 1

2
; (D > 0), (29)

or from Eq. (20),

uF = J − (D + 2h0); uP = D;

⇒ h0c

J
= 1

2
− D

J
(D < 0). (30)

The zero-temperature critical points of Eqs. (29) and (30)
show a significant difference as one changes the sign of the
coupling parameter D. From Eq. (4) one sees that for D = 0
one has two independent Ising models, and each of them
presents a zero-temperature phase transition at (h0c/J ) = 1/2,
following the Ising ferromagnet in the presence of a bimodal
random field [8]. In Fig. 1(a) this critical point remains
unchanged by introducing a positive coupling between the
two Ising systems. In the Cartesian-component representation,
one should remind that the present situation, hσ

i = hτ
i , yields

hiy = 0, whereas D = 2(Dx − Dy), so that D > 0 (D < 0)
corresponds to Dx > Dy (Dx < Dy). Hence, the critical points
for D > 0 are associated typically with a random-field phase
transition in the x-direction only, and increasing the anisotropy

in this direction does not change the zero-temperature critical
point. However, a negative D leads to a stronger anisotropy in
the y-direction, along which there is no random field. Since
the effect of a random field consists in decreasing the critical
temperature with respect to the one for h0 = 0, the preference
for the y-direction yields a persistence of the F phase for larger
values of h0, leading to a shift of the zero-temperature critical
point in Fig. 1(b) according to (h0c/J ) = 1/2 − (D/J ).

B. Uncorrelated fields

According to the discussion of the previous section, this
case presents the symmetry D → −D in Eq. (4), so that from
now on we restrict ourselves to D � 0. As it will be seen
throughout this section, the condition of uncorrelated fields
leads to a rich criticality, and due to this, we first carry out an
analysis at zero temperature. In Fig. 2(a) we exhibit the phase
diagram at zero temperature in the plane of dimensionless
variables D/J versus h0/J , where three first-order critical
frontiers delimit the phases P, F1, and F2.

These phases correspond to three different values of the
order parameter m = mτ = mσ that appear as solutions
of Eq. (26), minimizing the Hamiltonian given in Eq. (4):
m = 0 (phase P), m = 1 (phase F1), and m = 1/2 (phase
F2). For 0 � (D/J ) < 1/2 one has the first two phases
only, whereas for (D/J ) � 1/2 all three phases become
possible. In the former case, the phases P and F1 are separated
by a critical frontier given by (D/J ) = (2h0/J ) − 1.
In the latter [(D/J ) � 1/2], one has two first-order
frontiers, represented by the vertical line (h0/J ) = 3/4
that separates the ordered phases F1 and F2, and the line
(D/J ) = (h0/J ) − 1/4 that divides the ordered phase F2
from the paramagnetic one. However, the most interesting
aspect of the phase diagram of Fig. 2 corresponds to
the multicritical point, where these three lines meet at
[(h0/J ) = 0.75,(D/J ) = 0.5] (represented by an empty
diamond). Curiously, the order parameters mτ and mσ yield
a coexistence of several solutions at this point (some of them
breaking the equality of these order parameters): (mτ ,mσ ) =
{(−1,−1); (−1/2,−1/2); (0,0); (0,1/2); (0,−1/2); (−1/2,0);
(1/2,0); (1/2,1/2); (1,1)}). In Fig. 2(b) we represent the
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FIG. 3. Phase diagrams are exhibited for two typical values of the dimensionless coupling between the two Ising variables D/J , in the
plane of conveniently rescaled variables, kT /J (dimensionless temperature) versus h0/J (dimensionless field strength). (a) Case (D/J ) = 0.25,
showing a tricritical point (black circle), where a continuous frontier (high temperatures) meets a first-order critical frontier (low temperatures);
we shall refer to this type of phase diagram as topology I. (b) Case (D/J ) = 0.3535, where the empty square denotes a fourth-order critical
point, which represents the limit for the appearance of the single tricritical point shown in (a) (see text).

