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Surface growth on percolation networks by a conserved-noise restricted solid-on-solid growth model
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Surface growth by the conserved-noise restricted solid-on-solid model is investigated on diluted lattices, i.e.,
on percolation networks that are embedded in two spatial dimensions. The growth exponent β and the roughness
exponent α are defined, respectively, by the mean-square surface width via W 2(t) ∼ t2β and the mean-square
saturated width via W 2

sat(L) ∼ L2α , where L is the system size. These are measured on both an infinite network and
a backbone network and the results are compared with power-counting predictions obtained using the fractional
Langevin equation. While the Monte Carlo results on deterministic fractal substrates show excellent agreement
with the predictions [D. H. Kim and J. M. Kim, Phys. Rev. E 84, 011105 (2011)], the results on critical percolation
networks deviate by 8%–12% from these predictions.
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I. INTRODUCTION

During the past few decades, there has been a consider-
able effort to elucidate the growth dynamics of roughening
surfaces using various discrete growth models [1–4]. Surface-
roughening phenomena are associated with a wide variety
of systems such as domain walls in the two-dimensional
random bond Ising model [5], randomly stirred fluids, ballistic
aggregation [6], epitaxial film growth [7], and directed poly-
mers in a random potential [8].

Various continuum equations were proposed in order to
classify growth phenomena into several distinct universality
classes. The growth phenomena are classified by the critical
exponents that characterize the growth of the surface width in
a large system and the saturated width in finite-size systems.
The growing surface width in a system of a linear size L is
defined by the standard deviation of the surface heights, given
as

W (t,L) = 〈[h(�r,t) − h(t)]2〉1/2, (1)

where h(t) is the average height over all lattice sites at time t

and 〈· · · 〉 denotes the average over all samples. For finite t and
L, the mean-square surface width satisfies the scaling function

W 2(L,t) = L2αF(t/Lz) ∝
{
t2β, t � Lz

L2α, t � Lz,
(2)

where the extreme values are given as F(x) = const for t �
Lz and F(x) ∝ x2β for t � Lz and β and α are the growth and
roughness exponents, respectively. The dynamic exponent z is
defined by z = α/β.

The most prominent universality class is the Kardar-Parisi-
Zhang (KPZ) class in which the growth is believed to be
described by a continuum equation, known as the KPZ
equation [9],

∂h(�r,t)
∂t

= ν∇2h(�r,t) + λ

2
[∇h(�r,t)]2 + η(�r,t), (3)

where η represents the Gaussian random variable that satisfies

〈η(�r,t)η(�r ′,t ′)〉 = 2�δ(�r − �r ′)δ(t − t ′), (4)
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with � describing the local noise variation. Various discrete
models that differ greatly from each other, such as the Eden
model [10], ballistic deposition [11], and restricted solid-on-
solid (RSOS) model [12], can all be described by the KPZ
equation and, accordingly, these models are considered to
belong to the KPZ universality class. There are other known
universality classes, such as the Edwards-Wilkinson (EW)
class [13] described by the EW equation

∂h(�r,t)
∂t

= ν∇2h(�r,t) + η(�r,t) (5)

and the Herring-Mullins (HM) class [14,15], all of which have
been studied on pure substrates.

In each of these models, the number of particles on a
substrate is not conserved because of either deposition or
evaporation or both processes. Recently, a growth model with
a conserved number of particles was also presented and studied
on both a regular lattice [16–18] and selected fractal substrates
[19]. It is known that particle conservation on a substrate leads
to a conserved noise, described by [16]

〈ηc(�r,t)ηc(�r ′,t)〉 = −2Dc∇2δd (�r − �r ′)δ(t − t ′), (6)

where Dc is the noise variation. Therefore, the RSOS model
with particle conservation is referred to as the conserved-noise
RSOS (CNRSOS) model.

