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This study is concerned with ensembles of continuous-time Markov chains evolving independently under a
common transition rate matrix in some finite state space. In this context, our prior work [Phys. Rev. E 91, 062116
(2015)] has formulated an approximation scheme, called the minimal diffusion formulation, to deduce how the
number of chains in a prescribed relevant state evolves in time. The formulation consists of two specifically
coupled Ornstein-Uhlenbeck processes in a stochastic differential equation representation; it is minimal in the
sense that its structure does not change with the state space size or the transition matrix density, and it requires no
matrix square-root operations. In the present study, we first calculate the autocorrelation function of the relevant
state density in the minimal diffusion formulation, which is fundamental to the identification of the ensemble
dynamics. The obtained autocorrelation function is then employed to develop two diffusion formulations that
reduce the structural complexity of the minimal diffusion formulation without significant loss of accuracy in the
dynamics. One of these variant formulations includes one less noise term than the minimal diffusion formulation
and still satisfies the above-mentioned autocorrelation function in its dynamics. The second variant is in the
form of a one-dimensional Langevin equation, therefore it is the simplest possible diffusion formulation one can
obtain for the problem, yet its autocorrelation function is first-order accurate in time gap. Numerical simulations
supporting the theoretical analysis are delivered.
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I. INTRODUCTION

Markov processes are the most commonly used mathemat-
ical models for random phenomena evolving in time [1,2].
Analysis of the temporal evolution of one Markov chain
is comparatively easy [3,4], but the mathematics becomes
quite complicated for the collective behavior of an ensemble
of chains, dating back to Doob [5] and Spitzer [6]. The
complication applies even in the absence of interaction among
the chains. In this context, Kurtz [7] has approximated
density-dependent Markov processes, for large system size,
with a diffusion model represented by a system of stochastic
differential equations (for a detailed account, see Ref. [8]).
The approach assumes the chains in the ensemble to be
evolving independently in the same finite state space with
some continuous-time Markov transition rules common to
all the chains. The Kurtz approach was later rediscovered
by Fox and Lu [9] in the study of ion channel clusters.
Density-dependent Markov models appeared not only in
computational neuroscience to model the gating by ion channel
clusters [9–14], but also in a variety of biological and physical
contexts, including chemical kinetics, ecological modeling,
epidemics, metapopulations, and telecommunications (see,
e.g., Ref. [15]). In some problems, the autocorrelation time
of the fluctuations plays a role as critical as the amplitude of
the state density fluctuations [16].

The use of the diffusion approximation is, however, deterred
by the inherent requirement of a calculation of a matrix
square root at each time step in it [7,9]. In addition, the
number of noise terms required there increases with the state
space size. Approaches that circumvent the matrix square-root
calculations were introduced [13,17], but at the expense that
the number of noise terms employed increases not only with
the state space size, but also with the transition rate matrix
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density. The approaches of Refs. [13] and [17] yield the same
resulting formulation (see the Appendix in Ref. [18]).

To overcome the above difficulties, we have recently put
forward a model [14], which we named “the minimal diffusion
formulation,” that provides a simple analytic formulation and
a fast computation algorithm for the problem. The model
exploits the fact that in many applications, only a subset of
states (often just one) is relevant, the others being hidden
or not of direct concern. That fact was previously exploited
to shorten the computing time of the exact microscopic
Markov simulations [19]. The minimal diffusion formulation
was developed to determine the temporal evolution of the
relevant state density of chains in such a way that its structural
complexity does not change with the underlying state transition
diagram. It accommodates two stochastic variables and two
noise terms (in the form of coupled Ornstein-Uhlenbeck
processes in a stochastic differential equation representation)
irrespective of the state space size or the transition matrix
density, and it is not hindered by the matrix square-root
operations. This was made possible by treating the effects of
the state density fluctuations, other than of the relevant state,
collectively instead of using the density fluctuations of the
individual states explicitly. Note at this point that the diffusion
models, other than the minimal formulation, suffer from the
aforementioned increase in the numbers of stochastic variables
and noise terms even when one is interested in the dynamics
specific to the relevant state only.