dimensionless internal energy per particle u/J versus h0/J ,
for typical values of D/J (increasing values of D/J , from
top to bottom). One notices that u/J takes a constant value
for sufficiently small values of h0/J (throughout phase F1),
or decreases linearly with h0/J (throughout phases F2 and
P), changing its slope at each critical frontier. According to
the ground-state analysis at the end of the previous section,
one has two limiting values for the internal energy, namely,
(u/J ) = −1 − (D/J ) (for h0 
 J ) and (u/J ) = −(2h0/J )
(for h0 	 J ), which are precisely those represented in
Fig. 2(b), associated, respectively, with phases F1 and P.
Indeed, by equating these two energies, one obtains the critical
frontier separating such phases, i.e., (D/J ) = (2h0/J ) − 1.

In Fig. 3 we present phase diagrams for two typical values
of the dimensionless coupling between the two sets of Ising
variables, namely, (D/J ) = 0.25 and (D/J ) = 0.3535, with
critical frontiers separating the ferromagnetic phase F1 (suffi-
ciently small values of kT /J and h0/J ) from the paramagnetic
phase P. In Fig. 3(a) one notices that the value of the coupling
D/J is not sufficiently strong to change qualitatively the phase
diagram of an Ising ferromagnet in the presence of a bimodal
random field [8], where one finds a tricritical point signaling
the encounter of the continuous frontier (high temperatures)
with a first-order critical frontier (low temperatures). In this
case, the only quantitative effect concerns an enlargement
of phase F1 by increasing D/J ; such a phase diagram will
be referred from now on as topology I, and it appears for
0 < (D/J ) < 0.3535. Such a topology ends up at (D/J ) =
0.3535, where the tricritical point turns into a fourth-order
critical point [located at (h0/J ) = 0.585; (kT /J ) = 0.735 and
represented by the empty square in Fig. 3(b)]. Fourth-order
critical points were found in other disordered spin models,
like those treated in Refs. [11,12,20,21]; they are sometimes
entitled in the literature as “vestigial” tricritical points, because
they delimit the existence of those critical points [12].

For (D/J ) > 0.3535 the additional ordered phase F2 arises,
although for a certain range of values of D/J it may occupy
a small part of the phase diagram, as shown in Fig. 4(a) for
the case (D/J ) = 0.45. In the inset of Fig. 4(a) one sees the
piece of the first-order critical frontier that separates the phases

F1 and F2, delimiting phase F2, from the critical end point
(represented by a black triangle) to the ordered critical point
(represented by an asterisk). From now on, we shall refer to this
type of phase diagram as topology II, and as it will be discussed
next, this topology applies for 0.3535 < (D/J ) < 0.470. In
this case, the border of the P phase is given by a continuous part
(high temperatures) that ends up at a critical end point, being
followed by a first-order critical frontier (low temperatures).
For temperatures right above the critical end point, one can go
continuously from the P phase to F2; however, most of the P
border is shared with the F1 phase, as shown in Fig. 4(a).
In Fig. 4(b) we plot the dimensionless free energy versus
the dimensionless order parameter, for a point of the phase
diagram belonging to the first-order frontier shown in the
inset of (a), dividing phases F1 and F2; one sees clearly
the coexistence of two different values of |m|, typical of a
first-order criticality.

