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For a general sensory system following an external stochastic signal, we introduce the sensory capacity. This
quantity characterizes the performance of a sensor: sensory capacity is maximal if the instantaneous state of
the sensor has as much information about a signal as the whole time series of the sensor. We show that adding
a memory to the sensor increases the sensory capacity. This increase quantifies the improvement of the sensor
with the addition of the memory. Our results are obtained with the framework of stochastic thermodynamics
of bipartite systems, which allows for the definition of an efficiency that relates the rate with which the sensor
learns about the signal with the energy dissipated by the sensor, which is given by the thermodynamic entropy
production. We demonstrate a general trade-off between sensory capacity and efficiency: if the sensory capacity
is equal to its maximum 1, then the efficiency must be less than 1/2. As a physical realization of a sensor we
consider a two-component cellular network estimating a fluctuating external ligand concentration as signal. This
model leads to coupled linear Langevin equations that allow us to obtain explicit analytical results.
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I. INTRODUCTION

The relation between information and thermodynamics is
a very active topic, as reviewed in Ref. [1]. Prominently,
developments in this field lead to a better understanding of
fundamental limits related to dissipation in a computer and of
cellular information processing. Much of the renewed interest
in this relation between information and thermodynamics is
associated with the fact that recent experiments with small
systems verify fundamental relations such as the Landauer
limit for the erasure of a bit [2,3] and the “conversion of
information into work” [4–6]. Theoretical advances in the
field include second-law inequalities and fluctuation relations
containing an informational term [7–29], generalization of
thermodynamics to include information reservoirs [30–39],
stochastic thermodynamics of bipartite systems [40–46], and
the relation between dissipation and information in biological
systems [47–59].

A sensor that learns about (or “measures”) an external
stochastic signal constitutes a fundamental setup within
thermodynamics of information processing. In this case energy
is dissipated and the sensor obtains information about the
external signal, in contrast to Maxwell’s demon, which is
another fundamental setup, where information is used to
extract work.

General results for the thermodynamics of a sensor have
been obtained by Still et al. [60]. They have shown that
an entropy characterizing how much information the sensor
obtains about the external signal is bounded by the dissipated
heat. Similarly, we have shown that an entropic rate, dubbed
learning rate, is bounded by the thermodynamic entropy
production in bipartite systems [55], which allowed for the
definition of a thermodynamic efficiency for models related to
cellular information processing.

In this paper, using bipartite Markov processes we introduce
the sensory capacity, an informational efficacy parameter
characterizing the performance of a sensor. This quantity is
defined as the learning rate divided by the transfer entropy
rate, where the latter quantifies how much information the full

time series of the sensor has about the signal. Sensory capacity
is positive and bounded by 1. The limit 1 is reached if the
information contained in the instantaneous state of the sensor
equals the information contained in the whole time series of
the sensor, which is the maximum information the sensor can
have about the signal.

A bare sensor, i.e., a sensor with only one degree of freedom,
is compared to a sensor that contains a memory, which is a
second degree of freedom. We show that the addition of a
memory to a bare sensor can increase the sensory capacity.
This increase in sensory capacity quantifies how much of the
information contained in the time series of the bare sensor is
stored in the instantaneous state of the memory.

Our results are obtained with coupled linear Langevin
equations that constitute a simple example of a bipartite
system. These linear Langevin equations are derived from
a discrete model for a two-component cellular network
estimating an external ligand concentration, which is the
signal. The two components of the network are receptors
that can bind external ligands and internal proteins that play
the role of memory [48,53,54,58,61]. This derivation starting
with a physical model for a sensor allows us to provide a
clear physical interpretation for the parameters showing up in
the Langevin equations and for the thermodynamic entropy
production.

The relation between sensory capacity and energy dissipa-
tion is also discussed. Particularly, as a main result we show
that if the sensory capacity is 1, the efficiency relating learning
rate and rate of dissipation must be smaller than 1/2. This
result is valid for any bipartite process. The specific trade-off
between sensory capacity and efficiency for the coupled linear
Langevin equations is analyzed in detail.

The paper in organized as follows. In Sec. II we define
discrete bipartite processes and the quantities calculated in the
paper. Section III contains the derivation of the coupled linear
Langevin equations from the microscopic model for a two-
component network. The analysis of the Langevin equations is
performed in Sec. IV. The general trade-off between sensory
capacity and efficiency is derived in Sec. V. We conclude
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in Sec. VI. The continuum limit from a master equation
to a Langevin equation in bipartite systems is presented
in Appendix A. The uncertainty about the signal given the
sensor state and the uncertainty given the sensor trajectory are
calculated in Appendix B.

II. BIPARTITE MARKOV PROCESSES
AND SENSORY CAPACITY

A. Definition of bipartite systems

A state of the signal is denoted by x and a state of the sensor
by y. We consider a quite general framework, where the basic
assumptions are that the dynamics of the full system composed
by the signal and the sensor is Markovian, the dynamics of the
signal is not affected by the sensor whereas the dynamics of
the sensor is affected by the signal, and the signal alone is also
Markovian. For a Markov jump process these assumptions
imply the following transition rates from a state (x,y) to a
state (x ′,y ′),

wxx ′
yy ′ ≡

⎧⎨
⎩

wxx ′
if x �= x ′ and y = y ′,

wx
yy ′ if x = x ′ and y �= y ′,

0 if x �= x ′ and y �= y ′.
(1)

Such a Markov process, for which the two variables labeling
a state cannot both change in a jump, is called bipartite [41].
The rates (1) correspond to a particular case of a bipartite
process since wxx ′

is independent of y. For bipartite systems
in a steady state, which is the regime we consider in this
paper, the stationary probability of state (x,y) is written as
P (x,y). The marginals of this joint probability are defined as
P (x) ≡∑y P (x,y) and P (y) ≡∑x P (x,y). The stationary
conditional probabilities read P (x|y) ≡ P (x,y)/P (y) and
P (y|x) ≡ P (x,y)/P (x).

Key quantities in this paper are the Shannon entropy and
mutual information. The Shannon entropy associated with a
random variable A is

H [A] ≡ −
∑

a

P(A = a) lnP(A = a), (2)

where a is a specific realization of A and P denotes a generic
probability. The random variables A can be the instantaneous
state of the signal xt or of the sensor yt . Furthermore, A can
be a full time series of the signal {xt ′ }t ′�t or of the sensor
{yt ′ }t ′�t . In the first case, the sum in a in Eq. (2) is a sum over
all possible states. In the second case, this sum corresponds
to a functional integration over all possible trajectories. The
conditional Shannon entropy of A given another random
variable B is

H [A|B] ≡ −
∑
a,b

P(A = a,B = b) lnP(A = a|B = b).

(3)
The mutual information between A and B reads

I [A:B] ≡ H [A] − H [A|B] = H [B] − H [B|A], (4)

where the second equality indicates that the mutual informa-
tion is symmetric in the variables A and B.

