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Transition radiation on a dynamic periodic interface
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We investigate the transition radiation on a periodically deformed interface between two dielectric media.
Under the assumption that the dielectric permittivities of the media are close, a formula is derived for the
spectral-angular distribution of the radiated energy in the general case of a nonstatic profile function for the
separating boundary. In particular, the latter includes the case of surface waves propagating along the boundary.
The numerical examples are given for triangular grating and for sinusoidal profile. We show that instead of a
single peak in the backward transition radiation on a flat interface, for periodic interface one has a set of peaks.
The number and the locations of the peaks depend on the incidence angle of the charge and on the period of the
interface. The conditions are specified for their appearance.
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I. INTRODUCTION

The polarization of a medium by a moving charged
particle gives rise to a number of radiation processes. Well-
known examples are Cherenkov, transition, and diffractions
radiations. In particular, many aspects of transition radiation,
both theoretical and experimental, have been investigated
in numerous publications (for reviews see [1]). Transition
radiation is produced when a relativistic particle traverses
an inhomogeneous medium. Such radiation has a number
of remarkable properties and at present it has found many
important applications. In particular, optical and extreme
ultraviolet transition radiation from metallic targets observed
in backward direction was used for the measurement of
transverse size, divergence, and energy of electron and proton
beams (see, for example, [2] and references therein).

The modern accelerators allow us to produce electron
beams consisting of trains of short bunches with subpicosec-
ond duration [3,4]. The conventional diagnostic tools do not
provide the required measurement accuracy and the develop-
ment of new reliable and economic diagnostic techniques is
the actual task. Such techniques based on different radiation
mechanisms (for instance, transition radiation) are widely
used [5]. Reconstruction of a bunch profile is carried out
using the Fourier transformation of the measured spectrum
of coherent transition radiation [6]. Recently a technique is
proposed based on the Smith-Purcell radiation spectral mea-
surements [7,8]. The advantages of such kind of diagnostics
are due to the fact that the Smith-Purcell radiation spectral
distribution is quasimonochromatic. But because of the weak
radiation intensity the usage of the proposed technique meets
with troubles [9]. We propose to use the transition radiation
from periodically deformed targets instead of the Smith-
Purcell radiation mechanism for beam diagnostic. In this
case the radiation intensity is much higher but, as we show
below, the spectral distribution becomes quasimonochromatic
similar to the Smith-Purcell radiation and the above-mentioned
advantages are retained.

The main part of the investigations of transition radiation
considers flat interfaces separating the media with different
optical properties. Very few works have been devoted to

the transition radiation from rough surfaces [10]. A periodic
structure of the separating interface can serve as an additional
tool for the control of the spectral-angular distribution of
the transition radiation. In general, the problem does not
allow an analytic solution and approximate or numerical
methods should be used. An integral method to study transition
radiation from interfaces with arbitrary profile was considered
in [11]. The method is a generalization of that previously
discussed in [12] for the case of the Smith-Purcell radiation.
Relatively simple and physically more transparent expressions
for the radiation intensity are obtained by using various
approximations. In particular, the investigation of the transition
radiation from regular-roughness interface is carried out in [13]
under the assumption that the dielectric permittivities of the
media separated by the interface are close to each other.
The same approximation scheme has been used in [14] for
the investigation of the radiation intensity from a charge or
bunches flying over a surface waves.

In the present paper we consider the transition radiation
on an interface with arbitrary periodic profile and for an
arbitrary incidence angle of a charged particle. In particular,
the function describing the profile can also be time dependent.
This type of dynamical interface may be realized by surface
waves propagating on the boundary of two media. The
investigation will be done within the framework of the
perturbation theory with respect to the small difference of
the dielectric permittivities of the media. In particular, the
corresponding condition is satisfied for the x-ray transition
radiation. Another example is that when for a part of the
medium the dielectric permittivity is changed by some external
influences, for example, intense electromagnetic waves or
acoustic waves. These changes are much smaller than the
corresponding unperturbed permittivities and their effects are
well described by the perturbation theory. Transition radiation
on a superlattice created by acoustic waves has been discussed
previously in [15]. The above-mentioned perturbation theory
in general form with a number of applications is reviewed
in [16]. The corresponding results can in certain cases be used
to estimate the effects in more complicated configurations.