By increasing gradually D/J we have verified that the
critical end point of Fig. 4(a) disappears, giving rise to two
other critical points, namely, a triple and a tricritical one. This
is shown in Fig. 5 where we present the phase diagram for
(D/J ) = 0.48; the ordered phase F2, as well as the critical
points are shown in the insets, through enlargements of two
relevant parts of the critical region. In order to determine the
upper limit associated with topology II, we had to estimate
numerically the value of D/J for which the tricritical point
emerges, leading to topology III. We have found that this
occurs for (D/J ) = 0.471 ± 0.001, in the sense that topology
II holds clearly for (D/J ) = 0.470, whereas topology III
applies for (D/J ) = 0.472. In this latter topology, the border
of the P phase presents a rather rich critical behavior, whereas
the critical frontier between the two ordered phases (F1 and
F2) is first-order, terminating in an ordered critical point,
similarly to the one shown in Fig. 4(a). The border of the
P phase is composed by a continuous part (high temperatures)
that ends up at a tricritical point, being followed by a
small first-order critical frontier down to the triple point,
below which a first-order phase transition separates phases
P and F1. The frontier between phases P and F2 is either
continuous (above the tricritical point), or first-order (between
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FIG. 4. (a) Phase diagram for a typical value of the dimensionless coupling between the two Ising variables, (D/J ) = 0.45, in the plane of
conveniently rescaled variables, kT /J (dimensionless temperature) versus h0/J (dimensionless field strength). The ordered phase F2 appears
in a small part of the phase diagram, as shown in the enlargement of the inset; the black triangle and the asterisk represent a critical end point
and an ordered critical point, respectively; we shall refer to this type of phase diagram as topology II. (b) The dimensionless free energy is
plotted versus the dimensionless order parameter, for a point of the phase diagram located at [(h0/J ) = 0.6450; (kT /J ) = 0.5875], belonging
to the first-order frontier shown in the inset of (a), which divides the phases F1 and F2.

the tricritical and triple points). The region of the two insets
of Fig. 5 suggests that such a rich critical behavior should be
influenced by the zero-temperature multicritical point (located
at [(h0/J ) = 0.75,(D/J ) = 0.5] in Fig. 2), where one has a
coexistence of nine different solutions for the order parameters.

For (D/J ) = 0.5, topology III ends up through the appear-
ance of the multicritical point at zero temperature, as shown
in Fig. 6(a) (to be referred hereafter as topology IV). This
point (represented by the empty diamond) corresponds to the
multicritical point already exhibited in Fig. 2, and, as expected,
it occurs only for (D/J ) = 0.5. In this sense, topology III
applies for 0.472 � (D/J ) < 0.5, whereas topology IV holds
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FIG. 5. Phase diagram for a typical value of the dimensionless
coupling between the two Ising variables, (D/J ) = 0.48, in the
plane of conveniently rescaled variables, kT /J (dimensionless
temperature) versus h0/J (dimensionless field strength). The ordered
phase F2 and critical points are shown in the insets, where we have
enlarged two important regions of the phase diagram, represented by
ellipses. In the lower inset one sees a triple point (empty triangle)
and a tricritical point (black circle), which emerged from the critical
end point of Fig. 4(a). In the upper inset we show the ordered critical
point signaling the end of phase F2. We shall refer to this type of
phase diagram as topology III.

only for (D/J ) = 0.5. Comparing Figs. 5 and 6(a) one
notices, besides the zero-temperature multicritical point, an
enlargement of phase F2, essentially due to fact that the
triple point is now located at a much lower temperature,
maintaining the topological structure shown in the insets of
Fig. 5. To illustrate the low-temperature critical behavior,
in Fig. 6(b) we plot the dimensionless free energy versus
the dimensionless order parameter, for a point of the phase
diagram belonging to the first-order frontier delimited by
the triple and the multicritical points. There, the free energy
exhibits solutions corresponding to the two ordered phases
(F1 and F2) coexisting with the disordered phase one (m = 0).
We verified that when this first-order frontier approaches zero
temperature (close to the multicritical point), four local min-
ima, characterized by higher values of f/J , corresponding to
(mτ ,mσ ) = {(0,1/2); (0,−1/2); (−1/2,0); (1/2,0)}, approach
the five coexisting global minima shown in Fig. 6(b), corre-
sponding to (mτ = m,mσ = m) = {(−1,−1); (−1/2,−1/2);
(0,0); (1/2,1/2); (1,1)}. Accordingly, nine phases will coexist
when the lower first-order curve touches the multicritical point
at zero temperature. Therefore, this corresponds to the only
point at which one finds solutions with mτ �= mσ , as discussed
in the zero-temperature phase diagram of Fig. 2.