B. Learning rate

The learning rate is defined as [55]

ly ≡ H [xt |yt ] − H [xt |yt+dt ]

dt
, (5)

where here and in the following in all expressions that involve
a dt in the denominator the limit dt → 0 is assumed. The
learning rate quantifies the rate at which the sensor acquires
information about the instantaneous signal state xt , i.e., the rate
at which the sensor reduces the uncertainty (as characterized
by the conditional Shannon entropy) of the signal due to its
dynamics [55]. The learning rate can also be written in terms
of mutual information

ly = I [xt :yt+dt ] − I [xt :yt ]

dt
, (6)

which is the rate at which the y jumps increase the mutual
information between the sensor y and the signal x. This
form of the learning rate is also known as “information
flow” [40,44,45]. Using the relations

P(xt+dt = x ′|xt = x) = wxx ′
dt for x �= x ′,

P(yt+dt = y ′|xt = x,yt = y) = wx
yy ′dt for y �= y ′ (7)

the learning rate (5) becomes

ly =
∑
x,y,y ′

P (x,y)wx
yy ′ ln

P (x|y ′)
P (x|y)

. (8)

In the steady state the learning rate is equal to the rate of
Shannon entropy reduction of x due to its coupling with y,
which is defined as [42]

hx ≡ H [xt+dt |yt ] − H [xt |yt ]

dt
. (9)

This conservation law comes from the relation d
dt

H [x|y] ≡
hx − ly = 0 [55], where hx is the contribution due to the x

jumps, i.e.,

hx =
∑
x,x ′,y

P (x,y)wxx ′
ln

P (x|y)

P (x ′|y)
. (10)

Since in the stationary state H [yt+dt ] = H [yt ], the learning
rate can also be written in the form

ly = hx = I [xt :yt ] − I [xt+dt :yt ]

dt
. (11)

This expression is similar to the one used in Ref. [60],
where within a discrete time formalism the term I [xt+dt :yt ]
is identified as “predictive power.”

C. Sensory capacity and transfer entropy rate

Transfer entropy is an informational quantity that detects
causal influence between two random variables [62]. It plays an
important role in the relation between information thermody-
namics for causal networks [19], bipartite systems [40,42,45],
and feedback-driven systems [18]. The transfer entropy rate
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FIG. 1. Learning rate versus transfer entropy rate. The learning
rate takes into account only the instantaneous state xt (dashed green
box) to infer the signal xt , whereas the transfer entropy Tx→y takes
into account the trajectory highlighted by the blue shaded region.

from the signal to the sensor Tx→y is defined as [42]

Tx→y ≡ H [yt+dt |{yt ′ }t ′�t ] − H [yt+dt |{yt ′ }t ′�t ,xt ]

dt

= I [yt+dt :xt |{yt ′ }t ′�t ]

dt

= H [xt |{yt ′ }t ′�t ] − H [xt |yt+dt ,{yt ′ }t ′�t ]

dt
. (12)

In the third line the similarity to the learning rate (5) is
explicit: the transfer entropy rate Tx→y quantifies how much
information the whole sensor trajectory {yt ′ }t ′�t contains about
the instantaneous signal xt , in contrast to the learning rate
that considers only the instantaneous state yt . This difference
between the learning rate ly and the transfer entropy rate Tx→y

is illustrated in Fig. 1. The first line of Eq. (12) contains the
standard definition of transfer entropy from the signal to
the sensor [62], which can be described as the reduction on
the conditional Shannon entropy of yt+dt given {yt ′ }t ′�t by the
further knowledge of the signal state xt .

As shown in Ref. [42] ly � Tx→y, which simply means
that the whole trajectory of the sensor {yt ′ }t ′�t contains
more information about the instantaneous signal xt than the
instantaneous state of the sensor yt . Based on this inequality
we propose the definition

C ≡ ly

Tx→y
� 1 (13)

that we call sensory capacity. If C = 1 the sensor has reached
an information theoretical limit and its instantaneous state has
the maximum possible information, which is the information
contained in the whole time series of the sensor. On a side
note, as a result related to the fact that the full time series of
a sensor contains more information about the signal than its
instantaneous state, it has been shown that an information-
driven machine using the whole history of measurements
can extract more work than a machine that only takes the
last measurement into account [22,27]. This increase in work
extraction is characterized by a gain parameter that, like the
sensory capacity, is positive and bounded by 1.

Our sensory capacity that quantifies the performance of a
sensor for a specific signal should not be confused with the
standard channel capacity in information theory [63]. This
second quantity is defined for a different setup of two static
random variables, which are the input and the output. For a
given conditional probability of the output given the input, the
channel capacity is the maximal mutual information between
input and output, where the maximization is over the input
probability distribution [63].

D. Thermodynamic entropy production and efficiency

The thermodynamic entropy production [64] for bipartite
processes has two contributions. One is due to jumps that
change the state of the signal,

σx ≡
∑
x,x ′

P (x)wxx ′
ln

wxx ′

wx ′x . (14)

If the bare signal is an equilibrium process, which is the case
for the examples considered in this paper, σx = 0. The second
contribution arises from jumps that change the state of the
sensor, which reads

σy ≡
∑
x,y,y ′

P (x,y)wx
yy ′ ln

wx
yy ′

wx
y ′y

. (15)

The inequality ly � σy leads to the efficiency [55]

η ≡ ly

σy
� 1. (16)

This efficiency relates the rate at which the sensor learns about
the signal with the rate of free energy dissipation, which is
quantified by the thermodynamic entropy production. For the
model system in Sec. III, the entropy production has two terms.
One is related to work delivered by the external signal and
another to free energy dissipation inside the cell.

E. Upper bound on the transfer entropy, coarse-grained
entropy production, and coarse-grained learning rate

We now recall the definition of further quantities that will
be calculated in this paper. The first quantity is an upper bound
on the transfer entropy rate

T x→y ≡ H [yt+dt |yt ] − H [yt+dt |yt ,xt ]

dt
� Tx→y. (17)

An important property of this upper bound is that, unlike the
transfer entropy rate, it can be written in terms of the stationary
distribution as [42]

T x→y =
∑
x,y,y ′

P (x,y)wx
yy ′ ln

wx
yy ′

wyy ′
, (18)

where

wyy ′ ≡
∑

x

P (x|y)wx
yy ′ . (19)

The inequality T x→y � Tx→y is obtained by comparing
Eq. (12) with Eq. (17), and using relations H [yt+dt |yt ] �
H [yt+dt |{yt ′ }t ′�t ] and H [yt+dt |{yt ′ }t ′�t ,xt ] = H [yt+dt |yt ,xt ].

The coarse-grained entropy production is obtained by
integrating the variable x out, leading to the expression [65]

σ̃y ≡
∑
yy ′

P (y)wyy ′ ln
wyy ′

wy ′y
� 0. (20)

This σ̃y is a lower bound on the real entropy production, i.e.,
σy � σ̃y [65].
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FIG. 2. Illustration of the causal relation x → r → m for a sensor
y = (r,m) composed of the first layer r and the memory m.

F. Sensor with a memory

We now consider a sensor with two degrees of freedom
y ≡ (r,m). We assume that r is the first degree of freedom
directly sensing the signal x and m is a memory storing the
information collected by r (see [58] for a similar setup). The
coarse-grained learning rate is defined as [55]

lr ≡ H [xt |rt ] − H [xt |rt+dt ]

dt

=
∑

x,r,r ′,m

P (x,r,m)wx
(r,m)(r ′,m) ln

P (x|r ′)
P (x|r)

, (21)

where wx
(r,m)(r ′,m) denotes the transition rate from (x,r,m) to

(x,r ′,m). The rate at which r alone learns about the signal x

is quantified by lr � ly [55]. The transition rates then have the
form

wxx ′
yy ′ ≡

⎧⎪⎪⎨
⎪⎪⎩

wxx ′
if x �= x ′ and y = y ′,

wx
rr ′ if x = x ′, r �= r ′, and m = m′,

w(r,m)(r,m′) if x = x ′, r = r ′, and m �= m′,
0 otherwise,

(22)

where y ′ = (r ′,m′). The transition rates (22) imply the causal
relation x → r → m, which is illustrated in Fig. 2. Therefore,
the coarse-grained learning rate in Eq. (21) becomes

lr =
∑
x,r,r ′

P (x,r)wx
rr ′ ln

P (x|r ′)
P (x|r)

. (23)

Transition rates with three variables that do not change
simultaneously in a jump, as in Eq. (22), form a tripartite
system, which is a particular case of a multipartite Markov pro-
cess [46]. The transfer entropy in this case fulfills the relation

Tx→y = Tx→r, (24)

where

Tx→r ≡ H [rt+dt |{rt ′ }t ′�t ] − H [rt+dt |{rt ′ }t ′�t ,xt ]

dt
. (25)

Relation (24) means that the transfer entropy from the signal x

to the sensor y = (r,m) is equal to the transfer entropy from x

to the first layer of the sensor r . This relation is a consequence
of the causal relation x → r → m and can be demonstrated
as follows.