Growth in the CNRSOS model is described by the contin-
uum Langevin equation [16,18]

∂h(�r,t)
∂t

= −ν∇4h(�r,t) + ηc(�r,t), (7)

which is a form of the HM equation, but with a conserved noise.
The critical exponents can be obtained exactly through a simple
power-counting method when the size of a system is rescaled
by a factor b, i.e., h → bαh, t → bzt , and ηc → b−(2+d+z)/2ηc,

α = 2 − d

2
, β = 2 − d

8
, z = 4, (8)

where d is the substrate dimension (note that the total
dimension is equal to d + 1).

These growth phenomena have recently been studied on
various fractal lattices [20–27]. On a given fractal substrate,
the linear continuum equation for the CNRSOS model was
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modified by replacing ∇4h with ∇2zrwh and the fractional
Langevin equation was obtained [19]. The main idea for this
modification was borrowed from the EW equation [21]. From
power counting of the left-hand term and the first term on the
right-hand side of Eq. (5), the dynamic exponent z = 2 results
from the order of ∇. Because the EW equation without noise
is equivalent to the diffusion equation, the value of z is the
dynamic exponent of random walks zrw, defined by the mean-
square end-to-end distance 〈R2〉 ∼ t2/zrw . On a regular lattice,
zrw = 2, irrespective of the substrate dimensions; however, on
a fractal substrate, anomalous diffusion yields the fractional
number zrw. Substituting ∇2 → ∇zrw in Eq. (5), the fractional
EW equation is obtained and power counting of the rescaling
factors yields the growth and roughness exponents

αEW = df

(
1

ds
− 1

2

)
, βEW = 1

2

(
1 − ds

2

)
. (9)

The results in Eq. (9) were also obtained previously by direct
calculation of the surface width using the autocorrelation
function on fractal substrates [28] and they were found to
be in excellent agreement with the Monte Carlo (MC) data on
deterministic fractal substrates [21] and also on random fractal
substrates [22].

For the fourth-order HM equation, the continuum Hamil-
tonian written as H ∼ ∫

ddx| ∇2h
N

|2 leads to the fourth-order
differential equation. Thus, from the analogy between the EW
equation and the HM equation, it is not unreasonable to replace
∇4h with ∇2zrwh and the fractional Langevin equation

∂h(�r,t)
∂t

= −ν∇2zrwh(�r,t) + ηc(�r,t) (10)

was proposed [19] with the conserved noise modified in order
to satisfy

〈ηc(�r,t)ηc(�r ′,t)〉 = −2Dc∇2δdf (�r − �r ′)δ(t − t ′), (11)

where df is the substrate fractal dimension. Through power
counting of the rescaling factors, the following critical expo-
nents were obtained:

α = zrw − df

2
, β = 1

4
− df

4zrw
, z = 2zrw. (12)

Using the scaling relation zrw = dw = 2df
ds

for random walks
on a fractal substrate [29], Eq. (12) can be rewritten as

α = df

(
1

ds
− 1

2

)
, β = 1

4

(
1 − ds

2

)
, z = 2dw, (13)

where dw and ds are the fractal dimension of the random walk
and the spectral dimension of the substrate, respectively. The
predictions obtained using Eq. (13) are in excellent agreement
with the MC results on the Sierpinski gasket and checkerboard
fractal substrates and, based on the numerical results, they were
conjectured to be exact on fractal substrates [19].

In this paper the CNRSOS growth model is studied on
diluted lattices, i.e., on percolation networks, in order to
examine the validity of Eq. (13) on random fractal substrates.
The growth phenomena on diluted lattices may differ from the
growth on deterministic fractal substrates. As an example,
while the growth by the RSOS model on deterministic
fractal substrates yields distinct critical behaviors with well-
defined critical exponents [20], that on diluted lattices, i.e.,

on percolation networks, results in anomalous nonuniversal
growth [22]. Therefore, the agreement of the predictions in
Eq. (13) with the MC data on two selected deterministic fractal
substrates does not warrant similar agreement for the random
fractal substrates. Growth on diluted lattices is of interest in
two respects. First, it enables one to explore the influence
of quenched impurities on growth dynamics because diluted
sites are generally considered to be quenched impurities.
Investigation of the influence of quenched impurities has been
of great interest in both equilibrium and nonequilibrium critical
phenomena since the discovery of the Harris criterion [30]. In
the nonequilibrium RSOS model, quenched impurities were
found to be relevant and even small amounts of impurities
yielded nonuniversal anomalous growth. In the equilibrium
RSOS growth, however, the presence of impurities was
irrelevant and regular lattice results were observed as long as
the amount of impurities was less than a critical amount [22]. It
is thus interesting to investigate the way in which impurity sites
affect growth in the CNRSOS model. Second, one can also
examine whether the fractional Langevin equation that was
obtained by such a crude method is also able to predict growth
on random fractal lattices. Because the growth exponent β

