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Derivation of a one-way radiative transfer equation in random media
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75205 Paris Cedex 13, France

(Received 22 October 2015; revised manuscript received 5 January 2016; published 9 February 2016)

We derive from first principles a one-way radiative transfer equation for the wave intensity resolved over
directions (Wigner transform of the wave field) in random media. It is an initial value problem with excitation
from a source which emits waves in a preferred, forward direction. The equation is derived in a regime with
small random fluctuations of the wave speed but long distances of propagation with respect to the wavelength,
so that cumulative scattering is significant. The correlation length of the medium and the scale of the support
of the source are slightly larger than the wavelength, and the waves propagate in a wide cone with an opening
angle less than 180◦, so that the backward and evanescent waves are negligible. The scattering regime is a bridge
between that of radiative transfer, where the waves propagate in all directions, and the paraxial regime, where the
waves propagate in a narrow angular cone. We connect the one-way radiative transfer equation with the equations
satisfied by the Wigner transform of the wave field in these regimes.
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I. INTRODUCTION

Light propagation in scattering media can be modeled by
a boundary value problem for the radiative transfer equation
[1–3]. The light intensity resolved over directions, also known
as the Wigner transform of the wave field, satisfies this equa-
tion with incoming boundary conditions on the illuminated part
of the boundary, and outgoing conditions on the remainder of
the boundary. The problem is of interest in applications such
as optical tomography, where structural variations in tissue are
to be determined from measurements of scattered light [4].

The derivation of the radiative transfer equation from the
wave equation is a fundamental challenge. Existing heuristic
derivations from the wave equation in random media, obtained
when the wavelength, the correlation length of the medium,
and the scale of variation of the source are of the same
order, and much smaller than the propagation distance, use
either multiscale asymptotic analysis [2] or diagrammatic
perturbation theory [5,6]. However, as discussed by Mandel
and Wolf in their monography [7], or more recently in the
tutorial [8], there is no satisfactory or rigorous derivation
of the macroscopic theory of radiative transfer from the
microscopic theory of wave propagation in random media,
except in some special cases. Therefore, the rigorous derivation
of a radiative-transfer-like equation from the wave equation,
beyond the special cases mentioned in these references, would
be of interest for the radiative transfer community.

The radiative transfer equation poses formidable compu-
tational challenges in optical tomography, where repeated
solutions of the equation are needed to solve the inverse
problem with optimization [3,4]. This is why a simplified
diffusion model is often used [4], where the medium is
assumed optically thick, so that light is diffusive due to very
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strong scattering. This leads to considerable simplification,
but may produce anomalies in the reconstructed images [9]. A
recent study [10] shows that in mesoscopic scattering regimes,
where light penetrates to about 1 cm depth in tissue [11],
scattering is forward peaked and a simpler one-way radiative
transport model can be used, where the intensity satisfies an
initial value problem. The one-way radiative transfer equation
is obtained in [10] from the standard radiative transfer equation
by simply ignoring the intensity in the backward directions.

Our first goal in this paper is to derive rigorously the one-
way radiative transfer equation, from first principles, starting
from the wave equation in random media. The second goal
is to bridge between the mesoscopic scattering regime, the
standard radiative transfer regime on one side, and the paraxial
approximation regime on the other side. We also connect to
the diffusion approximation.

To derive the one-way transfer equation we consider waves
in media with small random fluctuations of the wave speed,
at long propagation distances with respect to the wavelength,
where cumulative scattering effects are significant. The typical
size of the inhomogeneities, measured by the correlation
length, and the scale of variation of the source are slightly
larger than the wavelength, so that the waves propagate in an
angular cone with axis along a preferred forward direction
called range. We analyze the propagation in this regime using
a plane wave decomposition of the field, with amplitudes that
are range dependent random fields. They satisfy a system
of coupled stochastic differential equations driven by the
random fluctuations of the wave speed, and can be analyzed
in detail with probabilistic limit theorems. Consequently, we
can quantify the loss of coherence of the wave field, i.e.,
its randomization due to scattering, and derive the radiative
transfer equation satisfied by the Wigner transform of the
wave amplitudes. The result extends the model proposed in
[10], and defines the differential scattering cross section and
the total scattering cross section in terms of the autocovariance
of the fluctuations of the wave speed.
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Once we derive the one-way transfer equation we show that
it is equivalent to the standard radiative transfer equation [2]
in regimes with negligible backscattering. We also connect
to the diffusion approximation theory, by considering the
high-frequency limit of the equation. Transport in the paraxial
approximation, which applies to waves propagating in a narrow
angle cone along the range axis, is analyzed in [12], using
the Itô-Schrödinger model of wave propagation. Here we
rediscover the results starting from the one-way radiative
transfer equation, in the high-frequency limit and for a large
support of the source.

The paper is organized as follows: We begin in Sec. II
with the model of the random medium and the formulation
of the problem. The main results are stated in Sec. III. We
describe the mean wave field and the randomization of the
components of the wave quantified by the scattering mean free
paths. We also state the one-way radiative transfer equation.
The connection to the equation in [10] is in Sec. III A, and
to the standard radiative transfer theory in Sec. III B. The
connection to the paraxial approximation is in Sec. III C. The
derivation of the results is in Sec. IV. We begin with the scaling
regime in Sec. IV A, and then give the wave decomposition in
Sec. IV B. The probabilistic limit of the wave amplitudes is
studied in Sec. IV C and the Appendix A. We use it to describe
the evolution of the mean field in Sec. IV D and to derive the
one-way radiative transfer equation for the Wigner transform
in Sec. IV E. The high-frequency limit which leads to either
the diffusion approximation or the paraxial approximation is
studied in Sec. V. We end with a summary in Sec. VI.

II. FORMULATION OF THE PROBLEM

The time-harmonic field u(�x) satisfies the wave equation:

ω2

c2(�x)
u(�x) + ��xu(�x) = −F

( x
X

)
δ(z), (1)

for �x = (x,z) ∈ Rd+1 and frequency ω ∈ R. Here ��x is the
Laplacian operator inRd+1 and since the frequency is constant,
we suppress ω from the arguments of u and F . The excitation is
due to a localized source F which emits waves in the direction
z, called range. The function F depends on the dimensionless
vector r ∈ Rd , and its magnitude is negligible for |r| > O(1),
so that X scales the spatial support of the source.

The waves propagate in a linear medium with speed of
propagation c(�x) satisfying

1

c2(�x)
= 1

c2
o

[
1 + 1(0,L)(z) αν

( �x
�

)]
. (2)

It is a random perturbation of the constant speed co, modeled
by the random process ν. The perturbation extends over the
range interval z ∈ (0,L), as given by the indicator function
1(0,L)(z). We assume that ν(�r) is a dimensionless stationary
random process of dimensionless argument �r ∈ Rd+1, with
zero mean E[ν(�r)] = 0 and autocovariance

E[ν(�r)ν(�r ′)] = R(�r − �r ′), ∀ �r,�r ′ ∈ Rd+1.