By defining zt ≡ (xt ,rt ,mt ) the conditional probability
P(zt+dt |zt ) can be written as

P(zt+dt |zt ) = P(xt+dt |xt )P(rt+dt |xt ,rt )P(mt+dt |rt ,mt ),

(26)

which follows from the structure of the rates in Eq. (22). From
the definition of the conditional Shannon entropy (3), Eq. (26)

implies the following relations:

H [zt+dt |zt ]

= H [xt+dt |xt ] + H [rt+dt |xt ,rt ] + H [mt+dt |rt ,mt ] (27)

and

H [yt+dt |yt ,xt ] ≡ H [rt+dt ,mt+dt |rt ,mt ,xt ]

= H [rt+dt |rt ,xt ] + H [mt+dt |rt ,mt ]. (28)

For large time t , the Markov property P(zt+dt |zt ) =
P(zt+dt |{zt ′ }t ′�t ) and (26) lead to

H [yt+dt |{yt ′ }t ′�t ] = H [rt+dt ,mt+dt |{rt ′ }t ′�t ,{mt ′ }t ′�t ]

= H [rt+dt |{rt ′ }t ′�t ] + H [mt+dt |mt,rt ].
(29)

Finally, from Eqs. (28) and (29) we obtain the transfer entropy
rate (12) in the form

Tx→y = H [yt+dt |{yt ′ }t ′�t ] − H [yt+dt |yt ,xt ]

dt

= H [rt+dt |{rt ′ }t ′�t ] − H [rt+dt |rt ,xt ]

dt
, (30)

which after a comparison with (25) yields the desired equal-
ity (24).

From the definition of the upper bound on the transfer
entropy rate (17) and Eq. (26) we obtain

T x→y = H [rt+dt |rt ,mt ] − H [rt+dt |rt ,xt ]

dt
. (31)

Hence, the inequality H [rt+dt |rt ,mt ] � H [rt+dt |rt ] leads to

T x→y � T x→r, (32)

where

T x→r ≡ H [rt+dt |rt ] − H [rt+dt |rt ,xt ]

dt
. (33)

Note that inequality (32) is the opposite to what happens to
the learning rate, i.e., lr � ly. The chain of inequalities that
summarizes the inequalities discussed in this section involving
learning rate, coarse-grained learning rate, transfer entropy
rates, and upper bounds on transfer entropy rates is given by

lr � ly � Tx→r = Tx→y � T x→y � T x→r. (34)

The adaptation of the expressions from this section to the
continuous limit, where the master equation becomes a Fokker-
Planck equation, is presented in Appendix A.

III. CELLULAR TWO-COMPONENT NETWORK SENSING
AN EXTERNAL LIGAND CONCENTRATION

As a physical realization of a sensor we consider the
cellular two-component network sensing a fluctuating ligand
concentration shown in Fig. 3 (see [58] for a similar setup).
The signal x is related to the external ligand concentration s

through the expression x = ln(s/s0), where s0 is some base
concentration value. The first layer of the two-component
network, which is the degree of freedom directly sensing the
external concentration, is composed by the receptors. Each
receptor can be either bound by a ligand or empty, with the
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FIG. 3. Cellular two-competent network sensing an external
ligand concentration. The total number of receptors is Nb = 7 and
the number of occupied receptors is nb = 3. The number of internal
proteins, which constitute the memory, is Ny = 10 with ny = 4 of
them phosphorylated. The number of occupied receptors affects the
transition rates related to the phosphorylation of internal proteins.

possible values of the number of bound receptors given by
nb = 0,1, . . . ,Nb, where Nb is the total number of receptors.
The second layer of the two-component network is composed
by internal proteins Y that can be phosphorylated to the state
Y∗. The number of proteins in this phosphorylated form takes
the values ny = 0,1, . . . ,Ny, where Ny is the total number of
proteins. This second degree of freedom is the memory of the
sensor: the phosphorylation/dephosphorylation reaction rates
depend on nb, whereas ny has no influence on the transition
rates changing the number of occupied receptors. A state of
the sensor is fully characterized by y = (nb,ny).

The rates with which the concentration changes are written
as

w
(1)
± (x) = Dx

dx2
exp

(
∓ωxx

2Dx
dx

)
, (35)

where x is a multiple of dx and the “+” sign indicates a jump
from x to x + dx while the “−” sign indicates a jump from x

to x − dx. As shown in Appendix A, the limit dx → 0 yields
the continuous Langevin equation

ẋt = −ωxxt + ξ x
t , (36)

for the dynamics of the signal. The white noise ξ x
t fulfills the

relation 〈
ξ x
t ξ x

t ′
〉 = 2Dxδ(t − t ′), (37)

where the brackets denote an average over stochastic trajecto-
ries.

The number of occupied receptors changes with rates

w
(2)
+ (x,nb) = ω+

r (x)[Nb − nb],

w
(2)
− (x,nb) = ω−

r (x)nb,
(38)

where ω+
r (x) is the rate for the binding of a ligand to any free

receptor and ω−
r (x) is the rate for the unbinding of a ligand

from any occupied receptor. These rates fulfill the generalized
detailed balance relation ω+

r (x)/ω−
r (x) = exp[�F (x)], where

�F (x) is the free energy difference between empty and
occupied receptor and kBT ≡ 1 throughout. It is assumed that
the number of ligands is so large that binding and unbinding
events do not alter the external ligand concentration.

The phosphorylation reaction of a single internal protein
takes place with rates

Y + ATP
nbκ+�
nbκ−

Y∗ + ADP, (39)

which are proportional to the number of bound receptors nb.
Besides this chemical reaction the internal proteins can also
be dephosphorylated through the reaction

Y∗ ν+�
ν−

Y + Pi, (40)

where the rates are independent of nb. The rates in Eqs. (39)
and (40) fulfill the relation ln[κ+ν+/(κ−ν−)] ≡ �μ, where
�μ ≡ μATP − μADP − μPi is the free energy liberated in
one ATP hydrolysis. We define the total transition rates for
individual proteins as

ω+
m(nb) ≡ nbκ+ + ν−,

ω−
m(nb) ≡ nbκ− + ν+.

(41)

With these rates for the change of an individual protein we
obtain the transition rates for a change in the variable ny,

w
(3)
+ (nb,ny) = ω+

m(nb)[Ny − ny],

w
(3)
− (nb,ny) = ω−

m(nb)ny.
(42)

The entropy production due to the sensor jumps σy has
two contributions. The first is due to jumps that change the
receptors occupancy

σr =
∑
x,nb

Jr(x,nb) ln
w

(2)
+ (x,nb)

w
(2)
− (x,nb + 1)

, (43)

where

Jr(x,nb)

≡ P (x,nb)w(2)
+ (x,nb) − P (x,nb + 1)w(2)

− (x,nb + 1) (44)

is the probability current. The second is due to jumps that
change the number of phosphorylated internal proteins

σm =
∑
nb,ny

Jm(nb,ny) ln
w

(3)
+ (nb,ny)

w
(3)
− (nb,ny + 1)

, (45)

where

Jm(nb,ny) ≡ P (nb,ny)w(3)
+ (nb,ny)

− P (nb,ny + 1)w(3)
− (nb,ny + 1). (46)