The paper is organized as follows. In the next section we
obtain the formula for the spectral-angular density of the

2470-0045/2016/93(2)/022117(9) 022117-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.022117


MKRTCHYAN, POTYLITSYN, KOCHARYAN, AND SAHARIAN PHYSICAL REVIEW E 93, 022117 (2016)

radiated energy for a general profile function. The formulas
are given for separate polarizations, as well as for the total
intensity. Special cases, which include diffraction gratings
and surface waves excited on the interface, are discussed in
Sec. III. Numerical examples for the both angular and spectral
distributions of the radiated energy are considered in Sec. IV.
The main results are summarized in Sec. V.

II. TRANSITION RADIATION FOR A GENERAL CASE
OF THE PROFILE FUNCTION

First let us consider the general case of a medium with
dielectric permittivity

ε = ε0 + �ε(r,t), (1)

where ε0 is a constant and |�ε(r,t)| � |ε0|. Let us denote
by E0 and H0 the electric and magnetic fields created
by the radiation source in a homogeneous medium with
permittivity ε0. Presenting the corresponding fields in the
medium with permittivity (1) in the form E = E0 + �E and
H = H0 + �H and substituting into the Maxwell equations,
we can see that, in the first approximation with respect to the
small quantity |�ε(r,t)/ε0|, the fields �E and �H obey the
inhomogeneous Maxwell equations with the charge density
ρ = div(�εE0)/(4π ) and current density j = ∂t (�εE0)/(4π ).
Consequently, in the same approximation, the spectral-angular
distribution of the radiated energy is given by the for-
mula [16,17]

Wωdωd� = (2π )4ω4√ε0

4c3

2∑
l=1

|el(�εE0)k,ω|2dωd�, (2)

where el , l = 1,2, are independent unit vectors of the po-
larization, ω and k are the frequency and wave vector of
the radiated photon, k = |k| = ω

√
ε/c, d� is the solid angle

element. In (2),

(�εE0)k,ω =
∫

dtdr
(2π )4

e−i(k·r−ωt)�ε(r,t)E0(r,t), (3)

and the separate terms in the sum over l give the radiated
energy for the corresponding polarization.

The Fourier transform appearing in (2) is expressed in terms
of the Fourier transforms of the separate factors as

(�εE0)k,ω =
∫

dω′dk′ �ε(k − k′,ω − ω′)E0(k′,ω′), (4)

where

�ε(k,ω) =
∫

dtdr
(2π )4

e−i(k·r−ωt)�ε(r,t). (5)

For a point charge q moving with a constant velocity v
along the trajectory given by r = r0 + v(t − t0), the Fourier
transform of the corresponding electric field is determined by
the expression

E0(k,ω) = 4πiq

(2π )3

ωv/c2 − k/ε0

k2 − ω2ε0/c2
e−i(k·r0−ωt0)δ(ω − k · v).

(6)

In the present paper we consider the transition radiation
on the boundary of two homogeneous media with dielectric

permittivities ε0 and ε1. For a general case of dynamical
boundary the corresponding equation can be written as

x = x0(y,z,t). (7)

Here and below (x,y,z) stand for the Cartesian coordinates.
Hence, in the problem under consideration the dielectric
permittivity is given by

ε =
{
ε0, x < x0(y,z,t),
ε1, x > x0(y,z,t). (8)

For the function �ε(r,t) in (1) one can take

�ε(r,t) = �ε θ [x − x0(y,z,t)], �ε = ε1 − ε0, (9)

where θ (x) is the Heaviside unit step function. Assuming that
|�ε|/ε0 � 1, for the Fourier transform (4), under the condition
ω �= kv, one gets

(�εE0)k,ω = 4πq

(2π )7

∫
dk′ �ε

Kx

(
k′ · v

)
v/c2 − k′/ε0

k′2 − (k′ · v)2ε0/c2

× e−ik′ ·( r0−vt0)
∫

dtdydz ei[(ω−k ′·v)t+Kyy+Kzz]

× eiKxx0(y,z,t), (10)

where

K = k′ − k. (11)

For ω = k · v an additional term is present in the expression
for (�εE0)k,ω containing the factor δ(ω − k · v). This term
gives contribution to the radiation along the Cherenkov angle
only, if the corresponding condition is satisfied.