was predicted to depend only on the spectral dimension of the
substrate, the growth exponents on two- and three-dimensional
critical percolation networks and on a backbone network are
expected to be similar, because the spectral dimensions for
these networks are similar. Growth on these substrates is
investigated.

In Sec. II the model and simulation methods are described.
In Sec. III the MC results are presented and discussed. A
summary and conclusion are presented in Sec. IV.

II. MODEL AND METHOD

The random fractal lattice, i.e., the percolation network,
is generated on a square lattice of a linear size L using the
standard method; each lattice site is occupied with a probability
p and diluted with a probability 1 − p and any two occupied
nearest-neighbor sites are assumed to be connected. An infinite
network is sampled using periodic boundary conditions; a
cluster that spans all the coordinate directions and is wrapped
around the system using periodic boundaries is considered
to be the random fractal substrate, so the substrate should
be indefinitely extendable when periodically replicated. The
well-known Hoshen-Kopelman algorithm was employed here
[31]. At each occupied lattice site, the number of and directions
to occupied nearest-neighbor sites are recorded in terms of
a single integer variable, with the fifth digit representing
the number of occupied sites and the following four digits
representing the directions. As an example, the integer 30 421
represents the fact that the neighboring sites along the +x,
−x, and −y directions are occupied and that there are three
occupied nearest-neighbor sites. The percolation backbone is
extracted using the Roux-Hansen algorithm [32], which is very
efficient but effective only in two dimensions.

The growth rule of the CNRSOS model is to randomly
select a nearest-neighbor pair of occupied sites (�ri,�rj ). A
particle on site �ri is then moved to site �rj , resulting in

h(�ri) → h(�ri) − 1, h(�rj ) → h(�rj ) + 1,
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or vice versa, resulting in

h(�ri) → h(�ri) + 1, h(�rj ) → h(�rj ) − 1,

with equal probabilities. The RSOS condition

|h(�ri,t) − h(�rj ,t)| � N (14)

is examined and, if this is not satisfied for any of the sites
at �ri and �rj or their nearest-neighbor sites, the corresponding
local movement is forbidden and the particle remains in its
original position. Because no deposition or evaporation except
surface diffusion is allowed, the sum of the heights

∑
i h(�ri)

is conserved and therefore h(t) = 0, assuming that the surface
grows from a flat substrate. At each attempt, the evolution time
is increased by 
t = 1/Noccu, where Noccu is the number of
occupied sites, and the surface width is recorded whenever
an evolution time exceeds integer values. A single surface is
grown on each sampled percolation network and the results
are averaged over many uncorrelated networks.

III. RESULTS AND DISCUSSION

In order to examine whether diluted sites affect the growth
dynamics, simulations were carried out on a square lattice for
p = 1.0, 0.8, and 0.7, all of which were above the percolation
threshold pc = 0.592 745 [33]. Simulations on an infinite
network and on a backbone network, both at pc, were also
carried out in order to investigate growth dynamics on random
fractal substrates. The RSOS condition was set to an integer
value of N = 3 throughout the simulations. It should be noted
that larger values of N yielded faster growth with the same
critical exponents; however, the power-law region narrowed
for larger N values.