Moreover, ν is bounded and R is integrable, with Fourier
transform, the power spectral density

R̃(�q) =
∫
Rd+1

d�r R(�r)e−i�q·�r , (3)

that is either compactly supported in a ball of radius O(1) in
Rd+1, or is negligible outside this ball. The autocovariance is
normalized by∫

Rd+1
d�r R(�r) = O(1), R(0) = O(1).

Then, the length scale � is the correlation length and the
positive and small dimensionless parameter α quantifies the
typical amplitude (standard deviation) of the fluctuations.

The problem is to characterize the wave field u(�x) in the
scaling regime

λ < � ∼ X � L, α ∼ (λ/L)1/2 � 1. (4)

Here λ = 2πco/ω is the wavelength and the reference length
scale is L, which is of the order of the distance of propagation.
We are particularly interested in the coherent (mean) field
E[u(�x)] and the intensity resolved over directions of propaga-
tion, the mean Wigner transform of u(�x). Its evolution in z is
governed by the one-way radiative transfer equation that we
derive.

III. MAIN RESULTS

Because the interaction of the waves with the random
medium depends on the direction of propagation, we decom-
pose u(�x) over plane waves, using the Fourier transform with
respect to the transverse coordinates x ∈ Rd of �x = (x,z),

û(κ,z) =
∫
Rd

dx u(x,z)e−ikκ ·x . (5)

Here κ ∈ Rd is the normalized transverse wave vector, and
we suppressed the wave number k = ω/co in the argument
of û. We show in Sec. IV that in the scaling regime (4),
the field û(κ,z) consists of forward propagating waves with
longitudinal wave number kβ(κ), where

β(κ) =
√

1 − |κ |2, |κ | < 1. (6)

The amplitudes of these waves (modes) are denoted by a(κ,z).
They are complex-valued z-dependent random fields which
model wave scattering in the random medium.

The wave field u(�x) is given by the Fourier synthesis of the
modes, the plane waves with wave vector k�κ = k(κ,β(κ)),

u(�x) =
∫

|κ |<1

d(kκ)

(2π )d
a(κ,z)

β1/2(κ)
eik�κ ·�x, �x = (x,z), (7)

where we have used the notation d(kκ) = kddκ for the in-
finitesimal volume inRd . The mode amplitudes are normalized
by the factors β1/2(κ) in order to simplify the formulas that
follow [13]. In the scaling regime (4) the mode amplitudes
form a Markov process whose statistical moments can be
characterized explicitly, as explained in Sec. IV C. Here we
describe the expectation of a(κ,z), which defines the coherent
field, and its second moments, which define the mean Wigner
transform of u(�x).
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The mean mode amplitudes are

E[a(κ,z)] = ao(κ) exp[Q(κ)z],

where ao(κ) are the amplitudes in the homogeneous medium,
defined in Eq. (36) by the source excitation. The effect of the
random medium is in the complex exponent

Q(κ) = −k2α2�d+1

4

∫
|κ ′|<1

d(kκ ′)
(2π )d

1

β(κ)β(κ ′)

∫ ∞

0
dζ

×
∫
Rd

d r R(r,ζ )e−ik�(κ−κ ′,β(κ)−β(κ ′))·(r,ζ ). (8)

Since R is even, the real part of Q(κ) is determined by the
power spectral density R̃ defined in (3), which is non-negative
by Bochner’s theorem [14,15]. Thus Re[Q(κ)] < 0, and the
mean amplitudes decay exponentially in z, with the decay rate

1

S(κ)
= −Re[Q(κ)]. (9)

The length S(κ) is the scattering mean free path. By choosing
the magnitude α of the random fluctuations as in (4), we have
L ∼ S(κ), so the decay with z is significant in our scaling
regime. It is the manifestation of the randomization of the
wave, due to scattering in the medium.

The strength of the random fluctuations of the mode ampli-
tudes is described by the energy density (Wigner transform)

W(κ,x,z) =
∫

d(kq)

(2π )d
exp[ikq · (∇β(κ)z + x)]

× E

[
a
(
κ + q

2
,z

)
a
(
κ − q

2
,z

)]
, (10)

where the bar denotes complex conjugate and the integral
is over all q ∈ Rd such that |κ ± q/2| < 1. The Wigner
transform satisfies the transport equation

∂zW(κ,x,z) − ∇β(κ) · ∇xW(κ,x,z)

=
∫

|κ ′|<1

d(kκ ′)
(2π )d

Q(κ,κ ′)[W(κ ′,x,z) − W(κ,x,z)], (11)

for z > 0, with differential scattering cross section

Q(κ,κ ′) = k2α2�d+1

4β(κ)β(κ ′)
R̃(k�(κ − κ ′),k�[β(κ) − β(κ ′)]). (12)

The total scattering cross section is


(κ) =
∫

|κ ′|<1

d(kκ ′)
(2π )d

Q(κ,κ ′) = −2Re[Q(κ)] = 2

S(κ)
.

(13)

Equation (11) looks like the radiative transfer equation, except
that it is an initial value problem in z, with W(κ,x,z = 0)
given by the Wigner transform of mode amplitudes ao(κ) in
the homogeneous medium. As we show in Sec. III A, it is in
fact a general form of the one-way radiative transfer equation
introduced recently in the biomedical imaging literature [10].
We also establish in Sec. III B the connection between Eq. (11)
and the standard radiative transfer theory: We show that
Eq. (11) can be obtained heuristically from the standard
radiative transfer equation by applying a forward scattering
approximation. Such a calculation is heuristic, because the

standard radiative transfer equation has no rigorous derivation
[8], whereas Eq. (11) is derived here from first principles. The
connection to the Itô-Schrödinger model is in Sec. III C: We
show that Eq. (11) can be reduced to the transport equation
in the paraxial geometry by taking the limit of very small
angles. Therefore Eq. (11) can be seen as a bridge between the
radiative transfer and paraxial approximation regimes.