Assuming that the function x0(y,z,t) is periodic with the
periods Ly , Lz, and T , for the function in the integrand of (10)
we can write the Fourier expansion

eiKx x0(y,z,t) =
+∞∑

m,n,l=−∞
fmnl(Kx)e2πi(my/Ly+nz/Lz)−iωl t , (12)

where ωl = 2πl/T , and

fmnl(Kx) = 1

LyLzT

∫ Ly

0
dy

∫ Lz

0
dz

∫ T

0
dt eiKx x0(y,z,t)

× e−2πi(my/Ly+nz/Lz)+iωl t . (13)

Substituting the expansion (12) into (10) one gets

(�εE0)k,ω = 2q�ε

(2π )3vxε0

×
+∞∑

m,n,l=−∞

fmnl(Kx)

Kx

k′ − (ω−ωl)vε0/c
2

k′2 − (ω−ωl)2ε0/c2

× e−ik′ ·( r0−vt0), (14)

with the notations

k′ = k + Kxex − g,

Kx = 1

vx

(ω − k · v − ωl + g · v), (15)

g = (0,2πm/Ly,2πn/Lz),
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where ex is the unit vector along the x axis. Note that we have
the relation

k′·v =ω−ωl. (16)

Let us denote the angle between the vectors v and k by
θ0. Then, for the polarization vectors of the parallel and
perpendicular polarizations one has

e1 = e‖ = v − (n · v)n
v sin θ0

, e2 = e⊥ = n × v
v sin θ0

, (17)

where n = k/k is the unit vector along the radiation direction.
For the corresponding spectral-angular densities of the radiated
energy one has

Wp
ω = (2π )4ω4√ε0

4c3
|ep(�εE0)k,ω|2, (18)

with p =‖ and p =⊥. The expression for the total spectral-
angular density takes the form

Wω = W ‖
ω + W⊥

ω

= (2π )4ω4√ε0

4c3
(|(�εE0)k,ω|2 − |[n(�εE0)k,ω]|2).

(19)

Note that we can also write

|(�εE0)k,ω|2 − |[n(�εE0)k,ω]|2 = |n × (�εE0)k,ω|2. (20)

Substituting the expression (14) into (18) and assuming
that the beam cross section is larger than the periods Ly and
Lz, for the spectral-angular densities of the radiated energy
on separate polarizations, averaged over the impact parameter,
one gets the expression

Wp
ω = q2(�ε)2ω4

4π2c3ε
3/2
0 v2

xv
2 sin2 θ0

+∞∑
m,n,l=−∞

Vp|fmnl(Kx)|2/K2
x[

ωl(2ω − ωl)ε0/c2 + K2
x + g2 + 2(kxKx − k · g)

]2 , (21)

where for the parallel and perpendicular polarizations we have

V‖ = {
(ω−ωl)

(
1 − β2

0

) − (n · v)[ω
√

ε0/c + nxKx − n · g − (ω−ωl)(n · v)ε0/c
2]

}2
,

V⊥ = {[n × v] · (Kxex − g)}2,

with the notation β0 = v
√

ε0/c. The spectral-angular density for the total radiation is given by the formula

Wω = q2(�ε)2ω4

(2π )2c3v2
xε

3/2
0

+∞∑
m,n,l=−∞

V |fmnl(Kx)|2/K2
x[

ωl(2ω − ωl)ε0/c2 + K2
x + g2 + 2(kxKx − k · g)

]2 , (22)

with the function

V = K2
x + g2 − [(

2 − β2
0

)
(ω−ωl) − 2(k · v)

]
(ω−ωl)ε0/c

2 − [Kxnx − n · g − (ω−ωl)n · vε0/c
2]2. (23)

The presented formulas are valid in the first approximation
with respect to the ratio �ε/ε0, for both backward and inward
radiations. An additional condition, that is obtained comparing
with the exact expressions in the case of flat boundary, is given
below in Sec. III.