A. Growth on a percolation network for p > pc

Figure 1 shows the mean-square surface width plotted on
a semilogarithmic scale. For p = 1.0, the substrate is a flat
square lattice and the surface width grows logarithmically, as
one would expect at the critical dimension. From Eq. (8), the
critical dimension of the CNRSOS model is predicted to be
dc = 2 because α = β = 0 for d = 2. The simulation results
support this prediction. For p = 0.8 and 0.7, the surface width
increases rapidly in the early growth stages and increases
logarithmically later on. The rapid increase in the early stages
is attributed to the local fractal nature of the substrates,
whereas with increasing time, the global Euclidean structure
dominates the growth. The region of logarithmic increase
becomes narrower with increasing p. It is expected that this
region would disappear at p = pc, with the growth eventually
following a power-law behavior, as described in the following
section.

On the upper critical dimension, the surface width is known
to satisfy the scaling form

W 2(L,t) = log10

[
L2aG

(
t

Lz

)]
∝

{
2b log10 t, t � Lz

2a log10 L, t � Lz,

(15)

where the scaling function is given by G(x) ∝ x2b for x � 1
and G(x) = const for x � 1. In order to examine the scaling of
the data provided in Fig. 1, the values of (b,a) are estimated to
be (0.280,1.119) for p = 1.0, (0.606,2.292) for p = 0.8, and
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FIG. 1. Mean-square width of the growing surfaces calculated
using the CNRSOS model on a percolation network for three selected
values of percolation probability: (a) p = 1.0, (b) p = 0.8, and
(c) p = 0.7. The data in each plot are for, from bottom to top, L = 4,
8, 16, 32, 64, and 256 and the dashed line is a guide for the eye,
denoting a logarithmic increase.

(1.397,5.302) for p = 0.7. From the scaling form in Eq. (15),
the dynamic exponent is given as z = a

b
and from the estimates

of b and a, z = 4.0 for p = 1.0 and z � 3.8 for both p = 0.8
and 0.7. The slight deviation of the latter from the value of the
former appears to be due to a crossover from fractal-like to
Euclidean substrate behaviors with increasing time.

Scaling plots of the data for p = 1.0 and 0.8 are shown in
Fig. 2, using the estimated values of a and z. In the case of
p = 1.0, the scaling is perfect, implying that indeed dc = 2.
This scaling plot is precisely the same as that of Ref. [18],
except that the value of a in this work is slightly larger. In the
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FIG. 2. Scaling plots of Eq. (15), using the estimated values of
2a = 2.238 and z = 4.0 for p = 1.0 (upper) and 2a = 4.584 and
z = 3.8 for p = 0.8 (lower), for the CNRSOS model on a percolation
network above pc.

case of p = 0.8, data in the early stages deviate and merge
into a single curve as time increases, reflecting the crossover
from fractal-like to Euclidean logarithmic growth. The case of
p = 0.7 shows similar results, but with a narrower logarithmic
growth region (not shown).

B. Growth on random fractal lattices

At the percolation threshold, an infinite percolation network
becomes fractal, with the fractal dimension df = 91

48 � 1.896
[34], in the two embedding dimensions. The growth dynamics
on an infinite network is thus expected to be distinct from that
on a regular lattice substrate. The snapshots in Fig. 3 show the
growth on two different substrates with L = 32, i.e., for p =
1.0 (regular square lattice) and for p = pc (critical percolation
network), at times, from top to bottom, t = 10, 102, 103, 104,
105, and 106. The surface width on a regular lattice grows
slowly, whereas that on a critical percolation network shows
faster growth. (Note that the ungrown flat sites for p = pc are
the diluted sites and the growth on the sites neighboring the
diluted sites is distinct because of fewer restrictions.)

The mean-square surface width was calculated on infinite
percolation networks. Figure 4 shows the mean-square surface
width for selected system sizes of L = 4, 8, 16, 32, 64,
and 256. In the case of L = 64, the data do not reach the
steady-state value after 109 steps because of extremely slow
convergence behavior, indicating that the dynamic exponent is
much larger than that on a regular lattice. A crude estimation of
the saturation time gives ts ∼ Lz ≈ 1011 for L = 64 and z = 6
(see below). For L = 256, data were generated up to 107 MC
steps in order to accurately estimate the growth exponent; it
was determined from power-law fitting that 2β = 0.188(1).
The saturated mean-square surface width versus system size
is provided in the inset; power-law fitting yields a value of
2α = 1.122(5). In order to validate these estimates, the scaling
function is plotted in Fig. 5, using the estimated values of
2α = 1.122 and z = α