The quantity σr corresponds to the rate of dissipated heat due to
binding and unbinding of ligands at different concentrations
values. This dissipated heat is compensated by work that is
done by the external signal. The quantity σy is the rate of
dissipated free energy related to the consumption of ATP inside
the cell. Actually, since we are not considering each individual
link with the phosphorylation and dephosphorylation chemical
reactions, but rather the total transition rates in Eq. (41), σm

is a lower bound on the rate of heat dissipated due to ATP
consumption. A thorough discussion on the physical origin of
different terms in the entropy production for related models
can be found in Ref. [55].
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As shown in Appendix A, taking the linear noise approx-
imation and assuming a signal with small fluctuations, the
transition rates in Eqs. (35), (38), and (42) lead to the Langevin
equations

ẋt = −ωxxt + ξ x
t (signal),

ṙt = −ωr(rt − xt ) + ξ r
t (sensor),

ṁt = −ωm(mt − rt ) + ξm
t (memory),

(47)

where 〈ξ i
t ξ

j

t ′ 〉 = 2Diδij δ(t − t ′) for i,j = x,r,m. The variable
r is related to the number of bound receptors, as shown in
Eq. (A17), and the memory m to the number of phosphorylated
internal proteins, as shown in Eq. (A18). The precise relations
between the parameters in these equations and the transition
rates can be found in Eqs. (A13) and (A20). There are three
key points about these relations. First, for �μ = 0, i.e., without
free energy dissipation due to ATP hydrolysis inside the cell,
the memory becomes decoupled from the receptor and has
no information about the signal, which in Eq. (47) implies
Dm → ∞. Second, the noise amplitude Dr is inversely
proportional to the total number of receptors Nb. Third, the
noise amplitude Dm is inversely proportional to the total
number of internal proteins Ny.

IV. SENSORY CAPACITY AND EFFICIENCY
FOR MODEL SYSTEM

A. Bare sensor

First we consider a bare sensor without memory, i.e., the
Langevin equations (47) without the variable m. We use the
subscript r for the sensory capacity Cr and the efficiency ηr

for the bare sensor of this subsection in order to differentiate it
from the sensor with a memory analyzed in the next subsection.
The corresponding Lyapunov equation for the covariance
matrix

� =
(


xx 
xr


rx 
rr

)
≡
(〈xtxt 〉 〈xt rt 〉

〈rtxt 〉 〈rt rt 〉
)

(48)

reads [66,67]

�̇ = −A� − �A� + 2D, (49)

where

A ≡
(

ωx 0
−ωr ωr

)
and D ≡

(
Dx 0
0 Dr

)
. (50)

The steady state solution of (49) is

� = E2
x

(
1 νr

νr+1
νr

νr+1

[
νr

νr+1 + Br
νr

]
)

, (51)

where E2
x ≡ Dx/ωx is the signal variance, νr ≡ ωr/ωx, and

Br ≡ Dr/Dx.
As shown in Appendix A, the learning rate is

lr = ωx

[
ν3

r

ν2
r + Br(1 + νr)2

]
. (52)

Br

(a) Tx→r

lr

0

5

10

15

10−3 10−1 101 103

Br

(c)

Ex|rtraj
/Ex

Ex|r/Ex

0

0.2

0.4

0.6

0.8

1

10−3 10−1 101 103

Br

(b)

Cr

ηr

Tx→r/T x→r

0

0.5

1

10−3 10−1 101 103

FIG. 4. Sensor performance as a function of sensor noise Br =
Dr/Dx. (a) Transfer entropy Tx→r and learning rate lr are displayed.
The vertical dotted line at Br = ν2

r /(ν2
r − 1) indicates the value for

which Cr = 1, i.e., lr = Tx→r. (b) Efficiency (ηr = lr/σr) and capacity
(Cr = lr/Tx→r) of the bare sensor. At maximal capacity Cr = 1 the
efficiency is ηr = 1/2 and Tx→r = T x→r. (c) Comparison of errors.
For Cr = 1 the inequality Ex|rtraj � Ex|r saturates. Parameters: ωx ≡
1,Dx ≡ 0.1,νr = ωr/ωx ≡ 10.

The transfer entropy rate for the linear Langevin equations (47)
is given by [45]

Tx→r = ωx

2

⎛
⎝
√

1 + ν2
r

Br
− 1

⎞
⎠. (53)

The learning rate and transfer entropy rate as functions of
Br are plotted in Fig. 4(a). Both quantities get smaller as the
noise amplitude of the sensor gets larger. At an intermediate
value of Br = ν2

r /(ν2
r − 1) learning rate and transfer entropy

become the same leading to a sensory capacity Cr = 1, as
shown in Fig. 4(b).

Since the bare sensor does not have a memory there is no
ATP consumption inside the cell and the entropy production
is equal to the rate of work delivered by the external signal,
which, as calculated in Appendix A in Eq. (A39), is

σr = ωx
ν2

r

Br(1 + νr)
. (54)

This entropy production decreases with Br; i.e., a sensor with
smaller noise amplitude, which can be obtained by increasing
the number of receptors [see Eq. (A14)], implies more energy
dissipation. In Fig. 4(b) the thermodynamic efficiency is
compared with sensory capacity. The efficiency increases with
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Br. For Br = ν2
r /(ν2

r − 1), where Cr = 1, the efficiency is
ηr = 1/2. As we show in Sec. V there is a general trade-off
between efficiency and sensory capacity, with C = 1 implying
η � 1/2.

The upper bound on the transfer entropy rate, calculated in
Appendix A, reads

T x→r = ωxν
2
r

4Br

[
1 − ν3

r

ν3
r + ν2

r + Br(1 + νr)2

]
. (55)

This quantity has also been calculated in Ref. [59]. Comparing
the upper bound with the transfer entropy rate in Fig. 4(b) we
observe that for this model when sensory capacity is 1 we
have lr = Tx→r = T x→r. This fact plays an important role in
the general trade-off between sensory capacity and efficiency
proved in Sec. V.

In Appendix B we define the uncertainties Ex|r and Ex|rtraj

about the signal given the sensor state and the sensor trajectory,
respectively. As shown in Appendix B, E2

x|rtraj
is proportional

to the transfer entropy rate Tx→r and E2
x|r is proportional to the

upper bound T x→r for the present model. Hence, the equality
between transfer entropy rate and upper bound for Cr = 1
implies that both uncertainties are also the same, as shown in
Fig. 4(c).

B. Memory increases sensory capacity

For the regimes where the bare sensor does not reach a
sensory capacity close to 1, it is possible to increase this
sensory capacity by adding a memory to the bare sensor,
which leads to the third equation in Eq. (47). The Lyapunov
equation (49) for this case has the 3 × 3 matrices

A =
⎛
⎝ ωx 0 0

−ωr ωr 0
0 −ωm ωm

⎞
⎠ and D ≡

⎛
⎝Dx 0 0

0 Dr 0
0 0 Dm

⎞
⎠.

(56)

The stationary solution of (49) is too long to be displayed here.
The expression for the learning rate ly is given in Ap-

pendix A in Eq. (A45). As shown in Eq. (24), the addition of
the memory does not change the transfer entropy Tx→y = Tx→r

which remains as given by (53). The coarse-grained learning
rate lr is the learning rate for the bare sensor calculated in
Eq. (52). The quantities ly, lr, and Tx→r are plotted in Fig. 5(a)
as a function of the noise amplitude Bm ≡ Dm/Dx. For larger
values of Bm the learning rate ly becomes equal to lr, and the
learning rate does now increase substantially with the addition
of a memory with small noise amplitude. By decreasing the
noise amplitude ly increases until it reaches the transfer entropy
Tx→r for small Bm. Hence, the sensory capacity C increases
with decreasing Bm, as shown in Fig. 5(b).