A. Connection with the one-way radiative transfer equation

The one-way radiative transfer equation was proposed
recently in [10] for the application of diffusion optical
tomography in forward-peaked scattering media. The equation
is stated in [10] in two dimensions (d + 1 = 2),

sin θ∂zI + cos θ∂xI = μs

∫ π

0
dθ ′p(θ − θ ′)[I (θ ′) − I (θ )],

(14)

for I (θ,x,z) the light intensity at position (x,z) in the direction
(cos θ, sin θ ), with θ ∈ [0,π ]. The coefficient μs is the total
scattering cross section and the scattering phase function
p(θ − θ ′) is chosen of the Henyey-Greenstein form [10,16],

p(θ − θ ′) = 1

2π

1 − g2

1 + g2 − 2g cos(θ − θ ′)
, (15)

satisfying
∫ 2π

0 dθp(θ ) = 1. Parameter g ∈ (0,1) is the
anisotropy factor and it is argued that the one-way radiative
transfer equation is valid when g ∼ 1, so scattering is forward
peaked.

The light intensity I is in fact the Wigner transform
W introduced in (10), with κ = cos θ ∈ (−1,1). Indeed, in
statistically isotropic media, i.e., R(�x) = Riso(|�x|), we obtain
from (11) (multiplied by sin θ ), using that β(κ) = sin θ and
∇β(κ) = − cot θ ,

sin θ∂zW + cos θ∂xW

= k3�2α2

4

∫ π

0
dθ ′ R̆iso(k�

√
2[1 − cos(θ − θ ′)])

× [W(θ ′) − W(θ )], (16)

with

R̆iso(q) =
∫ ∞

0
ds sRiso(s)J0(qs). (17)

This is exactly (14) with the identification:

μsp(θ − θ ′) = k3�2α2

4
R̆iso(k�

√
2[1 − cos(θ − θ ′)]). (18)

The scattering phase function (15) is a particular case of (18),
corresponding to a Lorentzian for R̆iso, that is,

R̆iso(q) = R̆o

1 + q2
. (19)

This corresponds [through (17) and [[17], formula 6.521.2]]
to an autocovariance function of the form Riso(s) = R̆oK0(s),
where K0 is the Bessel function of the second kind of order
zero. This is the zeroth von Kármán correlation function [18]. It
has a logarithmic divergence at s = 0, which can be regularized
by introducing an ultraviolet cutoff in (19). By substituting (15)
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and (19) into (18) we obtain the anisotropy parameter and total
scattering cross section

g = 1 + 1

2(k�)2
− 1

k�

√
1 + 1

4(k�)2
,

μs =
(

1 − g

1 + g

)
πk3�2α2R̆o

2
.

The validity condition g ∼ 1 in [10] is equivalent to λ < �.
This completes the proof that (14) is a special case of our
Eq. (11). It justifies the model (14), as our results in this paper
show that it can be rigorously derived from the wave equation
in random media, in the scaling regime (4).

B. Connection to the radiative transfer theory

To connect our transport equation (11) to the standard
radiative transfer theory in random media [2,19,20], we let
d + 1 = 3 and adhere to the notation in [2]. Following [[2],
Eq. (3.42)], we define

f ( �K,�x) = π

[
− i

k

�K
| �K|

· �∇�xu(�x) + u(�x)

]
,

where we use a different constant of proportionality than in
[2], to simplify the relation in (24). The Wigner transform
W ( �K,�x) introduced in [[2], Eq. (3.41)] is

W ( �K,�x) =
∫
R3

d �y
(2π )3

f
( �K,�x − �y

2

)
f

( �K,�x + �y
2

)
ei �K·�y,

(20)

and satisfies the transport equation [[2], Eq. (4.38)]

�∇ �Kω( �K) · �∇�xW ( �K,�x)

=
∫
R3

d �K′
σ ( �K, �K′

)W ( �K′
,�x) − 
( �K)W ( �K,�x), (21)

with dispersion relation ω( �K) = co| �K|, and integral kernel,
the differential scattering cross section,

σ ( �K, �K′
)

= πc2
ok

2�3α2

2(2π )3
R̃[�( �K − �K′

)]δ[ω( �K) − ω( �K′
)]. (22)

The scalar 
( �K) is the total scattering cross section


( �K) =
∫
R3

d �K′
σ ( �K, �K′

). (23)

Substituting (7) into (20), we obtain after some algebraic
manipulations that

W ( �K,�x) = δ[Kz − kβ(K/k)]

β(K/k)
W(K/k,x,z), (24)

withW the Wigner transform (10). The Dirac factor in Eq. (24)
expresses the fact that in our scaling regime, in which the wave
field has the form (7), the forward scattering approximation is
valid and the intensity resolved over directions of propagation
is supported on the wave vectors K with positive Kz. Next
we rewrite the three terms of (21) to show that the equation is
equivalent to (11).

(1) Since (24) gives that W ( �K,�x) is supported at vectors �K
of the form �K = k�κ , with �κ = (κ,β(κ)), the operator on the
left-hand side of (21) is

�∇ �Kω( �K) · �∇�x = coβ(κ)[∂z − ∇β(κ) · ∇x],

and we obtain that

�∇ �Kω( �K) · �∇�xW ( �K,�x)

= coδ[Kz − kβ(K/k)][∂z − ∇β(K/k) · ∇x]

× W(K/k,x,z). (25)

(2) The integral kernel in (21) is supported at �K′ = k�κ ′,
with �κ ′ = (κ ′,β(κ ′)), by (24), so the Dirac distribution in (22)
is

δ[ω( �K) − ω(k�κ ′)] = δ[Kz − kβ(K/k)]

coβ(K/k)
.

Thus, we have∫
R3

d �K′
σ ( �K, �K′

)W ( �K′
,�x)

= cok
2�3α2

4
δ[Kz − kβ(K/k)]

∫
|κ ′|<1

d(kκ ′)
(2π )2

× R̃
(
�(K − kκ ′),k�[β(K/k) − β(κ ′)]

)
β(K/k)β(κ ′)

W(κ ′,x,z),

(26)

where |κ ′| < 1 because we have only propagating waves.
(3) From (23) we find that


( �K) = c2
ok

2�3α2

4(2π )2

∫
R3

d �K′
δ[ω( �K′

) − ω( �K)]

× R̃[�( �K − �K′
)],

so for �K = k(κ,β(κ)),


( �K)W ( �K,�x)

= cok
2�3α2

4
δ[Kz − kβ(K/k)]

∫
|κ ′|<1

d(kκ ′)
(2π )2

× R̃
(
�(K − kκ ′),�k[β(K/k) − β(κ ′)]

)
β(K/k)β(κ ′)

W(K/k,x,z).