Special cases of the profile function for the interface and
numerical examples will be discussed below. However, some
features can be seen from general formulas. The spectral-
angular density of the radiated energy contains the square of
the vector [see (14)]

A(k′) = k′ − (ω−ωl)vε0/c
2

k′2 − (ω−ωl)2ε0/c2
. (24)

Introducing the angle θ ′ between the vectors k′ and v and by
taking into account the relation (16), we can see that

|A(k′)|2 = 1 − (
2 − β2

0

)
β2

0 cos2 θ ′

k′2(1 − β2
0 cos2 θ ′)2 . (25)

From here it follows that if β2
0 is close to 1, |1 − β2

0 | � 1,
peaks can appear in the spectral angular distribution of the
radiated energy for small values of the angle θ ′. At these peaks

one has

|A(k′)|2 ≈ θ ′2γ 4
0

k′2(1 + γ 2
0 θ ′2)2 , (26)

where γ 2
0 = 1/(1 − β2

0 ), |γ 2
0 | 
 1. For ε0 = 1 the parameter

γ0 coincides with the γ factor of the radiating particle. One
has θ ′ ∼ 1/γ0 and the spectral-angular density at the peaks
increases with increasing energy as γ 2

0 . The integration over
the angle will give an additional factor θ ′ and the spectral
density at the peaks increases as γ0.

The condition for the angle θ ′ to be small can be
translated in terms of the wave vector of the radiated
photon as

(
k − g − ω−ωl

v2
v
)

× ex = O
(
1/γ 2

0

)
. (27)

This condition determines the location of possible peaks in the
spectral-angular density of the radiated energy up to the terms
of the order 1/γ 2

0 . Examples of this type of peak will be given
below. Note that the condition (27) does not depend on the
form of the profile function and is completely determined by
the periodicity properties of the interface.

022117-3



MKRTCHYAN, POTYLITSYN, KOCHARYAN, AND SAHARIAN PHYSICAL REVIEW E 93, 022117 (2016)

In deriving the expressions for the spectral-angular distri-
bution of the radiation intensity we have assumed that the
charge of the radiating particle is fixed. New features may
arise in the case of the transition radiation from multiply
charged ions. In particular, as a result of the interaction
with medium the ion can gain or lose charge. The transition
radiation on a flat interface, by taking into account this
effect, has been recently discussed in [18]. It has been
shown that the change in the charge of the particle can
lead to a considerable increase of the radiation intensity.

III. SPECIAL CASES

As a check of the general formulas given above, first
let as consider the case of a flat boundary between the
media. In this case one has x0(y,z,t) = x0 = const and the
x axis is perpendicular to the boundary. By taking into
account that fmnl(Kx) = δm0δn0δl0e

iKx x0 and introducing the
angles θv and θ in accordance with vx = v cos θv and kx =
k cos θ , for the spectral angular density of the radiated energy
we get

W (flat)
ω = q2(�ε)2v2 cos2 θv

(2π )2c3ε
3/2
0

w2 − (
2w − β2

0

)
β2

0 cos2 θv − (
w cos θ − β2

0 cos θv cos θ0
)2

w4(w + 2β0 cos θv cos θ )2
, (28)

where

w = 1 − β0 cos θ0. (29)

The special case of normal incidence is obtained taking θv =
π , θ = π − θ0. It can be seen that (28) coincides with the exact
formula in the limit when �ε is small and, additionally, under
the conditions

|�ε/ε0| � cos2 θ, |�ε/ε0| � |(1 − β0 cos θ0) cos θ/ cos θv|.
(30)

In particular, from these conditions it follows that the expres-
sions given above are not valid for the radiation propagating
nearly parallel to the interface (the angle θ is close to π/2).
Limiting formulas, similar to (28), can also be obtained for the
densities of separate polarizations.

Note that for the l = m = n = 0 term in the general
formula (22) we have

Wω(l = m = n = 0) = |f000(Kx)|2W (flat)
ω . (31)

By taking into account that |f000(Kx)|2 � 1, we conclude that
the corresponding contribution to the radiation cannot exceed
W (flat)

ω . In the case of a flat interface and in the limit |1 − β0| �
1, the peaks in the spectral-angular distribution of the radiation
are realized for small angles θ0 and near the angle for which
the factor (w + 2β0 cos θv cos θ )2 in the denominator of (28)
takes its minimal value. The first one corresponds to the peak in
the forward radiation located near the particle velocity and the
second one corresponds to the direction of specular reflection
(θ = π − θv , θ0 = π − 2θ ).