The rate of free energy dissipation has now two contribu-
tions, i.e., σy = σr + σm. The σr given by (54) corresponds
to the work done by the external signal. The additional term,
which is derived in Appendix A in Eq. (A40), is given by

σm = ωx
ν2

m

[
ν2

r + Br(1 + νm)(1 + νr)
]

Bm(1 + νm)(1 + νr)(νm + νr)
, (57)

where νm ≡ ωm/ωx. This σm is a lower bound on the rate
of dissipated free energy due to ATP consumption. From

Bm

Tx→r

lr
ly

T x→y

T x→r

0

50

100

150

200

250

10−4 10−2 100 102

(a)

Bm

(c)
Ex|rtraj

/Ex

Ex|r/Ex

Ex|y/Ex

0.1

0.2

0.3

10−4 10−2 100 102

Bm

C

Cr

η

(b)

10−3

10−2

10−1

100

10−4 10−2 100 102

FIG. 5. Effect of a memory. (a) Transfer entropy Tx→r, learning
rate of the bare sensor lr and of the full sensor ly (including the
memory) as a function of the memory noise Bm = Dm/Dx. The
transfer entropy estimate T x→y and the learning rate ly approach Tx→r

for Bm → 0. (b) Sensory capacities C = ly/Tx→r and Cr = lr/Tx→r

in comparison with thermodynamical efficiency η = ly/σy. (c) Effect
of memory on error. The error Ex|y corresponding to the full sensor
state approaches the minimal error Ex|rtraj for Bm → 0. Parameters:
ωx ≡ 1, Dx ≡ 10−1, νr = ωr/ωx ≡ 10, Br = Dr/Dx ≡ 10−2, and
νm = ωm/ωx ≡ √1 + ν2

r /Br � 100.

expression (57), the decrease in the noise amplitude Dm, which
leads to an increase in sensory capacity, implies an increase
in the rate of ATP consumption inside the cell. Adding a
dissipative memory to a bare sensor can lead to an increase in
sensory capacity. This increase corresponds to how much of
the information about the trajectory {rt ′ }t ′�t is contained in the
instantaneous state of the memory mt .

For fixed Bm, the sensory capacity C as a function of νm ≡
ωm/ωx has a maximum, as shown in the contour plot in Fig. 6.
Therefore, for a given ωx, which characterizes the time scale of
changes in the external signal, the memory has an optimal ωm,
which characterizes the time scale of changes in the memory.
A sensory capacity close to 1 is reached for small Bm and
νm ≈ √1 + ν2

r /Br, as indicated by the red region in Fig. 6.
A larger σm leads to a lower efficiency, as shown in Fig. 5(b).

Adding a memory with a high rate of dissipation due to ATP
consumption can increase a low sensory capacity to the limit
C = 1. In this case when C = 1 the efficiency is small due to
the high dissipation of the memory. For example, the maximal
efficiency that is achieved in the region plotted in Fig. 6 is η �
0.024. In this regime of high internal dissipation the efficiency
does not seem to be a relevant quantity to characterize the
performance of the sensor, which is rather given by sensory
capacity.
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Bm
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ν
m
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0.9
0.98

C

FIG. 6. Effect of memory parameters νm and Bm on the sensory
capacity. For νm = √1 + ν2

r /Br � 102 and Bm → 0 the capacity
saturates (C → 1). The star (�) marks the parameter (ν�

m ,B�
m ) for

which the efficiency η is maximal (here η� � 0.024). The remaining
parameters are chosen as in Fig. 5.

As shown in Appendix B, for a sensor with a memory, the
uncertainty taking the instantaneous state of the sensor into
account is proportional to the upper bound on the transfer
entropy rate. As is the case of the transfer entropy, the
uncertainty taking the full time series of the sensor into account
does not change with the addition of the memory. Therefore,
also for the present case C = 1 implies that both uncertainties
are equal, as shown in Fig 5(c).

V. TRADE-OFF BETWEEN SENSORY CAPACITY
AND EFFICIENCY

A. Trade-off for model system

There are two situations for which the maximal sensory
capacity C = 1 can be reached. Either the parameters related
to the signal and the first layer of the sensor are chosen in such a
way that there is no further information in the trajectory {rt ′ }t ′�t

as compared to the instantaneous state rt or a dissipative
memory is added to the sensor. In the first case, the efficiency
is η = 1/2 for C = 1 and in the other case η < 1/2 due to the
extra dissipation inside the cell.

The trade-off between sensory capacity and efficiency for
the model system in Eq. (47) is shown in Fig. 7. For the bare
sensor we obtain the bounds

4ηr(1 − ηr) � Cr � 2
√

ηr(1 − ηr), (58)

which are derived in the following way. From (52) and (54)
the efficiency reads

ηr = lr

σr
= Brνr(1 + νr)

ν2
r + Br(1 + νr)2

, (59)

and from (52) and (53) the sensory capacity reads

Cr = lr

Tx→r
= 2ν3

r[
ν2

r + Br
(
1 + ν2

r

)][√
1 + ν2

r /Br − 1
] . (60)

se
n
so

ry
ca

p
a
ci

ty
C

efficiency η

with memory

bare sensor
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1
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FIG. 7. Trade-off between capacity C and efficiency η. The
parameters for the bare sensor νr and Br are chosen at random
with 10−1 � νr,Br � 102. For the sensor with memory, in addition,
the parameters νm and Bm are chosen in the same way. The solid
lines indicate the bounds 4η(1 − η) � C � 2

√
η(1 − η) for the bare

sensor. Our numerics indicates that the upper bound C � 2
√

η(1 − η)
is also valid for the sensor with memory for η � 1/2.

The upper (lower) bound in Eq. (58) is obtained by maximizing
(minimizing) the capacity (60) with respect to the variables
νr,Br � 0 with the constraint that (59) is fixed. Most promi-
nently, the scatter plot in Fig. 7 shows that the upper bound in
Eq. (58) also applies for the full sensor with a memory in the
region η � 1/2.

B. General proof

We now prove a general trade-off between sensory capacity
and efficiency: a sensory capacity C = 1 implies η � 1/2.
Our proof depends on the reasonable assumption that for any
sensor it is possible to create a fictitious memory such that the
instantaneous state of the fictitious sensor, composed of the
sensor and the fictitious memory, contains the whole history
of the sensor. From the calculations for the model system in
Sec. IV, we expect this fictitious memory to have two general
characteristics. First, it must be precise. For the model system
this precision is characterized by a small Dm in Eq. (47),
which can be achieved for the case in which the total number
of proteins inside the cell is very large, i.e., the memory has
a large number of possible states. Second, the time scale for
changes in states of the fictitious memory must be tuned to
some optimal value. For the model system this time scale is
characterized by ωm in Eq. (47). For a system that is more
elaborate than our model system one can think of a multi-
component memory with the time scale of each component
optimally tuned to store information about a certain part of the
sensor.

From the chain of inequalities, summarized in Eq. (34),
adding the memory raises the learning rate and lowers the
upper bound on transfer entropy rate. In a first step, we impose
that (i) C = 1 and (ii) that the transfer entropy rate is equal to
the upper bound, i.e., ly = Tx→y = T x→y. From relations (8)
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and (18) we obtain

T x→y − ly =
∑
y,y ′

P (y)
∑

x

P (x|y)wx
yy ′ ln

P (x|y)wx
yy ′

P (x|y ′)wyy ′
� 0,

(61)

where the log sum inequality above is saturated if and only if
the term inside the logarithm is independent of x [63]. Hence,
if T x→y = ly then the rates obey

wx
yy ′ = P (x|y ′)

P (x|y)
wyy ′ . (62)

With this restriction, Eqs. (8) and (20), the entropy produc-
tion (15) becomes

σy = 2ly + σ̃y. (63)

The efficiency (16) then reads

ηy = ly

σy
= 1

2

σy − σ̃y

σy
� 1

2
, (64)

where we used σy � σ̃y. Hence, if C = 1 and Tx→y = T x→y,
the efficiency fulfills ηy � 1/2.