β
= 5.97. From this figure, it is clear

that the scaled surface width for various-size systems collapses

FIG. 3. Snapshots of the growing surfaces by the CNRSOS model
on a lattice of L = 32 for (a) p = 1.0 and (b) p = 0.592745 (=pc),
at the time steps of, from top to bottom, t = 10, 102, 103, 104, 105,
and 106.
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FIG. 4. Mean-square surface width generated by the CNRSOS
model on a critical percolation network for system sizes of, from
bottom to top, L = 4, 8, 16, 32, 64, and 256 (up to 107 steps). The
inset is a plot of the mean-square saturated width as a function of the
system size, with a regression fit yielding 2α = 1.122.
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FIG. 5. Scaling plot of Eq. (2) using the estimated values of 2α =
1.122 and z = 5.97 for the CNRSOS model on a critical percolation
network.

onto a single curve when plotted as a function of the scaled
variable. This confirms that the estimates are valid.

Simulations were also carried out on percolation backbone
networks that were obtained from infinite networks by elimi-
nating all dangling bonds and blobs. Because all dangling ends
were eliminated from the infinite network that was generated at
pc, the backbone network is a fractal with a fractal dimension
smaller than that of the original infinite network, dbb

f � 1.64
[35,36]. The spectral dimension, on the other hand, remains
unchanged. The spectral dimension, also referred to as the
fracton dimension, is originally defined by the density of
normal modes on fractal lattices as ρ(ω) ∼ ωds−1 [37] and is
also related to the probability of random walks returning to the
origin after t steps, P (t) ∼ t−ds/2 [29]. Because dangling ends
do not contribute to lattice vibration, the spectral dimension of
a backbone is the same as that of an infinite network.

In Fig. 6 the mean-square surface widths generated on
backbone networks for systems of L = 4, 8, 16, 32, 64, and 512
are plotted. Comparing this plot with Fig. 4, it is clear that the
surface width saturates faster and the saturated width is smaller
than the growth on an infinite network. This result is expected
when the mean coordination number on a backbone network
is larger than that on an infinite network. Indeed, the mean
coordination number is larger on a backbone network because
all the dangling sites with fewer occupied neighboring sites are
eliminated from the infinite network and, accordingly, growth
is more restricted on a backbone than on an infinite network
when using the RSOS condition. The estimated exponents are
2β = 0.186(2), 2α = 0.977(5), and z � 5.25(6). Data scaled
using these values yields excellent collapse, as shown in Fig. 7.

The results are summarized in Table I, with a comparison to
the power-counting predictions obtained using the fractional
Langevin equation, using ds = 1.31, df = 91

48 [29], and dw =
2.87 [29,38] for the data on an infinite network and dbb

f = 1.64
[35,36] and dw = 2.69 [29] for the data on a backbone network.
The measured values of β and α are larger than the predicted
values by approximately 8%–12%, in contrast to the results
obtained on deterministic fractal substrates [19].
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FIG. 6. Mean-square surface width generated using the CNRSOS
model on a percolation backbone network for, from bottom to top,
L = 4, 8, 16, 32, 64, and 512. The dashed line is the power-law fit
of the data for L = 512 and the saturated width as a function of the
size of system is provided in the inset, with a regression fit yielding
2α = 0.977.

C. Discussion

In the case of p = 0.7 and 0.8, the growth of surface
width differs only in the early stages and it recovers to a
logarithmic increase in the long-time region, indicating that
quenched impurities have no effect on critical behavior as
long as the amount of impurities present is less than the critical
amount and that the upper critical dimension of the CNRSOS
model is 2, as predicted by Eq. (8). On the other hand, for
the case of p = pc, the MC data of the critical exponents
deviate by approximately 8%–12% from the predictions of
the fractional Langevin equation. Because the power-counting
predictions of Eq. (13) agree well with the critical exponents
for growth on two typical deterministic fractal substrates,
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FIG. 7. Scaling plot of the surface width on a percolation
backbone network, generated using the CNRSOS model. Data scaled
using the estimated values of α and z yield perfect scaling.
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TABLE I. Summary of the critical exponents for the CNRSOS
model on percolation networks, in comparison with power-counting
predictions obtained using the fractional Langevin equation.