Now we turn to the case of the profile function,

x0(y,z,t) = x0(z − vst), (32)

where the function x0(u) is periodic with the period L. Note
that the function (32) describes a running surface wave with
the wavelength L and velocity vs = L/T . In this case for the
corresponding function fmnl(Kx) one has

fmnl(Kx) = δm0δnlfl(Kx), (33)

with

fl(Kx) = 1

L

∫ L

0
dz eiKx x0(z)−2πilz/L. (34)

The corresponding radiation intensities are given by the
expressions (21) and (22) with the replacements

+∞∑
m,n,l=−∞

→
+∞∑

l=−∞
, fmnl(Kx) → fl(Kx), (35)

and with

g = glez = (0,0,gl), gl = 2πl/L, (36)

where ez is the unit vector along the z axis.
Introducing spherical angular coordinates for the vectors k

and v,

k = ω

c

√
ε0(cos θ, sin θ sin φ, sin θ cos φ),

(37)
v = v(cos θv, sin θv sin φv, sin θv cos φv),

the spectral-angular density of the radiated energy on separate
polarizations, for the profile function (32), are presented as

Wp
ω = q2(�ε)2v2ε

−3/2
0

4π2c3 cos2 θv sin2 θ0

+∞∑
l=−∞

U 2
p|fl(ωK/v)|2

K2U 2
, (38)

with the notations

K = 1

cos θv

(
1 − β0 cos θ0 − ωl

ω
+ vgl

ω
sin θv cos φv

)
,

(39)
and

U = ωl

ω

(
2 − ωl

ω

)
β2

0 + K2 + v2

ω2
g2

l

+ 2β0

(
K cos θ − vgl

ω
sin θ cos φ

)
,

U‖ =
(

1−ωl

ω

)(
1 − β2

0

) − cos θ0

[
β0 + K cos θ

− vgl

ω
sin θ cos φ − β2

0

(
1−ωl

ω

)
cos θ0

]
, (40)

U⊥ = [n × v/v] · [Kex − (vgl/ω)ez].

For the total density we get

Wω = q2(�ε)2v2ε
−3/2
0

4π2c3 cos2 θv

+∞∑
l=−∞

Ut |fl(ωK/v)|2
K2U 2

, (41)
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FIG. 1. Parameters of the triangular grating.

where

Ut = K2 + v2g2
l

ω2
−

[(
2 − β2

0

)(
1−ωl

ω

)
− 2β0 cos θ0

]

×
(

1−ωl

ω

)
β2

0 −
[
K cos θ − vgl

ω
sin θ cos φ

−
(

1−ωl

ω

)
β2

0 cos θ0

]2

. (42)

Note that vgl/ω = β0lλ/L, where λ is the radiation wave-
length. In the case of a surface wave one has ωl = lωs , with
ωs = 2π/T being the frequency of the surface wave. For the
radiation on frequencies ω 
 ωs , the terms containing the
ratio ωl/ω can be omitted and the spectral-angular densities
coincide with the ones for the radiation on a static interface
with the same profile function.

Let us denote by a the amplitude of the profile function
x0(z). We can estimate the dependence of the radiation
intensity on a, for large values of the ratio a/λ, by applying
the stationary phase method to the integral (34). If the function
x0(z) has a stationary point at z = z0, x ′

0(z0) = 0, then for
a/λ 
 1 the dominant contribution comes from the region of
the integration near that point. In this case one has fl(ωK/v) ∝√

λ/a and for large amplitudes the spectral-angular density
decays as 1/a. If the function x0(z) has no stationary point then
fl(ωK/v) ∝ λ/a and the spectral-angular density behaves
as 1/a2. For small values of the amplitude, a/λ � 1, the
dominant contribution to the radiation intensity comes from the
l = 0 term. The leading term coincides with the corresponding
quantity for a flat boundary. The contributions from the terms
l �= 0 are suppressed by the factor (a/λ)2.

The special case of the profile function (32) with vs = 0
(T → ∞ for a fixed L) corresponds to a static periodic
interface with the period L. In this case one has ωl = 0.
As an example of the separating boundary let us consider a
triangular grating with the parameters displayed in Fig. 1. The
corresponding profile function has the form

x0(z) =
{

a
b
(z − z0), z0 � z � z0 + b,
a

L−b
(z0 + L − z), z0 + b � z � z0 + L.