We now demonstrate that C = 1 indeed implies Tx→y =
T x→y, which completes the proof of the trade-off. A fictitious
memory α is added to the sensor y. The transitions rates are
now of the form of Eq. (22) with y replacing r and α replacing
m. The learning rate of this fictitious sensor composed of
z = (y,α) reads

lz =
∑

x,x ′,y,α

P (x,y,α)wxx ′
ln

P (x,y,α)

P (x ′,y,α)
, (65)

where we used Eqs. (10) and (11). Within this fictitious sensor
ly is a coarse-grained learning rate and the difference between
lz and ly reads

lz − ly =
∑
x,x ′,y

P (x,y)wxx ′ ∑
α

P (α|x,y) ln
P (α|x,y)

P (α|x ′,y)
� 0.

(66)

The assumption C = 1 implies ly = lz. The above inequality
is saturated if and only if P (α|x,y) = P (α|x ′,y) = P (α|y),
yielding P (x|y,α) = P (y)P (x|y)P (α|x,y)

P (y)P (α|y) = P (x|y). This relation
leads to

H [xt |yt ,αt ] = H [xt |yt ]. (67)

The fictitious memory α is unspecified and the key assumption
for our demonstration is that it is always possible for any sensor
y to find a fictitious memory α that fulfills the relation

H [xt |yt ,αt ] = H [xt |{yt ′ }t ′�t ]. (68)

If we choose such fictitious memory then equality (67) leads
to

H [xt |yt ] = H [xt |{yt ′ }t ′�t ]. (69)

Hence, if it is possible to find a fictitious memory that
fulfills (68), then C = 1 implies (69). From (69) we obtain
I [xt :{yt ′ }t ′�t ] = I [xt :yt ,yt−dt ] = I [xt :yt ]. The learning rate in

the form (11) can be rewritten as

ly = I [xt :yt ] − I [xt+dt :yt ]

dt

= I [xt+dt :yt+dt ] − I [xt+dt :yt ]

dt

= I [xt+dt :yt+dt ,yt ] − I [xt+dt :yt ]

dt
, (70)

where we used the steady state property I [xt+dt :yt+dt ] =
I [xt :yt ] from the first to the second line. Inserting the
conditional probabilities in terms of rates from Eq. (7) into
Eq. (70) leads to the completion of the proof, i.e.,

ly =
∑
x,y,y ′

P (x,y)wx
yy ′ ln

wx
yy ′

wyy ′
= T x→y. (71)

Summarizing, we have demonstrated that C = 1 ⇒
H [xt |yt ] = H [xt |{yt ′ }t ′�t ] ⇒ ly = T x→y ⇒ C = 1. This
proof also implies that whenever C = 1 then the upper
bound is also equal to the transfer entropy rate, i.e.,
ly = Tx→y = T x→y. For the coupled linear Langevin
equations analyzed in Sec. IV this equality between transfer
entropy rate and its upper bound implies the equality between
the uncertainty about the external signal that is estimated with
the instantaneous state of the sensor and the uncertainty that
is estimated with the full time series of the sensor, as shown
in Appendix B. For general systems, it remains to be seen
whether C = 1 implies that both uncertainties are the same.

VI. CONCLUSION

We have introduced the quantity sensory capacity, which
provides a measure for the performance of a sensor that follows
an external signal. Specifically, the maximal sensory capacity
C = 1 means that the instantaneous state of the sensor contains
the same amount of information about the signal as the full time
series of the sensor. As we have shown with the coupled linear
Langevin equations in Sec. IV a high sensory capacity can be
achieved in two ways. First, for a bare sensor without a memory
layer the parameters related to the sensor can be tuned in such
a way that C = 1. In this case there is no further information
available in the full time series of the degree of freedom directly
sensing the signal. Second, the more interesting case is when
the full time series of this first degree of freedom has more
information than its instantaneous state. By adding a memory,
which is a second degree of freedom that is influenced by
the first degree of freedom but does not react back on it, the
sensory capacity can be raised to C = 1. This increase in
sensory capacity quantifies how much information about the
time series of the sensor is stored in the instantaneous state of
the memory.

The coupled linear Langevin equations have been derived
from a cellular two-component network sensing an external
ligand concentration, which is the signal. Within this physical
realization of a sensor the first layer of the sensor is the
receptors that bind external ligands and the memory is
composed of internal proteins that can be phosphorylated.
We have shown that the thermodynamic entropy production
quantifying dissipation has two terms: work delivered by the
external process due to binding and unbinding at different
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concentrations and dissipation inside the cell due to ATP
hydrolysis. Adding a memory that increases the sensory
capacity of a sensor from a low value to a value close to 1
requires a high rate of dissipation inside the cell. Sensory
capacity is particularly interesting in this regime of high
dissipation, where the efficiency is very low and, therefore,
does not characterize well the performance of the sensor.

Finally, we have demonstrated a general trade-off between
sensory capacity and efficiency. A sensory capacity C = 1
implies an efficiency η � 1/2. The limit η = 1/2 is achieved
for a bare sensor with its parameters optimally tuned so that
C = 1. If these parameters are not optimally tuned, C = 1 is
possible only with an additional memory that leads to extra
dissipation in relation to the bare sensor, which implies η <

1/2.
This trade-off relation between the two bounded dimen-

sionless quantities C and η provides a further link between
information theory and thermodynamics. The sensory capacity
C as a ratio between learning rate and transfer entropy rate is of
purely information theoretic origin whereas the efficiency η as
a ratio between learning rate and entropy production contains
input from both fields. As a perspective for future work, the
role of nonlinearities in these figures of merit could be explored
in more complex models.

An experimental realization verifying the second law for a
sensor that involves the rate of dissipated heat and the learning
rate is still lacking. A good candidate for such an experiment
is a colloidal particle, which is the sensor, subjected to an
external potential that is varied stochastically. An experiment
with a sensor that has an internal memory seems to be even
more challenging.

APPENDIX A: FROM MASTER EQUATION TO LANGEVIN
EQUATION IN BIPARTITE PROCESSES

1. Linear noise approximation

We consider a vector z = (z1, . . . ,zd ) determining the state
of the system. Comparing with Sec. II, the first component is
related to the signal, i.e., z1 = x. The other components are
related to the sensor. If the sensor has only one component
r then z2 = r . A sensor with a memory also has a second
component y = (r,m), leading to z3 = m. For the variable
z1 = x we denote the transition rate wxx ′ = ω

(1)
± (z) for x ′ =

x ± dx, where dx corresponds to an infinitesimal change in
the variable x. The master equation is written as

Ṗ (z) =
d∑

i=1

[w(i)
+ (z − d zi)P (z − d zi) − w

(i)
+ (z)P (z)]

+
d∑

i=1

[w(i)
− (z + d zi)P (z + d zi) − w

(i)
− (z)P (z)].

(A1)

With the approximation

w
(i)
± (z ∓ d zi)P (z ∓ d zi) � w

(i)
± (z)P (z)

∓ dzi

∂

∂zi

w
(i)
± (z)P (z) + 1

2
dz2

i

∂2

∂z2
i

w
(i)
± (z)P (z), (A2)

the master equation (A1) turns into the Fokker-Planck equation

ρ̇(z) = −
∑

i

∂

∂zi

Ji(z), (A3)

where in the continuous limit P (z) → ρ(z)
∏

i dzi . The
probability current reads

Ji(z) ≡ Di(z)Fi(z)ρ(z) − ∂

∂zi

Di(z)ρ(z), (A4)

where

Di(z)Fi(z) ≡ dzi[w
(i)
+ (z) − w

(i)
− (z)] (A5)

and

Di(z) ≡ dz2
i

2
[w(i)

+ (z) + w
(i)
− (z)]. (A6)

Within the Ito interpretation [66,67], the Fokker-Planck equa-
tion (A3) corresponds to the Langevin equation

żi,t = Di(zt )Fi(zt ) + ξ i
t , (A7)

where 〈ξ i
t ξ

j

t ′ 〉 = 2Di(z)δij δ(t − t ′). The δij term in this last
equation is a direct consequence of the bipartite (or multipar-
tite) structure of the transition rates.