In Fig. 7 we exhibit phase diagrams for two typical values
of the dimensionless coupling D/J [with (D/J ) > 0.5],
corresponding to topology V. In contrast to topologies II–IV,
one sees clearly that the first-order frontier dividing phases F1
and F2 appears now shifted from the one that divides F2 and P.
This aspect has to do with the zero-temperature phase diagram
presented in Fig. 2, where these two frontiers for T = 0 start,
respectively, at (h0/J ) = 0.75 and (h0/J ) = (D/J ) + 1/4, for
(D/J ) > 0.5. The border of the P phase is now characterized
by a change of concavity, as well as by a single tricritical point,
signaling the encounter of the continuous part of the frontier
with the first-order one; this later aspect reminds topology I [cf.
Fig. 3(a)]. However, as already mentioned, the tricritical point
does not appear as the sole critical point of the phase diagram,
an effect that occurs only up to (D/J ) = 0.3535, where the
fourth-order critical point emerges, as shown in Fig. 3(b). We
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FIG. 6. (a) Phase diagram for the dimensionless coupling (D/J ) = 0.5, in the plane of conveniently rescaled variables, kT /J (dimensionless
temperature) versus h0/J (dimensionless field strength). The two ordered phases (F1 and F2) are separated by a first-order critical frontier that
terminates at an ordered critical point (represented by an asterisk). The border of the P phase presents a tricritical (black circle) and a triple
point (empty triangle) at finite temperatures, whereas at zero temperature one finds the multicritical point of Fig. 2 (represented by an empty
diamond). We shall refer to this type of phase diagram as topology IV. (b) The dimensionless free energy is plotted versus the dimensionless
order parameter, for a point of the phase diagram located at [(h0/J ) = 0.75; (kT /J ) = 0.05], belonging to the low-temperature first-order
frontier delimited by the triple and multicritical points.

have not found any qualitative change in the phase diagram
of topology V by increasing further D/J ; in fact, comparing
Figs. 7(a) and 7(b), one notices that the effect of increasing
D/J corresponds to an enlargement of phase F2, associated
with a shift of the low-temperature first-order critical frontier
starting at (h0c/J ) = (D/J ) + 1/4, for zero temperature. A
similar effect was verified in the case D < 0 of fully correlated
fields [cf. Fig. 1(b)], where the zero-temperature critical point
was shown to move according to (h0c/J ) = |D/J | + 1/2.

C. Domain-wall analysis for lower-critical dimension

Below we apply domain-wall arguments to estimate the
lower-critical dimension dl , above which an ordered state
should occur in the corresponding nearest-neighbor version
of the present model. Our arguments follow closely those used
for the random-field Ising model [5,41], which were confirmed
later by means of a rigorous proof in Ref. [42]. In order to carry

out such analysis, we rewrite Eq. (4) as

H
({

hτ
i ,h

σ
i

}) = −J
∑
〈ij〉

σiσj − J
∑
〈ij〉

τiτj − D

N∑
i=1

τiσi

−
N∑

i=1

hτ
i τi −

N∑
i=1

hσ
i σi, (31)

where the summations
∑

〈ij〉 now correspond to distinct
nearest-neighbor pairs of spins on a regular lattice of dimen-
sion d.

One should remind that the two ferromagnetic phases
that appeared in some of the phase diagrams shown herein
are characterized by a single order parameter, m > 0, where
m = mτ = mσ (D > 0), or m = mτ = −mσ (D < 0), so that
these phases differ only by the values of the corresponding
magnetizations, i.e., F1 (higher values of m) and F2 (lower
values of m). Consequently, the domain-wall analysis, which
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FIG. 7. Phase diagrams for two typical values of the dimensionless coupling D/J [with (D/J ) > 0.5], in the plane of conveniently rescaled
variables, kT /J (dimensionless temperature) versus h0/J (dimensionless field strength). The two ordered phases (F1 and F2) are separated
by a first-order critical frontier that terminates at an ordered critical point (represented by an asterisk). The border of the P phase presents a
tricritical point only (black circle). (a) Case (D/J ) = 1.0; (b) case (D/J ) = 2.0; we shall refer to this type of phase diagram as topology V.
In these cases, according to the phase diagram at zero-temperature (cf. Fig. 2), the first-order frontier separating phases F1 and F2 starts at
(h0/J ) = 0.75, whereas the one dividing phases F2 and P starts at (h0/J ) = (D/J ) + 1/4.
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consists in estimating energy contributions of the terms of
Eq. (31), is not able to identify multicritical points, as well as
to distinguish between the two ferromagnetic phases; below,
we consider such an analysis, which applies to the existence of
an ordered state, characterized by m > 0, i.e., to both phases F1
and F2. Therefore, for testing the stability of such an ordered
state, we consider the system defined by the Hamiltonian of
Eq. (31) in its ground state, at a sufficiently low temperature,
and we flip the sign of the magnetization in a large region R