Critical exponents β α z

On infinite network:
MC estimates 0.094(1) 0.561(3) 5.97(6)
Eq. (13)a 0.0863 0.499 5.74

On backbone network:
MC estimates 0.093(1) 0.489(3) 5.25(6)
Eq. (13)b 0.0863 0.432 4.95

acalculated using ds = 1.31, df = 91
48 [29], and dw = 2.87 [29,38].

bcalculated using dbb
f = 1.64 [35,36] and dw = 2.69 [29].

one may also anticipate similar results on random fractal
substrates. However, the MC results obtained in this work
are at variance with this expectation.

In order to elucidate the reasons for this discrepancy,
possible sources of errors are discussed in this section. First,
on random fractal lattices, the averaging procedure has been
an issue for the problem of self-avoiding walks [39,40].
The correct averaging procedure has been known to consist
of two steps, i.e., averaging over many conformations on
a given disorder and then averaging over many disorder
configurations, and researchers have claimed that incorrect
averaging procedures yield wrong critical behaviors. Taken
from an analogy between self-avoiding walks and surface
growth, additional simulations were carried out for selected
values of L at pc, averaging over 100 different growth
conformations on a given percolation network and then over
100 uncorrelated percolation networks. It was found that after
carrying out sufficient disorder averages the two results were
indistinguishable; in addition, the convergence behavior of the
results of this work was much faster.

Second, because roughness and dynamic exponents are
associated with the fractal dimensions of random walks, the
convergence behavior of the growing surfaces might depend
on the dynamic procedures, as for random walks problem. Two
typical models for generating random walks, the blind ant and
myoptic ant models, were proposed on disordered media [29].
While a myopic ant hops to a neighboring occupied site at
every step, a blind ant may stay or hop with probabilities that
depend on the local connectivity, with time increased for both
cases. It was found that the blind ant yielded the asymptotic
results of the mean square end-to-end distances much faster
than the myoptic ant did. For the surface growth, because
the neighboring pairs of occupied sites were selected, the
method employed in this work corresponds to the myoptic
ant description of random walk. In order to examine if
slow convergence of the surface width toward the asymptotic
behavior might have caused a systematic error, the blind ant
description was also designed in the following manner. An
occupied site was first selected and then a neighboring site
was selected from its four nearest-neighbor sites with equal
probabilities and if an unoccupied site was selected, the current
trial was forbidden but evolution time was increased. The MC
data exhibited growth that was delayed by 
(log10 t) ≈ 0.2
and both the growth and roughness exponents remained
unchanged.

Finally, because relatively small systems were used in
the growth simulations, the local structures of the small
percolation networks may not have behaved like fractals and
the growth on such small systems may not have correctly
reflected fractal substrate results. This might be the most likely
source of any systematic errors. However, considering that
systems of the same size generated by the same method as in
this work did not lead to discrepancies in the growth using the
equilibrium RSOS model on a percolation network [22], this
is less likely in the case of the CNRSOS model. Moreover,
the growth exponents that were measured on relatively large
systems of L = 256 for an infinite network and L = 512
for a backbone network were larger by more than 8% than
the predictions. In addition, because small systems generated
using the periodic boundary condition are known to be more
compact than any subset of a larger system or of an infinite
system, growth is suppressed to a greater degree on a smaller
system when using the RSOS condition and, accordingly,
the growth and roughness exponents should become smaller.
Therefore, if the use of small systems caused a systematic
error, the discrepancy due to system sizes would have been in
the opposite direction.

Considering this discussion, the discrepancy does not
appear to be due to the systematic error but is instead
attributable to the poor predictions of the fractional Langevin
equation. Therefore, the fractional Langevin equation obtained
by a simple replacement of ∇4 → ∇2zrw may not describe
the growth dynamics as well as it does for the growth
on deterministic fractal substrates and the prediction of the
exponent values appears not to be exact for the growth using
the CNRSOS model on random fractal substrates. This result
is also in contrast to that of the equilibrium RSOS model, in
which the predictions from the fractional EW equation are in
excellent agreement with the MC data.