(27)

Finally, substituting (25), (26), and (27) into the transport
equation (21) satisfied by W , we obtain that the Wigner
transform W satisfies the transport equation (11). This
completes the proof that Eq. (11) can be obtained from the
standard radiative transfer equation (21) by applying a forward
scattering approximation. However, as stated before, there
is no rigorous derivation of the standard radiative transfer
equation from the wave equation in random media. In this
paper we obtain a rigorous derivation of Eq. (11) from the
wave equation in random media, in the scaling regime (4).
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C. Connection to the paraxial theory

It is shown in [12] that if λ � � � L so that the medium
Fresnel number �2/(λL) ∼ 1, and if the standard deviation
α of the fluctuations is small so that α2 ∼ λ2/(�L), then the
inverse Fourier transform of the mode amplitudes, denoted by
apa(κ,z),

ǎpa(x,z) =
∫

|κ |<1

d(kκ)

(2π )d
apa(κ,z)eikκ ·x,

satisfies the random paraxial wave equation (or Itô-
Schrödinger model) [12]

dǎpa(x,z) = i

2k
�x ǎpa(x,z)dz + ik

2
ǎpa(x,z) ◦ dB(x,z).

(28)

Here B is the Brownian field, i.e., a Gaussian process with
mean zero and covariance

E[B(x,z)B(x′,z′)] = α2� min(z,z′)C
(

x − x′

�

)
,

C(r) =
∫ ∞

−∞
dζ R(r,ζ ).

The symbol ◦ stands for the Stratonovich integral. This
integral is the suitable form of stochastic integral for the Itô-
Schrödinger model as shown in [12], and as could be predicted
by the general Wong-Zakai theorem [21]. Alternatively, we can
characterize apa(κ,z) as the solution of

dǎpa(x,z) = i

2k
�x ǎpa(x,z)dz + ik

2
ǎpa(x,z)dB(x,z)

− k2�α2C(0)

8
ǎpa(x,z)dz,

where the stochastic integral is now understood in the usual
Itô’s form.

The derivation of (28) from the wave equation in random
media, given in [12], involves two main steps: first show that
the forward scattering approximation is valid; second show
that the effect of the fluctuations of the random medium on the
wave field can be captured in distribution by a white noise (in
z) model.

Using the Itô-Schrödinger model (28) we find by Itô’s
formula that the mean field Ǎpa(x,z) = E[ǎpa(x,z)] satisfies

∂zǍpa(x,z) = i

2k
�xǍpa(x,z) − k2�α2C(0)

8
Ǎpa(x,z).

It decays with z on the scale

Spa = 8

k2�α2C(0)
= 8

k2�α2
∫ ∞
−∞ dζ R(0,ζ )

,

which corresponds to the scattering mean free path S(κ)
defined by (8) and (9), for λ � � and |κ | = O(λ/�).

The Wigner transform is

Wpa(K,x,z) =
∫
Rd

d y eiK· yE

[
ǎpa

(
x − y

2
,z

)
ǎpa

(
x + y

2
,z

)]

=
∫
Rd

d(kq)

(2π )d
eikq·xE

[
apa

(
K

k
+ q

2
,z

)
apa

(
K

k
− q

2
,z

)]
,

which corresponds to (10) for K = kκ and |κ | = O(λ/�).
Using Itô’s formula it is shown in [12] to satisfy the transport
equation

∂zWpa + 1

k
K · ∇xWpa

= k2�d+1α2

4

∫
Rd

dK′

(2π )d
R̃(�(K − K′),0)

× [Wpa(K′) − Wpa(K)], (29)

with differential scattering cross section

Qpa(K,K′) = k2�d+1α2

4
R̃(�(K − K′),0)

corresponding to (12) for K = kκ , K′ = kκ ′, and |κ |,|κ ′| =
O(λ/�).

This establishes the connection between Eq. (11) and the
transport equation (29) derived in [12]. Together with the result
in Sec. III B it completes the proof that Eq. (11) is a bridge
between the radiative transfer and paraxial approximation
regimes. We end the section with the note that, as shown for
instance in [[1], Chapter 13], the radiative transfer equation
in the white-noise paraxial regime (29) can also be derived
heuristically from the standard radiative transfer equation in
the “approximation of large particles,” or equivalently in the
“small angle approximation,” which corresponds to a random
medium with large correlation radius.

IV. DERIVATION OF RESULTS

To derive the transport equation (11) from the wave
equation, we use multiscale analysis and probabilistic limit
theorems. The asymptotic regime of separation of scales (4) is
defined in terms of three small dimensionless parameters

ε = λ

L
, γ = λ

�
, η = λ

X
, (30)

ordered as
0 < ε � γ ∼ η < 1,

and the standard deviation α of the fluctuations of the
random medium is of order ε1/2. We begin with the wave
decomposition, and obtain a stochastic system of differential
equations satisfied by the mode amplitudes. We consider both
forward and backward going waves, but then show that we can
neglect the backward waves in the limit ε → 0 (Sec. IV C).
The ε → 0 limit of the mode amplitudes defines the Markov
process whose expectation and Wigner transform are described
in Sec. III.

A. Scaled equation

We let L be the reference length scale, which is similar to
the distance of propagation, and introduce the scaled length
variables

x′ = x/(εL),

z′ = z/L,

L′ = L/L = 1,

�′ = �/L = ε/γ,

X′ = X/L = ε/η.
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The scaled standard deviation is α′ = α/ε1/2. The scaled wave
number is k′ = kLε = 2π .

Let us denote the wave field by uε. Substituting in (1)
and dropping all the primes, as all the variables are scaled
henceforth, we obtain{

∂2
z + 1

ε2
�x + k2

ε2

[
1 + ε1/2αν

(
γ x,

γ z

ε

)]}
uε(x,z)

= −1

ε
F (ηx)δ(z), (31)

for 0 � z � L. At ranges z < 0 and z > L the equations are
simpler, as the term involving the process ν vanishes. Since
the wave field depends linearly on the source, we scaled F by
1/ε to obtain an order one result in the limit ε → 0.

B. Wave decomposition

We decompose the field uε(x,z) in plane waves using the
Fourier transform with respect to x ∈ Rd , as in (5):

ûε(κ,z) =
∫
Rd

dx uε(x,z)e−ikκ ·x . (32)

The transformed field ûε(κ,z) is a superposition of forward and
backward going waves (modes) along z, as explained next. To
ease the explanation we begin with the reference case in the
homogeneous medium, and then consider the random medium.