The first step of our work in the present paper is analytic
calculation of the autocorrelation function of the relevant state
density in the minimal diffusion formulation. The autocorrela-
tion function is found to consist of two exponentially decaying
additive terms. The calculation is not only important on its
own, but it is also crucial for our subsequent analysis. After
that, we develop two formulations as variants of the minimal
diffusion formulation. We will refer to the variants as 2v1n and
1v1n. The former contains two stochastic variables, whereas
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the latter contains one stochastic variable; both variants include
one noise term. Recall that the minimal diffusion formulation
accommodates two stochastic variables and one stochastic
variable; therefore, the term “2v2n formulation” or “2v2n
model” will be used interchangeably with minimal diffusion
formulation. The variants 2v1n and 1v1n were developed with
the objective of reducing the structural complexity of the
2v2n formulation without a significant loss of accuracy in the
dynamical activity. For that, we make use of the autocorrelation
function of the 2v2n formulation. The variant 2v1n yields the
same autocorrelation function as the 2v2n model. The simpler
variant 1v1n is capable of capturing the 2v2n autocorrelation
function up to first order in the time gap.

This paper is organized as follows. Section II gives the es-
sentials of the original minimal diffusion formulation. Calcula-
tion of the 2v2n model’s relevant state density autocorrelation
function is the subject of Sec. III. Elaborations of the variants
2v1n and 1v1n are presented in Secs. IV and V, respectively.
Section VI includes comparative numerical simulation results
that complement the theory. Finally, Sec. VII includes some
concluding remarks.

II. THE ORIGINAL MINIMAL DIFFUSION
(OR 2v2n) FORMULATION

The formulation [14] is for the temporal evolution of state
density fluctuations in Markov chain ensembles at equilibrium.
For easier physical visualization, each chain in the ensemble
can be imagined as a particle. The formulation is valid after
the relaxation of the system, and it provides a diffusion
approximation to deduce the dynamics of the number (or
the density) of chains that are in a given relevant state. The
ensemble was assumed to consist of ergodic (irreducible)
continuous-time Markov chains evolving independently under
a common transition rate matrix in some finite space of
states. The advantage of the formulation lies in its minimal
complexity: It always accommodates only two stochastic
variables and two noise terms irrespective of the state space
size or the transition matrix density, and it is not hindered
by the matrix square-root operations. This was facilitated by
treating the effect of the state density fluctuations, other than
of the relevant state, collectively rather than using the density
fluctuations of the individual states explicitly.

Let N be the number of Markov chains in the ensemble, and
{0,1, . . . ,L} be the space of states. Also let θl (l = 0,1, . . . ,L)
be the number of chains in state l at a particular time, and refer
to the synonym ψl := θl/N as the density of state l. Symbolize
the fluctuation in the state density ψl by φl , that is,

ψl := 〈ψl〉 + φl (l = 0,1, . . . ,L),

where 〈· · · 〉 denotes the expectation value. Note that the
average state density 〈ψl〉 corresponds to the probability of
finding a chain in state l. By definition, it reads

L∑
l=0

〈ψl〉 =
L∑

l=0

ψl = 1, (1)

L∑
l=0

φl = 0, (2)
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FIG. 1. Example of a state transition diagram used in demon-
strating the implementation of the master equation. z’s denote the
transition rates.

and

〈φl〉 = 0 (l = 0,1, . . . ,L). (3)