(43)

With this function, for the Fourier transform (34) we obtain
the following expression:

fl(Kx) = 2ei Kxa/2−πil(2z0+b)/L

× Kx a sin(Kx a/2 − glb/2)

(Kx a − glb)(Kx a − glb + 2πl)
. (44)

For large values of the amplitude a, the function |fl(Kx)|2
decays as 1/a2. This agrees with the general estimate given
above, by taking into account that the function (43) has no
stationary point.

As a next example of the profile function we consider a
sinusoidal surface wave

x0(z − vst) = a sin(ksz − ωst), (45)

where vs = ωs/ks , ks = 2π/L. For this function, the integral
in (34) is expressed in terms of the Bessel function Jl(x):

fl(Kx) = Jl(aKx). (46)

For large values of the amplitude one has |fl(Kx)|2 ∝ 1/a

which, again, is in agreement with the estimate given before
for the general case.

IV. NUMERICAL ANALYSIS OF THE
SPECTRAL-ANGULAR DENSITY

For the numerical analysis of the radiation intensity we
will study the relatively simple case when the vectors v, ex ,
and ez lie in the same plane and will consider the radiation
propagating in that plane (the vector k is in the plane formed by
v and ex , corresponding to φ = 0 and φ = π ). The geometry
of the problem is depicted in Fig. 2. In this special case
W⊥

ω = 0 and the radiation is linearly polarized: Wω = W ‖
ω.

The corresponding expression is given by (41) with φv = 0
and the expression for U is simplified to

U = 1

cos2 θv

[
vgl

ω
− β0 sin θ +

(
1 − ωl

ω

)
sin θv

]2

+
(

1 − ωl

ω

)2(
1 − β2

0

)
. (47)

Note that one has θv = π − θg , where θg is the charge
incidence angle with respect to the normal to the boundary
(x axis). In addition, we have θ = π − θg − θ0, φ = 0 for
θ0 < π − θg , and θ = θ0 + θg − π , φ = π for θ0 > π − θg .
In the special case under consideration, the condition (27) for
the appearance of possible peaks is written as

β0 sin(θg + θ0) − sin θg = lβ0
λ

L

(
1 − vs

v
sin θg

)
+ O

(
1/γ 2

0

)
.

(48)

By taking into account that vgl/ω = lβ0λ/L, we see that under
this condition the expression in the square brackets of (47) is of
the order 1/γ 2

0 and, hence, at the peaks we have U ∼ 1/γ 2
0 . For

a static profile one has vs = 0 and (48) reduces to the condition
obtained in [19] for the resonant diffraction radiation from a
particle moving close to tilted grating. For θg = π/2 and vs =
0 one gets the standard condition for the peaks of the Smith-
Purcell radiation. From (48) it follows that, for a fixed value of

FIG. 2. The geometry of the problem.
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FIG. 3. The spectral-angular density of the radiated energy, as a function of the radiation angle, for β0 ≈ 0.998 694 (the electron energy
10 MeV in the case ε0 = 1) and for separate values of the ratio λ/L (numbers near the curves). Panel (a) corresponds to the profile function (43)
with b = L/2 and (b) corresponds to the function (45) with ωs = 0. The dashed curves correspond to the radiation on a flat boundary. The
graphs are plotted for θg = π/4 and a/L = 0.5.

the incidence angle θg , the number of possible values of l for
which the peaks appear increases with increasing L/λ. Hence,
instead of a single peak in the backward transition radiation
on a flat interface (in the direction of specular reflection),
in the case of periodic interface one has a set of peaks. The
number and the locations of the peaks depend on the incidence
angle of the charge and on the periodicity properties of the
interface. In the limit when the particle trajectory is parallel to
the interface without crossing we get the resonance peaks of
the Smith-Purcell radiation.