1. Homogeneous media

The transformed field in homogeneous media ûε
o(κ,z)

satisfies the ordinary differential equation

∂2
z ûε

o(κ,z) + k2

ε2
β(κ)2ûε

o(κ,z) = − 1

εηd
F̂

(
kκ

η

)
δ(z), (33)

with β(κ) defined in (6) and F̂ the Fourier transform of F ,

F̂ (q) =
∫
Rd

F (r)e−iq·rd r. (34)

The solution is outgoing and bounded away from the source,
and it is given explicitly, for z �= 0, by

ûε
o(κ,z) = ao(κ)

β1/2(κ)
e(ik/ε)β(κ)z1(0,∞)(z)

+ bo(κ)

β1/2(κ)
e−(ik/ε)β(κ)z1(−∞,0)(z). (35)

Thus, the wave field

uε
o(x,z) =

∫
|κ |<1

d(kκ)

(2π )d
ûε

o(κ,z)eikκ ·x

is a synthesis of plane waves with wave vectors k(κ, ± β(κ)).
The plus sign corresponds to forward going waves, and the
negative sign to backward going waves. The amplitudes are
determined by the jump conditions at the source

ûε
o(κ,0+) − ûε

o(κ,0−) = 0,

∂zû
ε
o(κ,0+) − ∂zû

ε
o(κ,0−) = − 1

εηd
F̂

(
kκ

η

)
,

which gives

ao(κ) = bo(κ) = i

2kηdβ1/2(κ)
F̂

(
kκ

η

)
. (36)

The radius of the support of F̂ (q) is 1, so the scaling
parameter η controls the support in κ of the wave modes
generated by the source, i.e., the opening angle of the
initial wave beam. Consistent with (4) and (30), we assume
henceforth that

η

k
< 1, (37)

so that in (36) we have |κ | � η/k < 1. Then β(κ) defined by
(6) is real valued, and there are no evanescent waves in the
decomposition (35).

2. Random media

The field ûε(κ,z) in the random medium satisfies the
equation

∂2
z ûε + k2

ε2
β(κ)2ûε + 1(0,L)(z)Mεûε = − 1

εηd
F̂

(
kκ

η

)
δ(z),

(38)

derived from (31), with radiation conditions at z < 0 and at
z > L, and source conditions at z = 0. The leading O(1/ε2)
term in the right-hand side is the same as in the homogeneous
medium, so we can use a similar wave decomposition to that
in Sec. IV B 1. The random perturbation is in the operator Mε

defined by

Mεûε(κ,z) = ikα

ε1/2γ d

∫
d(kκ ′)
(2π )d

ν̂
(

k(κ−κ ′)
γ

,
γ z

ε

)
[β(κ)β(κ ′)]1/2

ûε(κ ′,z),

where ν̂ is the Fourier transform of ν with respect to the first
argument in Rd as in (34).

The wave decomposition is

aε(κ,z) = 1

2

(
β(κ)1/2ûε(κ,z) + ε

ikβ(κ)1/2
∂zû

ε(κ,z)

)
× e−(ik/ε)β(κ)z,

bε(κ,z) = 1

2

(
β(κ)1/2ûε(κ,z) − ε

ikβ(κ)1/2
∂zû

ε(κ,z)

)
× e(ik/ε)β(κ)z,

so that we can write as in the homogeneous medium

ûε(κ,z) = 1

β(κ)1/2

(
aε(κ,z)e(ik/ε)β(κ)z + bε(κ,z)e−(ik/ε)β(κ)z

)
,

(39)

and

∂zû
ε(κ,z) = ikβ(κ)1/2

ε
(aε(κ,z)e(ik/ε)β(κ)z

− bε(κ,z)e−(ik/ε)β(κ)z). (40)

The forward and backward going wave amplitudes aε(κ,z)
and bε(κ,z) are no longer constant, but random fields due
to scattering in the range interval z ∈ (0,L). The medium is
homogeneous outside this interval and we have the radiation
conditions

aε(κ,z) = 0 if z < 0 and bε(κ,z) = 0 if z � L. (41)

Moreover, aε(κ,z) = aε(κ,L) for z > L, and bε(κ,z) =
bε(κ,0−) for z < 0.
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The jump conditions at the source are as in Sec. IV B 1, and
give
aε(κ,0+) = ao(κ) and bε(κ,0−) = bo(κ) + bε(κ,0+).

(42)

As expected, the forward going waves leaving the source
are the same as in the homogeneous medium, because the
scattering effects in the random medium manifest only at long
distances of propagation. The waves at z < 0 are given by
the superposition of those emitted by the source, modeled by
bo(κ), and the waves backscattered by the random medium,
modeled by bε(κ,0+).

To determine the amplitudes in the random medium, we
substitute equations (39) and (40) into (38). We obtain that

∂z

(
aε(κ,z)
bε(κ,z)

)
= ikα

2γ dε1/2

∫
d(kκ ′)
(2π )d

ν̂

(
k(κ − κ ′)

γ
,
γ z

ε

)
× �

(
κ,κ ′,

z

ε

)(
aε(κ ′,z)
bε(κ ′,z)

)
(43)

in z ∈ (0,L), with boundary conditions (41) and (42). We
are interested in the propagating waves, corresponding to
condition |κ | < 1 in (43), and we explain in Sec. IV C that
in our regime the evanescent waves may be neglected. The
2 × 2 complex matrices

�(κ,κ ′,ζ ) =
(

�aa(κ,κ ′,ζ ) �ab(κ,κ ′,ζ )
�ba(κ,κ ′,ζ ) �bb(κ,κ ′,ζ )

)
, (44)

couple the mode amplitudes. The superscripts on their entries
indicate which types of waves they couple. We have

�aa(κ,κ ′,ζ ) = eik[β(κ ′)−β(κ)]ζ

β1/2(κ)β1/2(κ ′)
,

�ab(κ,κ ′,ζ ) = e−ik[β(κ ′)+β(κ)]ζ

β1/2(κ)β1/2(κ ′)
,

(45)
�bb(κ,κ ′,ζ ) = − �aa(κ,κ ′,ζ ),

�ba(κ,κ ′,ζ ) = − �ab(κ,κ ′,ζ ),

where the bar denotes complex conjugate, and substituting in
(43) we obtain the energy conservation identity∫

|κ |<1

d(kκ)

(2π )d
[|aε(κ,z)|2 − |bε(κ,z)|2] = constant in z.

C. The Markov limit

Here we describe the ε → 0 limit of the solution of (43) with
boundary conditions (41) and (42). We begin in Sec. IV C 1
by writing the solution in terms of propagator matrices, and
show in Sec. IV C 2 that we can neglect the backward and
evanescent waves. The limit of the forward going amplitudes
is in Sec. IV C 3.

1. Propagator matrices

The 2 × 2 propagator matrices Pε(κ,z; κo) are solutions of

∂zPε(κ,z; κo) = ikα

2γ dε1/2

∫
|κ ′|<1

d(kκ ′)
(2π )d

ν̂

(
k(κ − κ ′)

γ
,
γ z

ε

)
× �

(
κ,κ ′,

z

ε

)
Pε(κ ′,z; κo), (46)

for z > 0, with initial condition Pε(κ,z = 0; κo) = δ(κ − κo)I,
where I is the 2 × 2 identity matrix. They allow us to write the
solution of (43) as(

aε(κ,z)
bε(κ,z)

)
=

∫
|κo|<1

dκo Pε(κ,z; κo)

(
ao(κo)

bε(κo,0)

)
, (47)

for all z > 0. In particular, when z = L, the backward going
amplitude bε(κ,L) in the left-hand side vanishes by (41).