The evolution of the expectation values 〈ψl〉 (l =
0,1, . . . ,L) can be computed from the L coupled linear
deterministic differential equations governed by the master
equation. A fundamental property of the master equation
in Markov processes is that, as t → ∞, all solutions tend
to a stationary solution if the state set contains strictly a
finite number of discrete states and the transition rates are
constant in time. There exists only one stationary solution
if the transition rate matrix is not decomposable. Therefore,
with constant transition rates, 〈ψl〉 (l = 0,1, . . . ,L) reaches
the unique steady state in the long-time limit. The minimal
diffusion formulation assumes the transition rates to be
constant or slowly varying. For demonstration, consider the
example state transition diagram given in Fig. 1. In this
particular case, the master equation reads

d〈ψ0〉
dt

= −z01〈ψ0〉 + z10〈ψ1〉,
d〈ψ1〉

dt
= z01〈ψ0〉 − (z10 + z12)〈ψ1〉 + z21〈ψ2〉,

d〈ψ2〉
dt

= z12〈ψ1〉 − z21〈ψ2〉,

(4)

and Eq. (1) becomes

〈ψ0〉 + 〈ψ1〉 + 〈ψ2〉 = 1. (5)

For time-dependent transition rates, the average state den-
sities can be solved iteratively from Eq. (4), subject to
the constraint (5). For constant transition rates, the steady
state

d〈ψ0〉
dt

= d〈ψ1〉
dt

= d〈ψ2〉
dt

= 0 (6)

prevails in the long-time limit. Then, after noting that only
two of the equations in the set given by Eq. (4) are lin-
early independent, Eqs. (4)–(6) uniquely solve 〈ψ0〉, 〈ψ1〉,
and 〈ψ2〉.

In presenting the formulation for the dynamics of the
density fluctuation φr , where the subscript r stands for
the relevant state, let us start with the special case in which the
relevant state is directly connected only to one state—say to
state s—in the transition diagram (see Fig. 2). The governing
model equations are given by the following coupled stochastic
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FIG. 2. Sketch of the relevant state when it makes a direct
connection with one state only. α and β denote transition rates.

differential equations:

φ̇r = −βφr + αφs + ξ, (7a)

φ̇s = −γφs − ξ + η, (7b)

where the parameter γ is given as

γ = α〈ψs〉2 + β〈ψr〉(1 − 〈ψs〉)
〈ψs〉〈ψr〉 . (8)

The terms ξ and η in Eq. (7) are independent zero
mean Gaussian white noises with the mean squares given
by

〈ξ (t)ξ (t ′)〉 = α〈ψs〉 + β〈ψr〉
N

δ(t − t ′) (9)

and

〈η(t)η(t ′)〉 = α〈ψs〉Cα + β〈ψr〉Cβ

N〈ψr〉 δ(t − t ′), (10)

respectively. The synonyms Cα and Cβ in Eq. (10) stand for

Cα := 2〈ψs〉(1 − 〈ψs〉) − 〈ψr〉,
Cβ := 2(1 − 〈ψs〉)2 − 〈ψr〉.

Then, solving the relevant state density fluctuation φr from the
formulation here and using 〈ψr〉 as obtained from the master
equation, the evolution of ψr is concluded by means of ψr =
〈ψr〉 + φr .

We next consider the case in which the relevant state
connects directly to two states—say to states j and k. Assume
that the transition rates from state r to states j and k are
denoted by βj and βk , and the rates from j to r and from k

to r are denoted by αj and αk , all correspondingly. The above
governing equations are valid also in this case provided that
the transition rates β and α, and the probability 〈ψs〉, are now
set, in terms of the parameters related to the states j and k, as
follows:

β = βj + βk, (11)

α = A + B

A
, (12)

and

〈ψs〉 = A2

A2 + B
, (13)

with

A := αj 〈ψj 〉 + αk〈ψk〉,
B := α2

j 〈ψj 〉(1 − 〈ψj 〉) − 2αjαk〈ψj 〉〈ψk〉
+ α2

k 〈ψk〉(1 − 〈ψk〉).
Similarly, the formulation can be extended to a case in which
the relevant state makes a direct connection with an arbitrary
number of states (see Ref. [14] for further details).

III. AUTOCORRELATION OF THE RELEVANT STATE
DENSITY IN THE 2v2n MODEL

In this section, we calculate the autocorrelation function
of the relevant state density in the 2v2n formulation. The
calculation is important not only for its own sake, but also
because the development of both the 2v1n and 1v1n models
relies on that autocorrelation function. The evaluation is
compelling in the long-time limit and assumes the transition
rates are constant.