of the lattice, characterized by a typical linear size L. Each
term in the Hamiltonian of Eq. (31) will contribute to change
the ground-state energy; the ferromagnetic interactions will
produce an increase in this energy, due to the creation of the
interface,

ετ
J ∼ JLd−1; εσ

J ∼ JLd−1. (32)

Since the fields are quenched random variables charac-
terized by short-range correlations, the quantities

∑N
i=1 hτ

i τi

and
∑N

i=1 hσ
i σi , for large domains, should approach normally

distributed random variables, with typical values of the order
±(h2

i L
d )1/2 = ±h0L

d/2 (i.e., of the order of the width of the
Gaussian distribution). One can choose the region of flipped
spins such that these contributions lead to a decrease of the
ground-state energy, i.e.,

ετ
h ∼ −h0L

d/2; εσ
h ∼ −h0L

d/2. (33)

Hence, if D = 0, these two effects compete with each other, the
contributions of Eq. (32) favoring the ordered state, whereas
those of Eq. (33) destabilizing the ferromagnetic phase. The
change in the ground-state energy, due to the flip in the
magnetization of the region R, is estimated as

δ = ετ
J + εσ

J + ετ
h + εσ

h ∼ 2(JLd−1 − h0L
d/2), (34)

which, except for the factor of 2, leads precisely to the same
contributions of the Ising ferromagnet in the presence of
random field [5,41]. Hence, for sufficiently large L, the ordered
state prevails for d > 2, whereas the disordered (paramagnetic)
phase dominates for d < 2, from which one obtains the
lower-critical dimension dl = 2.

The introduction of a coupling D between the two Ising
variables will have no effects on the interface, whereas those
inside the region R will just affect the correlations between
the two Ising systems, i.e., they do not contribute to stabilize
(or destabilize) the ordered state. Hence, the parameter D

in the Hamiltonian of Eq. (31) should not be associated
with the appearance of an ordered phase, but rather to the
possible occurrence of multicritical behavior in the nearest-
neighbor version of the model. Therefore, one should not
expect any changes in the lower-critical dimension dl = 2,
due to the coupling between the two Ising variables. However,
the corresponding energy contribution will depend on the
dimension d, in the sense that it may change according to the
state of the system, as discussed next. (i) For d < 2, where the
paramagnetic state prevails, the contribution −D

∑N
i=1 τiσi

will behave like those of Eq. (33), yielding εD ∼ ±DLd/2.
(ii) For d > 2, where the ordered state appears, this contri-
bution will lead to εD ∼ −DLd (D > 0), enlarging the ferro-
magnetic phase, as verified in the phase diagrams presented
above.

IV. CONCLUSIONS

We have analyzed a ferromagnetic four-state clock model in
the presence of an anisotropy field D and different conditions
for random fields. The model was considered in the limit of
infinite-range interactions, for which the mean-field approach
becomes exact. By using a representation of two Ising variables
({τi} and {σi} for each site i), the model was expressed as two
ferromagnetic Ising models, each with its own random field
({hτ

i } and {hσ
i }, respectively). Moreover, in this representation,

the anisotropy field leads to a coupling between these two
variable sets, in such a way that D > 0 (D < 0) favors parallel
(antiparallel) alignment of the two Ising systems. We have
shown that if there is no correlation between the random
fields {hτ

i } and {hσ
i }, the Hamiltonian of the system presents a

symmetry D → −D. The random fields {hτ
i } and {hσ

i } were
considered as following bimodal probability distributions, in
two extreme situations, namely, fully correlated random fields,
i.e., hτ

i = hσ
i (∀i), for which we have analyzed both D > 0

and D < 0 cases, and uncorrelated fields, for which we have
studied typical values of D > 0.