2. The forward scattering approximation

Equation (47) shows that the interaction of the forward and
backward going wave amplitudes aε and bε depends on the
coupling of the entries of the propagator. The ε → 0 limit of
the propagator

Pε(κ,z; κo) =
(

P aa,ε(κ,z; κo) P ab,ε(κ,z; κo)
P ba,ε(κ,z; κo) P bb,ε(κ,z; κo)

)
can be obtained and identified as a Markov process that satisfies
a system of stochastic differential equations. We refer to
[22,23] and the Appendix A for details. Here we state the
results.

The stochastic differential equations for the limit entries
of P ab,ε(κ,z; κo) and P ba,ε(κ,z; κo) are coupled to the limit
entries of P aa,ε(κ ′,z; κo) and P bb,ε(κ ′,z; κo) through the
coefficients

R̃

(
k(�κ − �κ ′−)

γ

)
= R̃

(
k(κ − κ ′)

γ
,
k[β(κ) + β(κ ′)]

γ

)
,

where R̃ is the power spectral density (3) and �κ = (κ,β(κ))
and �κ− = (κ, − β(κ)) are the wave vectors of the forward and
backward going waves. The second argument in these coeffi-
cients comes from the phase factors ±k[β(κ) + β(κ ′)]ζ in the
matrices �ab and �ba . The coupling between P aa,ε(κ,z; κo)
and P aa,ε(κ ′,z; κo) is through the coefficients

R̃

(
k(�κ − �κ ′)

γ

)
= R̃

(
k(κ − κ ′)

γ
,
k[β(κ) − β(κ ′)]

γ

)
,

because the phase factors in matrices �aa are given by
k[β(κ) − β(κ ′)]ζ . The matrices �bb have the same factors so
the same coefficients couple the entries P bb,ε.

We conclude that the coupling of the entries of the
propagator and therefore the interaction of the waves depends
on the decay of the power spectral density R̃. We now
explain that when the mode amplitudes are supported initially
at |κ | � η/k < 1, and γ is as in (30), we can neglect the
backward going waves over distances of propagation of
order L.

The power spectral density R̃(�q) is negligible when |�q| > 1,
so R̃(k�κ/γ ) is negligible when |�κ | > γ/k. From (4) and (30),
it is possible to choose some κ

M
∈ (η/k,1) such that γ satisfies

kβ(κM )

γ
> 1. (48)

Then, for all κ ′ satisfying |κ ′| < κ
M

, the coupling coefficients
between P aa,ε and P ab,ε vanish because

k|�κ − �κ ′−|
γ

� k[β(κ) + β(κ ′)]
γ

� kβ(κM )

γ
> 1,

022115-7



LILIANA BORCEA AND JOSSELIN GARNIER PHYSICAL REVIEW E 93, 022115 (2016)

and R̃[k(�κ − �κ ′−)/γ ] is negligible. This implies the asymp-
totic decoupling of aε and bε, and due to the homogeneous
boundary condition bε(κ,L) = 0, we conclude that we can
neglect the backward going waves in the limit ε → 0. The
forward going amplitudes interact with each other, because the
coupling coefficients of the entries P aa,ε of the propagator are
large for at least a subset of transverse wave vectors satisfying
|κ |,|κ ′| � κ

M
and

|κ − κ ′|, |β(κ) − β(κ ′)| <
γ

k
.

Due to this coupling there is diffusion of energy from the waves
emitted by the source with |κ | < η/k, to waves at larger values
of |κ |. This is why we take κ

M
> η/k in (48). By assuming that

aε(κ,z) are supported at |κ | � κ
M

< 1 we essentially restrict
z by ZM , so that the energy does not diffuse to waves with
|κ | > κ

M
for z � Z

M
. Physically, the wave vectors (κ,β(κ)) of

the forward going waves remain within a cone with opening
angle smaller than 180◦.

We will see that the evolution of the κ distribution of the
wave energy is described by a radiative transfer equation,
which means that the wave energy undergoes a random walk
(or diffusion). We can estimate from Eq. (59) that the diffusion
coefficient is of the order α2γ , so the κ distribution of the wave
energy reaches κ

M
after a propagation distance of the order of

Z
M

, such that α2γZ
M

= κ2
M

. In dimensional units, this means
α2Z

M
/� = κ2

M
. Since α2L/� = (α2L/λ)(λ/�) < 1 by (4), it is

possible to choose Z
M

∼ L and a suitable κ
M

< 1.
The evanescent waves can only couple with the propagating

waves with wave vectors of magnitude close to 1. Thus, as long
as the energy of the wave is supported at |κ | < κ

M
, assumption

(48) implies that the evanescent waves do not get excited.

3. Markov limit of the forward going mode amplitudes

We just explained that in the limit ε → 0 we can can
neglect all the backward going waves and the evanescent ones.
It remains to describe the limit of the forward going wave
amplitudes aε(κ,z) which satisfy the initial value problem

∂za
ε(κ,z) = ikα

2γ dε1/2

∫
|κ ′|<1

d(kκ ′)
(2π )d

ν̂

(
k(κ − κ ′)

γ
,
γ z

ε

)
× �aa

(
κ,κ ′,

z

ε

)
aε(κ ′,z), (49)

for z > 0, and the initial condition aε(κ,0) = ao(κ). These
equations conserve energy, meaning that for all ε > 0 and all
z � 0,∫

|κ |<1

d(kκ)

(2π )d
|aε(κ,z)|2 =

∫
|κ |<1

d(kκ)

(2π )d
|ao(κ)|2 . (50)

The details of the ε → 0 limit of aε(κ,z) are in the Appendix
A. In particular, we explain there that the process

Xε(z) =
(

Re[aε(κ,z)]
Im[aε(κ,z)]

)
κ∈O

for O = {κ ∈ Rd , |κ | < 1},
(51)

converges weakly in C([0,L],D′) to a Markov process X(z),
where D′ is the space of distributions, dual to the space
D(O,R2) of infinitely differentiable vector valued functions

in R2, with compact support. The generator of X(z) is given
in the Appendix A, and we denote henceforth the limit
amplitudes by [a(κ,z)]κ∈O = X1(z) + iX2(z). Their first and
second moments are described in the next two sections.