The differential equations (7a) and (7b) yield the solutions

φr (t) = e−βt

{
φr (0) +

∫ t

0
eβt∗ [αφs(t

∗) + ξ (t∗)]dt∗
}

(14)

and

φs(t) = e−γ t

{
φs(0) −

∫ t

0
eγ t∗ [ξ (t∗) − η(t∗)]dt∗

}
, (15)

respectively. Although not necessary, it is useful to assume
here that the system at time 0 has already reached equilibrium.
Equation (15), with the utilization of 〈ηξ 〉 = 0, reads in the
limit t → ∞ that

〈φs(t)ξ (t ′)〉 =
{

−〈ξ 2〉e−γ (t−t ′) if t � t ′,
0 otherwise

(16)

and

〈φs(t)φs(t
′)〉 = 〈

φ2
s

〉
e−γ |t−t ′ |, (17)

where 〈φ2
s 〉 reads [14]

〈
φ2

s

〉 = 〈ψs〉(1 − 〈ψs〉)
N

. (18)

The reader is also referred to Ref. [20]. Note that the
expectation values 〈ξ 2〉 and 〈φ2

s 〉 are constants at equilibrium
for time-independent transition rates.

For the relevant state density autocorrelation, we obtain
from Eq. (14) that

〈φr (t)φr (t + τ )〉

= e−β(2t+τ )
∫ t

0

∫ t+τ

0
eβ(t1+t2)

×{α2〈φs(t1)φs(t2)〉 + α〈φs(t1)ξ (t2)〉
+α〈φs(t2)ξ (t1)〉 + 〈ξ (t1)ξ (t2)〉}dt1dt2, (19)
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which can be decomposed into

〈φr (t)φr (t + τ )〉 = e−β(2t+τ )
∫ t

0
eβt2

{
α2

∫ t2

0
eβt1〈φs(t1)φs(t2)〉dt1 + α2

∫ t+τ

t2

eβt1〈φs(t1)φs(t2)〉dt1

+α

∫ t2

0
eβt1〈φs(t1)ξ (t2)〉dt1 + α

∫ t+τ

t2

eβt1〈φs(t1)ξ (t2)〉dt1 + α

∫ t2

0
eβt1〈φs(t2)ξ (t1)〉dt1

+ α

∫ t+τ

t2

eβt1〈φs(t2)ξ (t1)〉dt1 +
∫ t+τ

0
eβt1〈ξ (t1)ξ (t2)〉dt1

}
dt2. (20)

Due to Eq. (16), the third and sixth additive integral terms
in Eq. (20) vanish, that is,∫ t2

0
eβt1〈φs(t1)ξ (t2)〉dt1

=
∫ t+τ

t2

eβt1〈φs(t2)ξ (t1)〉dt1 = 0. (21)

The first and second integral terms yield, by means of Eq. (17),
that ∫ t2

0
eβt1〈φs(t1)φs(t2)〉dt1 =

〈
φ2

s

〉
β + γ

(eβt2 − e−γ t2 ) (22)

and ∫ t+τ

t2

eβt1〈φs(t1)φs(t2)〉dt1

=
〈
φ2

s

〉
β − γ

eγ t2 [e(β−γ )(t+τ ) − e(β−γ )t2 ]. (23)

The fourth and fifth terms are evaluated, by means of Eq. (16),
as ∫ t+τ

t2

eβt1〈φs(t1)ξ (t2)〉dt1

= − 〈ξ 2〉
β − γ

[eγ t2e(β−γ )(t+τ ) − eβt2 ] (24)

and ∫ t2

0
eβt1〈φs(t2)ξ (t1)〉dt1 = − 〈ξ 2〉

β + γ
[eβt2 − e−γ t2 ]. (25)

The last term reads∫ t+τ

0
eβt1〈ξ (t1)ξ (t2)〉dt1

= 〈ξ 2〉eβt2 for 0 < t2 < t + τ. (26)

Then, substituting Eqs. (21)–(26) into Eq. (20) and evaluating
the overall integral in the limit t → ∞ results in the autocor-
relation function