2. Two-component network with a weakly fluctuating signal

The linear noise approximation for the specific model of
Sec. III is valid in the limit Ny,Nb � 1 and dx → 0. In this
case, from the transition rates (35), (38), and (42), the Langevin
equation (A7) becomes

ẋt = −ωxxt + ξ x
t ,

ṅb(t) = ω+
r (xt )Nb − [ω+

r (xt ) + ω−
r (xt )]nb(t) + ξ b

t ,

ṅy(t) = ω+
y (nb(t))Ny − [ω+

m(nb(t)) + ω−
m(nb(t))]ny(t) + ξ

y
t .

(A8)

From Eq. (A6), the noise terms ξ b
t and ξ

y
t fulfill a relation

similar to (37), with amplitudes

Db(x,nb) = 1
2 [ω+

r (x)(Nb − nb) + ω−
r (x)nb],

Dy(nb,ny) = 1
2 [ω+

m(nb)(Ny − ny) + ω−
m(nb)ny],

(A9)

respectively.
If the fluctuations of the signal are small such that x stays

close to the value x = 0 we can apply the following expansion:

Nbω
+
r (x)/[ω+

r (x) + ω−
r (x)] ≡ n∗

b + α1x + O(x)2, (A10)

where n∗
b ≡ Nbω

+
r (0)/[ω+

r (0) + ω−
r (0)] and α1 is the first

derivative evaluated at x = 0. For nb − n∗
b small,

Nyω
+
m(nb)/[ω+

m(nb) + ω−
m(nb)]

≡ n∗
y + α2(nb − n∗

b) + O(nb − n∗
b)2, (A11)

where n∗
y ≡ Nyω

+
m(n∗

b)/[ω+
m(n∗

b) + ω−
m(n∗

b)] and α2 is the
first derivative evaluated at nb = n∗

b. In the limit where
Eqs. (A10) and (A11) are valid, the Langevin equations (A8)
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become

ẋt = −ωxxt + ξ x
t ,

ṅb(t) = ωr[n
∗
b + α1xt − nb(t)] + ξ b

t , (A12)

ṅy(t) = ωm[n∗
y + α2[nb(t) − n∗

b] − ny(t)] + ξ
y
t ,

where

ωr ≡ ω+
r (0) + ω−

r (0),

ωm ≡ ω+
m(n∗

b) + ω−
m(n∗

b).
(A13)

Furthermore, the noise amplitudes in Eq. (A9) become

D∗
b ≡ Db(0,n∗

b) = ωr

Nb
n∗

b(Nb − n∗
b),

D∗
y ≡ Dy(n∗

b,n
∗
y) = ωm

Ny
n∗

y(Ny − n∗
y).

(A14)

The explicit form of the parameter α1 in Eq. (A10) is

α1 = n∗
b(Nb − n∗

b)

Nb

∂�F (x)

∂x
(A15)

and α2 in Eq. (A11) is

α2 = n∗
y(Ny − n∗

y)

Ny

[
κ+ν+ − κ−ν−

(n∗
bκ+ + ν−)(n∗

bκ− + ν+)

]
, (A16)

as obtained from (41). Hence, for �μ = ln[κ+ν+/(κ−ν−)] = 0
this last parameter is α2 = 0; i.e., the memory level in
Eq. (A12) is not affected by the number of occupied receptors.
Therefore, ATP consumption is necessary in order for the
memory to be able to store information about the signal.

The linear Langevin equations can be further simplified
with the transformations

rt ≡ nb(t) − n∗
b

α1
(A17)

and

mt ≡ ny(t) − n∗
y

α1α2
. (A18)

With these variables the Langevin equations (A12) become
Eq. (47), with the noise amplitudes (A14) transformed to

Dr = D∗
b/α

2
1,

Dm = D∗
y/(α1α2)2.

(A19)

From Eqs. (A14)–(A16) we obtain

Dr = ωrNb

n∗
b(Nb − n∗

b)

[
∂�F (x)

∂x

]−2

,

Dm =
[

Nb

n∗
b(Nb − n∗

b)

]2[
∂�F (x)

∂x

]−2

× ωmNy

n∗
y(Ny − n∗

y)

[
(n∗

bκ+ + ν−)(n∗
bκ− + ν+)

κ+ν+ − κ−ν−

]2

,

(A20)

where according to (A10) n∗
b ∼ Nb and according to (A11)

n∗
y ∼ Ny. Hence, Dr ∼ N−1

b ; i.e., the noise amplitude related
to the receptor decreases with increasing total number of
receptors Nb. Moreover, the memory noise Dm is inversely

proportional to the total number of internal proteins Ny and
diverges for �μ ≡ ln[κ+ν+/(κ−ν−)] → 0.

3. Quantities in the continuum limit

We consider a vector (z1,z2,z3) = (x,r,m) with transition
rates

ω
(1)
± (z) ≡ Dx

dx2
exp

[
±Fx(x)dx

2

]
, (A21)

ω
(2)
± (z) ≡ Dr

dr2
exp

[
±Fr(x,r)dr

2

]
, (A22)

ω
(3)
± (z) ≡ Dm

dm2
exp

[
±Fm(r,m)dm

2

]
, (A23)

where the diffusion constants Di are assumed to be indepen-
dent of (x,r,m). The following relations are obtained by taking
their expressions for the discrete case in Sec. II and then taking
the continuous limit (dx,dr,dm) → 0, where the probability
is replaced by a density, i.e., P (x,r,m) → ρ(x,r,m)dxdrdm.

Learning rate. From Eqs. (A2) and (A4) the learning rate (8)
becomes

ly =
∫

dx

∫
dr

∫
dmJr(x,r,m)

∂

∂r
ln ρ(x|r,m)

+
∫

dx

∫
dr

∫
dmJm(x,r,m)

∂

∂m
ln ρ(x|r,m), (A24)

where ρ(x|r,m) ≡ ρ(x,r,m)/[
∫

ρ(x̃,r,m)dx̃]. This expression
can also be found in Ref. [46], where the learning rate is
called information flow. Integration by parts and the steady
state property ∂xJx + ∂rJr + ∂mJm = 0 leads to the alternative
expression

ly = −
∫

dx

∫
dr

∫
dmJx(s,r,m)

∂

∂x
ln ρ(x|r,m). (A25)

Coarse-grained learning rate. The coarse-grained learning
rate in Eq. (23) becomes

lr = −
∫

dx

∫
drJr(x,r)

∂

∂r
ln ρ(x|r), (A26)

where Jr(x,r) ≡ ∫ dmJr(x,r,m), ρ(x,r) ≡ ∫ dmρ(x,r,m),
and ρ(x|r) ≡ ρ(x,r)/[

∫
ρ(x̃,r)dx̃].

Entropy production. The entropy production in Eq. (15) is
separated into two contributions

σy ≡ σr + σm, (A27)

as shown in Eqs. (43) and (45). In the continuous limit, using
Eqs (A2) and (A4), these contributions become

σr =
∫

dx

∫
dr

∫
dmJr(x,r)Fr(x,r) (A28)

and

σm =
∫

dx

∫
dr

∫
dmJm(x,r,m)Fm(r,m). (A29)

Coarse-grained entropy production. From Eqs. (A2), (A4),
and (A29), the coarse-grained entropy production (20)
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becomes

σ̃y =
∫

dr

∫
dm

[∫
Jr(x,r,m)dx

][∫
Fr(x̃,r)ρ(x̃|r,m)dx̃

]
+σm.