D. The coherent field

The coherent wave field is

E
[
uε

( x
ε
,z

)]
≈

∫
|κ |<1

d(kκ)

(2π )d
E[a(κ,z)]

β1/2(κ)
ei(k/ε)�κ ·�x,

where we replaced E[aε(κ,z)] by its ε → 0 limit E[a(κ,z)].
As explained in the Appendix A, the mean field

A(κ,z) = E[a(κ,z)]

satisfies the initial value problem

∂zA(κ,z) = Q(κ)A(κ,z), z > 0, (52)

with initial condition A(κ,0) = ao(κ), and Q(κ) given by

Q(κ) = − k2α2

4γ d+1

∫
|κ ′|<1

d(kκ ′)
(2π )d

1

β(κ)β(κ ′)

∫ ∞

0
dζ

×
∫
Rd

d r R(r,ζ )e−i(k/γ )(κ−κ ′,β(κ)−β(κ ′))·(r,ζ ). (53)

This is the same as (8) in our scaling.
The solution of (52) is

A(κ,z) = exp[Q(κ)z]ao(κ), (54)

so as stated in Sec. III, the random medium effects do not
average out. The mean amplitudes are not the same as the
amplitudes in the homogeneous medium at z > 0, and they
decay with z on the κ dependent scales S(κ) = −1/Re[Q(κ)],
the scattering mean free paths. The real part of Q(κ), which
is nonpositive, is an effective diffusion term in (52), which
removes energy from the mean field and gives it to the
incoherent fluctuations. This is due to the randomization or
loss of coherence of the waves. The imaginary part of Q(κ)
is an effective dispersion term, which does not remove energy
from the mean field and ensures causality [24].

E. The one-way radiative transfer equations

The mean intensity in the direction of κ is

I(κ,z) = lim
ε→0

E[|aε(κ,z)|2], (55)

and it evolves in z > 0 as modeled by equation

∂zI(κ,z) =
∫

|κ ′|<1

d(kκ ′)
(2π )d

Q(κ,κ ′)
[
I(κ ′,z) − I(κ,z)

]
, (56)

with initial condition I(κ,0) = |ao(κ)|2 (see the Appendix A).
The differential scattering cross section

Q(κ,κ ′) = k2α2

4γ d+1β(κ)β(κ ′)
R̃

(
k

γ
(κ − κ ′,β(κ) − β(κ ′))

)
is the same as (12) in our scaling, and from (53) we see that
−2Re[Q(κ)] equals the total scattering cross section

−2Re[Q(κ)] =
∫

|κ ′|<1

d(kκ ′)
(2π )d

Q(κ,κ ′). (57)
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We also note that the intensities satisfy the conservation
identity∫

|κ |<1

d(kκ)

(2π )d
I(κ,z) =

∫
|κ |<1

d(kκ)

(2π )d
|ao(κ)|2, for all z > 0,

which is consistent with (50).
Using the generator of the Markov limit process X(z) given

in the Appendix A, we can also calculate the ε → 0 limit of the
second moments E[aε(κ,z)aε(κ ′,z)] of the mode amplitudes.
We obtain that when κ �= κ ′,

lim
ε→0

E[aε(κ,z)aε(κ ′,z)] = lim
ε→0

E[aε(κ,z)]E[aε(κ ′,z)],

meaning that the waves traveling in different directions are
asymptotically decorrelated [25]. This is because these waves
see different regions of the random medium. It is only when the
waves propagate in similar directions, i.e., |κ ′ − κ | = O(ε),
that the mode amplitudes are correlated, so we define the
energy density (Wigner transform) as

W(κ,x,z) = lim
ε→0

∫
d(kq)

(2π )d
exp {ikq · [∇β(κ)z + x]}

× E

[
aε

(
κ + εq

2
,z

)
aε

(
κ − εq

2
,z

)]
. (58)

It satisfies the transport equation

∂zW(κ,x,z) − ∇β(κ) · ∇xW(κ,x,z)

=
∫

|κ ′|<1

d(kκ ′)
(2π )d

Q(κ,κ ′)[W(κ ′,x,z) − W(κ,x,z)], (59)

for z > 0, as stated in Sec. III. When the initial condition ao(κ)
is smooth in κ , we have from (58) that

W(κ,x,0) = δ(x)|ao(κ)|2,
and therefore at z > 0

W(κ,x,z) = δ[x + ∇β(κ)z]I(κ,z).

This shows that the energy is transported on the characteristic

x = −∇β(κ)z = κ

β(κ)
z.

V. THE HIGH-FREQUENCY LIMIT

In the high-frequency limit γ → 0 the transport equations
simplify. We quantify the scattering mean free paths in this
limit, and show how to derive the diffusion approximation and
paraxial model from the transport equations (59).

A. Quantification of scattering mean free paths

If we expand in powers of γ the right-hand side of (57),
we obtain the following expression of the scattering mean free
paths:

S(κ) = − 1

Re[Q(κ)]
= 8γβ2(κ)

k2α2
∫ ∞
−∞ dζ R

(
κζ

β(κ) ,ζ
) + O(γ 2).

They are of order γ and decrease as the negative power of
2 with the frequency ω = kco, meaning that higher frequency
waves lose coherence faster. We also expect that S(κ) decrease
monotonically with |κ |, because a plane wave mode with wave

vector k(κ,β(κ)) travels the distance z/β(κ) in the random
medium when it propagates up to z. The closer |κ | is to 1, the
longer the distance and thus, the faster the loss of coherence
quantified by the scale S(κ). The monotone dependence of
S(κ) on |κ | can be seen explicitly in statistically isotropic
media, where R(�x) = Riso(|�x|), and

R

(
κζ

β(κ)
,ζ

)
= Riso

(√
|κ |2ζ 2

β2(κ)
+ ζ 2

)
= Riso

( |ζ |
β(κ)

)
.

Then

S(κ) = 4γβ(κ)

k2α2
∫ ∞

0 dζ Riso(ζ )
+ O(γ 2),

and the decay with |κ | is captured by β(κ) =
√

1 − |κ |2.

B. The diffusion approximation

The mean mode intensities I(κ,z) defined in (55) satisfy
(56), with initial condition at z = 0 derived from (36):

I(κ,0) = 1

4k2β(κ)η2d

∣∣∣∣F̂(
kκ

η

)∣∣∣∣2

.