〈φr (t)φr (t + τ )〉

=
[ 〈ξ 2〉

2β
− αγ

β(γ 2 − β2)

(〈ξ 2〉 − α
〈
φ2

s

〉)]
e−βτ

+ α

γ 2 − β2

(〈ξ 2〉 − α
〈
φ2

s

〉)
e−γ τ . (27)

Since our analysis assumes the transition rates to be time-
independent, the average state densities at the steady state can

be used to write Eq. (27) in a simpler way. The master equation
for 〈ψr〉 reads

d〈ψr〉
dt

= −β〈ψr〉 + α〈ψs〉, (28)

which gives

α〈ψs〉 = β〈ψr〉 (29)

at the steady state. Then, utilizing Eq. (29) in Eqs. (8), (9),
and (18) yields

N〈φr (t)φr (t + τ )〉

= 〈ψr〉
(

1 − 〈ψr〉
1 − β

α
〈ψr〉

)
e−βτ + β〈ψr〉3

α − β〈ψr〉e
−γ τ . (30)

This autocorrelation function can be seen, using Eq. (29)
and the inequality 〈ψr〉 + 〈ψs〉 < 1, to be always positive and
finite. Note that this equation gives at τ = 0 the variance〈

φ2
r

〉 = 〈ψr〉(1 − 〈ψr〉)
N

, (31)

in agreement with the binomial distribution dispersion relation
given in Ref. [14].

IV. THE VARIANT 2v1n

The 2v1n formulation is a system of two stochastic variables
and one noise term, that is, it contains one less noise term
than the 2v2n formulation. It gives the same autocorrelation
function (and the standard deviation) for the relevant state
density fluctuations as in the 2v2n formulation.

The variant formulates the density fluctuation φr by

φr = kaφr,a + kbφr,b, (32)

where ka and kb are some parameters, and φr,a and φr,b

are two diffusively coupled Ornstein-Uhlenbeck processes
characterized by the Langevin-type equations

φ̇r,a = −βφr,a + ξ, (33a)

φ̇r,b = −γφr,b + ξ. (33b)

Here the zero mean Gaussian white noise ξ has the mean
square given by Eq. (9). The parameters ka and kb are set, with
the objective of achieving an autocorrelation function identical
to that of the 2v2n model, as follows:

ka =
√

2β(β + γ )C2

2βC3 + β + γ
(34)
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and

kb = C3ka, (35)

where the coefficients C2 and C3 are given recurrently by

C1 := α

γ 2 − β2

(
1 − α

〈
φ2

s

〉
〈ξ 2〉

)
,

C2 := 1

2β
(1 − 2γC1),

C0 := γ

β + γ

(
C1

C2
− 1

)
,

C3 := C0 +
√

C2
0 + γC1

βC2
.

The differential equations (33a) and (33b) give the solutions

φr,a(t) = e−βt

{
φr,a(0) +

∫ t

0
eβt∗ξ (t∗)dt∗

}
(36)

and

φr,b(t) = e−γ t

{
φr,b(0) +

∫ t

0
eγ t∗ξ (t∗)dt∗

}
, (37)

respectively. It then follows that

〈φr,a(t)φr,a(t + τ )〉 = 〈ξ 2〉
2β

e−βτ , (38)

〈φr,b(t)φr,b(t + τ )〉 = 〈ξ 2〉
2γ

e−γ τ , (39)

〈φr,a(t)φr,b(t + τ )〉 = 〈ξ 2〉
β + γ

e−γ τ , (40)

and

〈φr,a(t + τ )φr,b(t)〉 = 〈ξ 2〉
β + γ

e−βτ . (41)

Equations (38)–(41) together with Eq. (32) give the autocor-
relation function

〈φr (t)φr (t + τ )〉

= 〈ξ 2〉
[(

k2
a

2β
+ kakb

β + γ

)
e−βτ +

(
k2
b

2γ
+ kakb

β + γ

)
e−γ τ

]
(42)

in the long-time limit t → ∞. Then, substituting the parame-
ters ka and kb from Eqs. (34) and (35) results consistently in
the autocorrelation function of the 2v2n formulation given by
Eq. (27).