(A30)

The last term σm remains the same because m is not directly
influenced by the signal x.

Upper bound on transfer entropy rate. The upper bound of
the transfer entropy rate (18) becomes

T x→y = Dr

4

∫
dx

∫
dr

∫
dmρ(x,r,m)[Fr(x,r)2 − F̃r(r,m)2],

(A31)

where we used the averaged force

F̃r(r,m) ≡
∫

dxρ(x|r,m)Fr(x,r). (A32)

Since F̃m(r,m) = Fm(r,m), the contribution due to m is zero.
For T x→r defined in Eq. (33) we replace ρ(x|r,m) by ρ(x|r)
in Eqs. (A32) and (A31), which leads to the expression

T x→r = Dr

4

∫
dx

∫
drρ(x,r)[Fr(x,r)2 − F̃r(r)2],

(A33)
where F̃r(r) ≡ ∫ dxρ(x|r)Fr(x,r).

4. Gaussian linear processes

We now consider a linear Langevin equation of the form(
ẋt

ẏt

)
= −A

(
xt

yt

)
+ ξ t , (A34)

where 〈ξ tξ
�
t ′ 〉 = 2Dδ(t − t ′). The matrices A and D for the

bare sensor y = r are given by (50) and for the sensor with
a memory y = (r,m) they are given by (56). The steady state
solution of this Langevin equation is a multivariate normal
distribution ρ(x, y) with zero mean and covariance �, which is
the stationary solution of (49). Comparing Eqs. (A7) and (A34)
the drift term is

F(x, y) ≡ −D−1A
(

x

y

)
. (A35)

The probability current defined in Eq. (A4) is then given by

J(x, y) = −[A − D�−1]

(
x

y

)
ρ(x, y), (A36)

where �−1 is the inverse of �.
We define the matrix

� ≡
∫

dx

∫
d y J(x, y)F(x, y)�. (A37)

Equations (A35) and (A36) yield

� = [A − D�−1]�A�D−1 = A�A�D−1 − DA�D−1,

(A38)
where we used the fact that ρ(x, y) is a multivariate Gaussian
density. With this expression, from Eq. (A28) we obtain

σr = �rr = ωx
ν2

r

Br(1 + νr)
, (A39)

and from Eq. (A29) we obtain

σm = �mm = ωx
ν2

m

[
ν2

r + Br(1 + νm)(1 + νr)
]

Bm(1 + νm)(1 + νr)(νm + νr)
, (A40)

where E2
x ≡ Dx/ωx,νr ≡ ωr/ωx,Br ≡ Dr/Dx,νm ≡ ωm/ωx,

Bm ≡ Dm/Dx (as defined in Sec. IV).
The gradient of the log of the density reads

a(x, y) ≡ −
(

∂x

∂ y

)
ln ρ(x, y) = �−1

(
x

y

)
. (A41)

With the matrix

L ≡
∫

dx

∫
d y J(x, y)a(x, y)�

= −(A − D�−1)��−1 = −A + D�−1, (A42)

where we used Eqs. (A36) and (A41), the learning rate ly =
Lxx (A25) reads

ly = Lxx = ωx
[−1 + E2

x (�−1)xx
]
. (A43)

The 2 × 2 covariance matrix of (x,r) given by (51) yields

lr = Lxx = ωx
ν3

r

ν2
r + Br(1 + νr)2

. (A44)

For a the case with memory, where (x, y) = (x,r,m), the
explicit form of the learning rate (A43) is given by

ly = Lxx

= ωxν
2
r (νm + νr)

{
Brν

2
m(νmνr + 1) + νr

[
Bm(νm + 1)2(νm + νr) + ν2

mνr
]}

ν2
m

{
Brν2

r

[
ν2

m + νm(4νr + 2) + ν2
r + 2νr + 2

]+ B2
r (νm + 1)2(νr + 1)2 + ν4

r

}+ Bm(νm + 1)2
[
Br(νr + 1)2 + ν2

r

]
(νm + νr)2

.

(A45)

The upper bound on the transfer entropy rate (A31) reads

T x→y = ω2
r

4Dr

∫
dx

∫
dr

∫
dm ρ(x,r,m)[x2 − 〈x|r,m〉2], (A46)

where 〈x|r,m〉 ≡ ∫ ρ(x̃|r,m)x̃ dx̃ and we used Fr(x,r) = ωr(x − r)/Dr.

022116-12



SENSORY CAPACITY: AN INFORMATION THEORETICAL . . . PHYSICAL REVIEW E 93, 022116 (2016)

APPENDIX B: UNCERTAINTY FROM INSTANTANEOUS
STATE AND FROM TIME SERIES

We first consider a sensor with memory y = (r,m). The
covariance matrix, which is the stationary solution of (49)
with matrices given by (56), is written as

� =

⎛
⎜⎝


xx 
xr 
xm


xr 
rr 
rm


xm 
rm 
mm

⎞
⎟⎠ ≡

(
E2

x b�

b �̃

)
. (B1)

The linear estimate of x from y is x̂( y) ≡ c� y, where c is a
vector. Minimizing the variance

〈[x − x̂( y)]2〉 = E2
x − 2c�b + c��̃c, (B2)

which is minimal for c = �̃
−1

b, leads to the uncertainty

E2
x|y = E2

x − b��̃
−1

b = E2
x

(
1 − b��̃

−1
b

E2
x

)
. (B3)

Following the same procedure for a bare sensor with y = r ,
�̃ = 
rr, and b = 
xr = b�, the covariance matrix (51) leads
to an uncertainty

E2
x|r = E2

x

[
1 − ν3

r

ν3
r + ν2

r + Br(1 + νr)2

]
. (B4)

Comparing Eq. (55) with Eq. (B4) we obtain

T x→r = ωxν
2
r

4Br

E2
x|r
E2

x

. (B5)

Likewise, from Eq. (A46), with ρ(x,r,m) a multivariative
Gaussian with zero mean and covariance matrix (B1), and

Eq. (B3) we obtain

T x→y = ωxν
2
r

4Br

E2
x|y
E2

x

. (B6)

The best estimate x̂t that uses the time series of the
sensor {rt ′ }t ′�t to minimize the uncertainty Ê2

t ≡ 〈(xt − x̂t )2〉
is known as the Kalman-Bucy filter [45,68]. For the linear
Gaussian process from (47) the best estimate x̂t satisfies
〈rt ′ x̂t 〉 = 〈rt ′xt 〉 for all t ′ � t and 〈x̂t (xt − x̂t )〉 = 0 (see [68]).
It can be shown that the minimal error satisfies the Riccati
equation, which reads [45,68]

d

dt
Ê2

t = − ω2
r

2Dr
Ê4

t − 2ωxÊ2
t + 2Dx. (B7)

The stationary solution of this equation gives the uncertainty
about the signal given the sensor trajectory

E2
x|rtraj

= E2
x

⎛
⎝ 2

1 +
√

1 + ν2
r

Br

⎞
⎠. (B8)

Comparing with Eq. (53) we obtain

Tx→r = ωxν
2
r

4Br

E2
x|rtraj

E2
x

. (B9)

The simple relations (B5), (B6), and (B9) are valid for our
model system that corresponds to a linear Gaussian process.
Since for C = 1 the transfer entropy rate equals its upper
bound, for our model system a maximal sensory capacity C =
1 implies Ex|rtraj = Ex|y. In this case the linear estimate x̂( y) =
c� y = b��̃

−1
y from Eq. (B2) coincides with the estimate

from the Kalman-Bucy filter x̂t , which is similar to the finding
in Ref. [45] for optimal feedback cooling.
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