In figures below we plot the ratio Wω/w0, with w0 =
α�(�ε/ε0)2/

√
ε0 and α = q2/(�c), as a function of the

projection angle θ between the x axis and the wave vector of the
radiation: kx = k cos θ , kz = k sin θ . For the radiation propa-
gating in the medium with permittivity ε0 one has −π/2 <

θ < π/2. Recall that the validity of the approximation we
used is constrained by the conditions (30). We can express
these conditions in terms of the angles θ and θg by taking
into account that θv = π − θg and cos θ0 = − cos(θ + θg). In
particular, the approximation fails for the values of |θ | close to
π/2. Note that, for a static interface, the ratio Wω/w0 depends
on the velocity of the charge v and on the permittivity ε0

through the parameter β0. In this case the condition for the

angular locations of the peaks, for a given value of λ/L, is
obtained from (48) and, up to the terms of the order 1/γ 2

0 , is
written in the form

sin θ ≈ sin(θg)/β0 + lλ/L. (49)

In Fig. 3, for the value β0 ≈ 0.998 694, we have plotted the
quantity Wω/w0 as a function of the angle θ for different
values of the ratio λ/L (numbers near the curves). For ε0 = 1
this value of β0 corresponds to the electron energy Ee = 10
MeV. Figure 3(a) corresponds to the profile function (43) with
b = L/2 and Fig. 3(b) corresponds to the function (45) with
ωs = 0. The dashed curves correspond to the radiation on a
flat boundary (a = 0). For the incidence angle with respect to
the normal and for the ratio a/L we have taken θg = π/4 and
a/L = 0.5. It can be checked that the angular locations of the
peaks for the graphs presented in Fig. 3 are well described by
the formula (49). For example, in the case of the radiation
on the triangular grating at the wavelength corresponding
to λ/L = 0.5 the angular density of the radiation intensity
is maximum around the angle θ ≈ −0.91 which is obtained
from (49) for the order of diffraction l = −3. For the radiation
with λ/L = 0.5 the maximum is around θ ≈ −0.3 and

FIG. 4. The same as in Fig. 3 for β0 ≈ 0.999 948 (the electron energy 50 MeV in the case ε0 = 1). The numbers near the curves correspond
to the values of λ/L.
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(a) (b)

FIG. 5. The dependence of the spectral-angular density of the radiated energy on the ratio λ/L for the radiation angles θ = 0 (a) and
θ = −5π/12 (b). The graphs are plotted for the function (43) with b = L/2 (full curves) and for the function (45) with ωs = 0 (dashed curves).
The values of the other parameters are the same as in Fig. 3.

corresponds to the order of diffraction l = −1. Note that for
the latter case there are no peaks for l �= −1.

Figure 4 presents the same graphs as in Fig. 3 for β0 ≈
0.999 948. In the case ε0 = 1 the latter corresponds to the
electron energy Ee = 50 MeV. As is seen, in accordance with
the analytic estimate given above, with the increase of the en-
ergy the heights of the peaks increase by the factor γ 2

0 , whereas
the widths decrease by the factor γ0. For γ 2

0 
 1, the angles
around which the peaks are located are not sensitive to the value
of β0 and they are approximately the same as those for 3.

Figure 5 displays the dependence of the spectral-angular
density of the radiated energy on the ratio λ/L for the
function (43) with b = L/2 (full curves) and for the func-
tion (45) with ωs = 0 (dashed curves). The graphs in Figs. 5(a)
and 5(b) are plotted for the radiation angles θ = 0 and
θ = −5π/12, respectively. For both cases β0 ≈ 0.998 694 (the
electron energy Ee = 10 MeV in the case ε0 = 1), θg = π/4
and a/L = 0.5. Again, we can see that the values of the
radiation wavelengths around of which the peaks are located
are well described by the formula (49). In particular, for
the peak with the maximal value of the wavelength one has
λ ≈ L| sin θ − sin(θg)/β0|.

The same graphs as in the right panel of Fig. 5 are plotted
in Fig. 6 for the values a/L = 1 [Fig. 6(a)] and a/L = 2
[Fig. 6(b)]. As is seen from the figures, the difference of

the wavelengths for the neighboring peaks decreases with
decreasing wavelength. This is in agreement of the general
estimate (49) for the spectral-angular locations of the peaks.
The right peaks correspond to first order of diffraction
l = −1.

The radiation intensity at the peaks is mainly determined
by the factors |fl(ωK/v)|2 and U−2 in (41). As is seen
from (34), the function fl(Kx) depends on the amplitude
a of the function x0(z) in the form of the dimensionless
combination aKx . Hence, the dependence on the amplitude
enters in the expression for the radiation intensity through the
function hl(aωK/v) = |fl(ωK/v)|2. By taking into account
the expression (39), for the special case under consideration
corresponding to φv = 0, the argument of the function hl(u)
in the expression for the radiation intensity is presented as

aK
ω

v
= − 2πa

L cos θg

{
L

λ
[1/β0 + cos(θ + θg)] + l sin θg

}
.