This, however, does not prove the equivalence between
the 2v1n and 2v2n formulations; their transition probability
functions still might not be the same. However, even if the
two formulations are not equivalent, the complete agreement
between their autocorrelation functions ensures that the 2v1n
formulation is highly compatible with the 2v2n formulation in
describing the statistics of the state density fluctuations.

V. THE VARIANT 1v1n

The 1v1n formulation is simpler than both the 2v2n
formulation and the variant 2v1n: It contains just one stochastic

variable and one noise term. However, the relevant state density
autocorrelation function in it does not exactly match the
autocorrelation function of the 2v2n formulation; instead, it
agrees with it up to first order in the time gap.

The diffusive dynamics in this case is governed by the
Langevin equation

φ̇r = −γ̃ φr + ξ, (43)

in which ξ is zero mean Gaussian white noise with the mean
square as given by Eq. (9), and the friction coefficient γ̃ is
given by

γ̃ = α〈ψs〉 + β〈ψr〉
2〈ψr〉(1 − 〈ψr〉) . (44)

It is not difficult to derive the autocorrelation function in
this variant as

〈φr (t)φr (t + τ )〉 = 〈ξ 2〉
2γ̃

e−γ̃ τ , (45)

which reads

〈φr (t)φr (t + τ )〉 = 〈ψr〉(1 − 〈ψr〉)
N

e
− β

1−〈ψr 〉 τ (46)

at the steady state of the average state densities. Equation (46)
approximates the autocorrelation function of the 2v2n formu-
lation, given by Eq. (30), up to first order in τ .

The idea of approximating the sum of exponentials by
the Taylor series down to a single exponential in diffusion
formulations was previously used [11]. The resultant Ornstein-
Uhlenbeck process in Ref. [11] is not the same as our 1v1n for-
mulation since the minimal diffusion formulation is different
from the unreduced multiexponential formulation (developed
specifically for ion channel clusters) of that reference.

At this point, we address a study [19] that argues that the
computing time of the exact microscopic Markov simulations
can be shortened considerably, without significant loss in
accuracy, by regarding fluctuations only in those states directly
connected to the relevant state in every chain. The method was
named “stochastic shielding.” Consider the case in which the
relevant state makes a direct connection with one state only,
as in Fig. 2. The sum of fluctuations over the states vanishes:

L∑
l=0

φl = 0.

Since the stochastic shielding approach sets the state density
fluctuations other than φr and φs to zero, one gets φs = −φr in
it. Then, the diffusion approximation to the stochastic shielding
simulation method gives

φ̇r = −(α + β)φr + ξ, (47)

where the noise ξ is the same as that given by Eq. (9). This
stochastic differential equation can be easily obtained from
Ref. [9] or Ref. [13], or from the minimal diffusion for-
mula (7a). Comparison with Eq. (43) shows that the stochastic
shielding diffusion approximation and 1v1n formulation are
characterized by the same differential equation with the same
noise variance, but they differ in the parameter γ̃ . Equation (47)
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FIG. 3. State transition diagram used in the simulations. The state
0 is the relevant state.

yields the variance 〈
φ2

r

〉 = β〈ψr〉
N (α + β)

(48)

at equilibrium, which is not in agreement with the dispersion
relation (31). Hence, it appears that (at least for small time
gaps) the 1v1n formulation is more accurate than the stochas-
tic shielding diffusion approximation in approximating the
autocorrelation function. See also the discussion in Ref. [14]
on the issue of stochastic shielding in relation with the minimal
diffusion formulation.

VI. NUMERICAL EXPERIMENTS

In applying the Euler-Maruyama method [21] as the
simplest effective method for numerical solutions of φs by
Eq. (7b) and φr,2 by Eq. (33b), the step size �t should satisfy,
for stability reasons, that �t γ < 1. However, γ can attain
large values, which dictates the usage of a very small �t , or
else φs in the 2v2n formulation and φr,2 in the variant 2v1n can
be set directly to zero for γ values that violates the inequality
�t γ < 1. Similarly, φr in the 1v1n formulation can be taken
directly as zero if the parameter γ̃ given by Eq. (44) does not
obey �t γ̃ < 1.