For fully correlated fields, hτ
i = hσ

i = ±h0, all phase
diagrams presented the same qualitative behavior, similar to
the one of an Ising ferromagnet in the presence of a bimodal
random field: the paramagnetic and ferromagnetic phases
are separated by a continuous frontier at high temperatures,
followed by a first-order one for lower temperatures, with
these two critical lines meeting at a tricritical point. Hence,
the coupling D between the two systems does not play an im-
portant role, from the qualitative point of view. Quantitatively,
the cases D < 0 presented ferromagnetic phases that increase
significantly for sufficiently large values of |D|.

For uncorrelated fields, since the Hamiltonian presents the
symmetry D → −D, we have restricted our investigation to
D > 0 only. This situation has shown a very rich critical be-
havior by varying D, with the possibility of two ferromagnetic
phases, F1 and F2, besides the usual disordered phase P, as well
as a wide variety of critical points. For sufficiently small values
of the coupling D, the phase diagram presents a structure
typical of two independent Ising models, being qualitatively
similar to the phase diagram of the Ising ferromagnet in the
presence of a bimodal random field, characterized by a single
ferromagnetic phase. By increasing gradually the coupling
between the two Ising systems, the additional ferromagnetic
phase emerges, with the two ferromagnetic phases, F1 (higher
values of magnetization) and F2 (lower values of magneti-
zation), being separated by a first-order critical frontier that
terminates at an ordered critical point.

Therefore, in the case of uncorrelated fields we have
found five well-defined types of phase diagrams, denomi-
nated as topologies I–V, which differ from one another by
the presence of distinct critical behavior, with tricritical,
fourth-order, ordered, triple, multicritical, and critical end
points. These qualitatively different types of phase diagrams
correspond to the intervals 0 < (D/J ) � 0.3535 (topology
I), 0.3535 < (D/J ) � 0.470 (topology II), 0.472 � (D/J ) <

0.5 (topology III), (D/J ) = 0.5 (topology IV), and (D/J ) >

0.5 (topology V). The change from topologies II and III
is very subtle from the numerical point of view, since this
occurs through the disappearance of the critical end point,
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giving rise to to two other critical points, namely, a triple
and a tricritical one. We have found that this occurs for
(D/J ) = 0.471 ± 0.001, in the sense that topology II holds
clearly for (D/J ) = 0.470, whereas topology III applies
for (D/J ) = 0.472. From all these cases, only topology I
typifies a well-known phase diagram, qualitatively similar to
the Ising ferromagnet in the presence of a bimodal random
field [8].

We have carried heuristic domain-wall arguments for esti-
mating the lower critical dimension, above which an ordered
state should appear in the corresponding nearest-neighbor
version of the model. The study considered an ordered state,
characterized by a single magnetization parameter, so that it
applies to both phases F1 and F2. These arguments led to
dl = 2, i.e., the same lower critical dimension of the Ising
ferromagnet in the presence of a random field. Our analysis
indicated that the coupling D does not contribute to change dl ;
however, the gradual increase of D should be associated with
a possible occurrence of multicritical behavior, as well as to
an enlargement of the ordered phase.

From the physical point of view, the first situation consid-
ered herein, namely, fully correlated fields, would correspond
to a situation where in each position i the fields {hτ

i } and {hσ
i }

are the same, being associated to random effects due to the
medium only. The second case, where in each position i one
has independent fields {hτ

i } and {hσ
i }, may result from random-

nesses of the medium, in addition to other possible effects (e.g.,
from the remaining spin variables), such as to act distinctly on
the systems {τi} and {σi}. However, since the Ising model is
well known to provide a wide applicability in many complex
systems so far, the richness of critical behavior exhibited by
the model studied herein, with phase diagrams presenting new
and interesting topologies, is expected to be useful for other
complex phenomena, out of the scope of magnetism.
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