(50)

For the profiles we have discussed in numerical examples, the
expressions for the function hl(u) directly follow from (44)
and (46). In Fig. 7, the functions hl(u) are plotted for the
profiles (43) with b = L/2 (full curve) and (45) (dashed curve)

(a) (b)

FIG. 6. The same as in Fig. 5(b) for a/L = 1 (a) and a/L = 2 (b).
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FIG. 7. The function hl(u) for l = −1 in the expression for the
spectral-angular density of the radiated energy in the cases of the
triangular (with b = L/2, full curve) and sinusoidal (dashed curve)
profiles.

in the case l = −1. The graphs for higher orders of diffraction
have a similar structure.

The values for |u|, at which the function hl(u) takes its first
maximum (with respect to u = 0), increase with increasing |l|,
whereas the value of the function at the maximum decreases.
Let u = ul be the maximum point of the function hl(u) for a
given l. Now, from the analysis given above, it follows that
the maximal radiation intensity at the peaks, determined by
the condition (48), is obtained for the values of the amplitude
given by a = vul/(ωK). An explicit expression in terms of
the angles θ and θg is obtained by taking into account (50).
Note that, at the peaks, we can exclude the ratio λ/L from
the corresponding expression by using the relation (48). In
the case of the profile function (45), ul coincides with the
first zero of the function J ′

l (u) . In particular, for l = −1 one
has ul ≈ 1.84. With this value of ul and for θg = π/4, θ =
−5π/12, β0 ≈ 0.998 694, the maximum radiation at the peaks
is obtained for a ≈ 0.5. This case corresponds to the dashed
curve in Fig. 5(b). For the triangular profile with b = L/2,
in the case of diffraction order l = −1 one has ul ≈ 4.3 and
for the same values of the parameters θg , θ , β0, the maximum
radiation at the corresponding peak is realized for a ≈ 1.2.
The corresponding graph for the spectral density is similar to
the full curve in Fig. 6(a).

V. CONCLUSION

We have considered transition radiation of a charged
particle on an interface of two dielectric media having an
arbitrary nonstationary profile. The exact solution of this
problem is complicated and we have employed an approximate
scheme which assumes that the dielectric permittivities of the
media are close. With this assumption, the spectral-angular
densities of the radiated energy on separate polarizations are
given by Eq. (21) and the total radiated energy is determined by
Eq. (22). The dependence on the geometry of the separating
boundary enters in these expressions through the functions
fmnl(Kx) which are the coefficients of the Fourier expansion of
the function eiKx x0(y,z,t). For high-energy particles strong peaks
may appear in the spectral-angular density of the radiated
energy. The locations of the peaks are determined by the
condition (27). This condition is completely determined by
the periodicity properties of the interface and does not depend
on the specific form of the profile function.

The general expressions for the radiated energy are simpli-
fied in a special case of the profile function given by (32). In this
case the triple summation is reduced to the single one and the
corresponding formulas are obtained by the replacements (35).
A physical realization of this sort of profile function could
be a surface wave excited on the boundary between two
media. In terms of the spherical angular coordinates for the
vectors k and v, the expressions for the radiated energy are
presented in the form (38) and (41). As examples, in the
numerical evaluation we have considered two special cases
of the profile function x0(u): triangular grating with the
parameters displayed in Fig. 1 and sinusoidal profile. Keeping
in mind applications for beam diagnostics, in the numerical
evaluation we have investigated the backward radiation for
these two examples. Instead of a single peak in the backward
transition radiation on a flat interface, for periodic interface
one has a set of peaks. The number and the locations of the
peaks depend on the incidence angle of the charge and on
the period of the interface. The heights of the peaks in the
spectral-angular distribution increase with increasing energy
of the radiating particle as γ 2

0 , whereas the widths decrease
as 1/γ0. The results above show that the periodic structure on
the interface may serve as an additional tool for the control
of spectral-angular distribution of the backward transition
radiation. The corresponding features may be useful in beam
and surface diagnostics.
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