What then makes the agreement between the predicted
exponents and MC data different for the equilibrium RSOS
model and the CNRSOS model? In order to understand
the difference, it is necessary to look into the results of
the equilibrium RSOS model. As mentioned in Sec. I, the
exponents in Eq. (9) were first derived rigorously by a direct
integration of Eq. (5) on fractal substrates [28]. The authors of
Ref. [21] obtained later the same results by a simpler method
of power counting for the scaling factor in the fractional EW
equation. Whether the same power-counting method using the
fractional HM equation gives the results that can be obtained
by a direct integration of the fourth-order HM equation with a
conserved noise remains to be resolved in order to validate
Eq. (13) for the growth by the CNRSOS model. A full
understanding of the discrepancy between the predictions and
MC data is expected to follow.

D. Comparison of growth in two and three dimensions

The continuum fractional Langevin equation predicts that
the roughness and dynamic exponents on infinite networks
are larger than those on backbone networks because df > dbb

f
and dw > dbb

w . The growth exponent β, on the other hand,
is similar for the two cases because it depends only on
the spectral dimension. These predictions are qualitatively
consistent with the simulation results. One may then ask
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FIG. 8. Mean-square surface widths obtained by the CNRSOS
model on infinite percolation networks in two dimensions (middle
blue) and three dimensions (top red) and on a percolation backbone
network (bottom green), generated at pc. The two dashed lines of the
same power are provided as a guide for the eye.

whether the growth exponent on a three-dimensional infinite
network is similar to that on a two-dimensional network. This
question originates from a conjecture proposed by Alexander
and Orbach [37], who suggested that ds = 4

3 on percolation
networks, irrespective of the embedding dimension. Although
this conjecture was refuted through accurate examination
[41,42], the values of ds that were obtained were found to
be similar within 5%.

Simulations on an infinite network that was generated
for pc = 0.3117 [43] in three embedding dimensions were
performed. However, because dw � 3.7 [29] and, accordingly,
z ≈ 7.5, the surface width saturated extremely slowly and esti-
mation of the roughness exponent was not possible. Therefore,
only the growth exponent was measured on the network with
L = 64. The results are compared with those on an infinite
network and on a backbone network in Fig. 8. Although
initially the increase in surface width differs, the powers of
the growing surface widths for the three cases become similar
with increasing time, supporting the predictions of Eq. (13) that

the growth exponents depend only on the spectral dimension
of the substrate.

IV. SUMMARY AND CONCLUSION

In summary, surface growth by the CNRSOS model was
studied using MC simulations on random fractal substrates,
i.e., on infinite percolation networks and on backbone net-
works, both embedded in two dimensions. For p > pc, the
surface width increased logarithmically with time and the
saturated width also increased in a similar manner with
increasing system size, indicating that β = α = 0. The MC
data exhibited perfect scaling for p = 1, while the data
for p = 0.8 and 0.7 yielded a crossover from a power-law
increase to a logarithmic divergence with increasing time.
For p = pc, the power-law increase of the surface width was
observed on both infinite and backbone networks, with similar
growth exponents of β � 0.094. The roughness and dynamic
exponents were found to differ by approximately 15% for these
two cases. The growth exponent was predicted to be similar
for the growth on infinite percolation networks in both two and
three dimensions as well as on the backbone network and the
MC data were in agreement with the prediction.

The estimated exponents were compared with power-
counting predictions obtained using the fractional Langevin
equation. The estimates of the MC data were larger than the
predicted values by approximately 8%–12%. It is therefore
concluded that the proposed fractional Langevin equation that
involves a simple replacement of ∇4 with ∇2zrw does not appear
to describe growth dynamics on random fractal substrates as
well as it does on deterministic fractal substrates, for the
growth using the CNRSOS model. Possible sources of the
discrepancy were discussed, although a full understanding of
these results requires further research. A direct integration of
the fourth-order HM equation with a conserved noise might
be one of the possible the solutions.
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