We perform simulations on an ensemble of 300 Markov
chains each characterized by the state transition diagram in
Fig. 3, in which the state 0 is used as the relevant state. In this
particular case, the master equation gives at the steady state
the following set of coupled equations for the average state
densities:

0 = −(z01 + z07)〈ψ0〉 + z10〈ψ1〉 + z70〈ψ7〉,
0 = −(z10 + z12 + z13 + z14)〈ψ1〉 + z01〈ψ0〉

+ z21〈ψ2〉 + z31〈ψ3〉 + z41〈ψ4〉,
0 = −(z21 + z23)〈ψ2〉 + z12〈ψ1〉 + z32〈ψ3〉,
0 = −(z31 + z32 + z34)〈ψ3〉 + z13〈ψ1〉 + z23〈ψ2〉 + z43〈ψ4〉,
0 = −(z41 + z43 + z45 + z47)〈ψ4〉 + z14〈ψ1〉

+ z34〈ψ3〉 + z54〈ψ5〉 + z74〈ψ7〉,

0 = −(z54 + z56 + z57)〈ψ5〉 + z45〈ψ4〉 + z65〈ψ6〉 + z75〈ψ7〉,
0 = −(z65 + z67)〈ψ6〉 + z56〈ψ5〉 + z76〈ψ7〉,
0 = −(z70 + z74 + z75 + z76)〈ψ7〉 + z07〈ψ0〉

+ z47〈ψ4〉 + z57〈ψ5〉 + z67〈ψ6〉, (49)

where zij (i,j = 0,1, . . . ,7) denotes the transition rate from
the state i to the state j . Note that one of the equations in
Eq. (49) is dependent on the others, and, therefore, it can be
eliminated. Thus, Eq. (49) together with

7∑
l=0

〈ψl〉 = 1

uniquely solves the average state densities. Then, it is
straightforward to implement our above diffusion formulations
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FIG. 4. Relevant state standard deviations measured using the
(a) 2v2n, (b) 2v1n, and (c) 1v1n formulations (denoted by σ2v2n,
σ2v1n, and σ1v1n, correspondingly), relative to the standard deviation
obtained from the exact microscopic Markov simulation (denoted by
σS). An ensemble of 300 Markov chains, each evolving independently
under the state transition diagram given in Fig. 3, was used. A total of
200 sets of standard deviation measurements were performed using
a different transition rate matrix, with every matrix element being
randomly generated within the range 0–0.5 in each set. The horizontal
axis in each plot gives the measurement set number. The straight line,
placed in each plot to guide the eye, indicates the situation of a perfect
match between the model and the microscopic simulation.
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for the relevant state density fluctuations, following the
identifications ψr ≡ ψ0, φr ≡ φ0, 〈ψr〉 ≡ 〈ψ0〉, 〈ψj 〉 ≡ 〈ψ1〉,
〈ψk〉 ≡ 〈ψ7〉, αj ≡ z10, αk ≡ z70, βj ≡ z01, and βk ≡ z07.

Our case study examines the 2v2n, 2v1n, and 1v1n
formulations with reference to the exact microscopic Markov
simulation, in terms of standard deviation and autocorrelation
time of the relevant state density ψ0. We identify τ as the
autocorrelation time if it satisfies the equality

〈φ0(t)φ0(t + τ )〉
〈φ2

0(t)〉 = e−1, (50)

where the time t is large enough for equilibrium to be reached.
Accordingly, we have performed 200 sets of measurements
using a different randomly generated transition rate matrix for
each set. The obtained standard deviation results are presented
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FIG. 5. Relevant state autocorrelation time measured using the
(a) 2v2n, (b) 2v1n, and (c) 1v1n formulations (denoted by τ2v2n,
τ2v1n, and τ1v1n, correspondingly), relative to the autocorrelation time
obtained from the exact microscopic Markov simulation (denoted by
τS). An ensemble of 300 Markov chains, each evolving independently
under the state transition diagram given in Fig. 3, was used. A total of
200 sets of autocorrelation time measurements were performed using
a different transition rate matrix, with every matrix element being
randomly generated within the range 0–0.5 in each set. The horizontal
axis in each plot gives the measurement set number. The straight line,
placed in each plot to guide the eye, indicates the situation of a perfect
match between the model and the microscopic simulation.

in Fig. 4, and the autocorrelation time results are presented in
Fig. 5.

It is seen from Fig. 4 that all three models (2v2n, 2v1n,
and 1v1n) predict the microscopic standard deviation with
excellent accuracy: The measurements obtained using the
models do not differ from the corresponding exact microscopic
simulation measurements more than 0.000 22. Concerning the
autocorrelation times, it is seen from Fig. 5 that formulations
2v2n and 2v1n give virtually identical results, whereas the
1v1n formulation displays some discrepancy. This is exactly
the result expected: Recall that we formulated the 2v1n model
in such a way that it produces the same autocorrelation
function as the original model 2v2n, but the 1v1n model
was formulated just to guarantee first-order accuracy with
respect to the 2v2n autocorrelation time. It is observed, with
reference to the microscopic simulations, that the 2v2n and
2v1n models give apparently more accurate autocorrelation
times than the 1v1n model; this is thought to be because
most 1v1n model measurements are biased toward slightly
smaller values (about 10% on average) than the corresponding
microscopic autocorrelation time measurements.

It follows from Eqs. (30), (31), and (50) that the autocor-
relation time is independent of the number of Markov chains
N . To substantiate this, we have measured the autocorrelation
time for several different N from the models as well as the
exact microscopic simulations, and we have indeed observed
the independence from the ensemble size.

VII. CONCLUSION

In this paper, we have pursued a study on the so-called
minimal diffusion formulation (or 2v2n model, as we named
it in this study). First, we calculated the relevant state density
autocorrelation function using that formulation, and we found
the autocorrelation to be in the form of two additive terms
each decaying exponentially. Following that, we introduced
two diffusion models (namely 2v1n and 1v1n) that reduce the
structural complexity of the 2v2n model and yet efficiently
approximate its dynamics. Both the 2v1n and 1v1n models
contain just one noise term, one less than the 2v2n model. The
variant 1v1n also reduces the number of stochastic variables
by 1. The variant 2v1n has higher accuracy than the variant
1v1n: it yields the same autocorrelation function as the 2v2n
model, whereas the variant 1v1n is first-order accurate in the
time gap. We have provided numerical simulations supporting
our theoretical analysis.

Although the original minimal diffusion formulation al-
ready provides a simple analytic formulation and a fast com-
putation algorithm for the problem of collective fluctuations
in Markov chain ensembles, the variants 2v1n and 1v1n
improve these properties even further. Due to their simplicity,
these formulations have the potential of being useful in
analytic analysis and advancement of the collective evolution
of Markov chain ensembles. Between the two, formulation
1v1n is more appropriate to be used in qualitative analyses,
while formulation 2v1n should be preferred in the case of
quantitative examinations.

Like any other diffusion formulation, the minimal diffusion
formulation and its variants 2v1n and 1v1n are models for
near-equilibrium dynamics; they fail at far-from-equilibrium
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conditions. That was the reason for assuming the transition
rates to be constant in our conducted analysis: with rapidly
changing rates, the system may not have enough time to
reach equilibrium. We have, however, retained both 〈ψs〉 and
〈ψr〉 in the governing equations of our formulations without
imposing the steady-state condition (29). That was done in
order to facilitate the validity of our models for slowly varying
transition rates as well. When a Markov diffusion model is

formulated subject to the steady-state conditions (such as the
one in Ref. [11]), it becomes inaccurate at nonequilibrium [13]
or under noisy transition rates [12].
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