This is independent of γ and for fixed η.
The diffusion model is obtained by expanding Eq. (56) in

powers of γ . We obtain that

∂zI(κ,z) ≈ γ

⎡⎣ d∑
j,l=1

Ajl(κ)∂2
κj κl

+ γ

d∑
j=1

Bj (κ)∂κj

⎤⎦I(κ,z),

(60)

where the approximation means that we neglect higher powers
in γ , and the diffusion and drift coefficients are independent
of k and γ :

Ajl(κ) = − α2

8β(κ)2

∫ ∞

−∞
dζ ∂2

rj rl
R

(
κζ

β(κ)
,ζ

)
,

j,l = 1, . . . ,d,

and

Bj (κ) =
d∑

l,m=1

α2∂2
κlκM

β(κ)

8β(κ)2

∫ ∞

−∞
dζ ζ∂3

rj rl rm
R

(
κζ

β(κ)
,ζ

)

−
d∑

l=1

α2κl

4β(κ)4

∫ ∞

−∞
dζ ∂2

rj rl
R

(
κζ

β(κ)
,ζ

)
,

j = 1, . . . ,d.

Note that the diffusion is the dominant term in (60).

C. The paraxial approximation

The paraxial (beamlike) propagation model is for a large
diameter X of the support of the source with respect to the
wavelength, so that η → 0. The result depends on the order
in which we take the limits η → 0 and γ → 0, as we now
explain.
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In regimes with λ � � = X, where η = γ , the rescaled
intensity

Ires(κ,z) = γ 2dI(γ κ,γ z)

satisfies in the limit γ → 0 the equation

∂zIres = k2α2

4

∫
Rd

d(kκ ′)
(2π )d

R̃(k(κ − κ ′),0)[Ires(κ
′) − Ires(κ)],

(61)

with initial condition Ires(κ,0) = |F̂ (kκ)|2/[4k2β(κ)]. This is
the transport equation for the random paraxial wave equation,
as explained in Sec. III C.

In regimes with λ � � � X, analyzed with the sequence
of limits γ → 0, followed by η → 0, the rescaled intensity

Ires(κ,z) = η2dI
(

ηκ,
η2

γ
z

)
satisfies the diffusion equation

∂zIres =
d∑

j,l=1

Dres,j l∂
2
κj κl

Ires, (62)

with initial condition Ires(κ,0) = |F̂ (kκ)|2/[4k2β(κ)] and
diffusion tensor Dres,j l given by

Dres,j l = −α2

8

∫ ∞

−∞
dζ ∂2

rj rl
R(0,ζ ) = lim

|κ |→0
Ajl(κ),

for j,l = 1, . . . ,d. This result was derived in [12,26–28]
starting from the paraxial wave equation. We recovered it here
because in the regime with λ � � � X we have a narrow cone
beam propagating through a random medium.

Note that Eq. (62) can also be derived formally from
the radiative transfer equation (21). First, one considers that
scattering is sharply peaked in the forward scattering direction,
so that it is possible to take the Fokker-Planck approximation,
that is to say, the right-hand side of (21) can be approximated by
a diffusion operator in �K [29,30]. Second, one considers that
the source emission is sharply peaked and that the propagation
distance is short enough so that the wave remains in the form
of a narrow cone beam.

VI. SUMMARY

The one-way radiative transfer equation describes the
evolution of the intensity of the waves resolved over directions,
the Wigner transform, in forward-peaked scattering regimes.
We derived it using multiscale analysis and probabilistic
limits, starting from the wave equation in random media. The
scattering regime with small random fluctuations of the wave
speed and long distances of propagation over which cumulative
scattering becomes significant leads to waves propagating
forward in a wide angular cone. It bridges between two
known regimes: The first is the radiative transfer regime where
waves propagate in all directions and the Wigner transform
satisfies a boundary value problem. The second is the paraxial
regime, where waves propagate in a narrow angle cone. We
established this bridge by connecting the one-way radiative

transfer equation to the equations for the Wigner transform in
these two regimes.
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APPENDIX: THE MARKOV LIMIT

Let O be an open set in Rd and D(O,R2) the space of
infinitely differentiable functions with compact support. We
consider the process Xε in the space C([0,L],D′(O,R2)) of
continuous functions of z. It is the solution of

d Xε

dz
= 1√

ε
F

(z

ε
,
z

ε

)
Xε, (A1)

where F(ζ,ζ ′) is a random linear operator from D′ to D′.
Here D′ denotes the space of distributions, dual to D(O,R2).
We assume that the mapping ζ → F(ζ,ζ ′) is stationary and
possesses strong ergodic properties, and thatF(ζ,ζ ′) has mean
zero. Moreover, the mapping ζ ′ → F(ζ,ζ ′) is periodic.

We are interested, in particular, in Eq. (49), that can be put
into the form (A1) if we define the process Xε as (51) and the
operator F(ζ,ζ ′) as

〈F(ζ,ζ ′)X,φ〉

=
2∑

j=1

∫
O

d(kκ)

(2π )d
[F(ζ,ζ ′)X]j (κ)φj (κ)

=
∫

O

d(kκ)

(2π )d
φ(κ) ·

∫
O

d(kκ ′)
(2π )d

F (κ,κ ′,ζ,ζ ′)X(κ ′), (A2)

for φ ∈ D(O,R2) with components φj and X ∈ D′(O,R2) with
components Xj . The kernel matrix F (κ,κ ′,ζ,ζ ′) is given by

F =
(

Fr −Fi

Fi Fr

)
, (A3)

in terms of

Fr(κ,κ ′,ζ,ζ ′) = Re

[
ikα

2γ d
ν̂

(
k(κ − κ ′)

γ
,γ ζ

)
�aa(κ,κ ′,ζ ′)

]
,

(A4)
and

Fi(κ,κ ′,ζ,ζ ′) = Im

[
ikα

2γ d
ν̂

(
k(κ − κ ′)

γ
,γ ζ

)
�aa(κ,κ ′,ζ ′)

]
,

(A5)

where we recall from (45) the expression of �aa(κ,κ ′,ζ ′). The
adjoint operator F∗(ζ,ζ ′) is defined by

〈F(ζ,ζ ′)X,φ〉 = 〈X,F∗(ζ,ζ ′)φ〉
for φ ∈ D(O,R2) and X ∈ D′(O,R2), and has matrix ker-
nel F∗(κ,κ ′,ζ,ζ ′) = F (κ ′,κ,ζ,ζ ′)T , where the superscript T

stands for transpose.
To obtain the Markov limit we use the results in [23] (the

interested reader may first read [[31], Chap. 6] for a self-
contained introduction to such limit theorems). They give that
Xε(z) converges weakly in C([0,L],D′) to X(z), the solution
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of a martingale problem with generator L defined by

Lf (〈X,φ〉) =
∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[〈X,F∗(0,h)φ〉〈X,F∗(ζ,ζ + h)φ〉]f ′′(〈X,φ〉)

+
∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[〈X,F∗(0,h)F∗(ζ,ζ + h)φ〉]f ′(〈X,φ〉), (A6)

for any X ∈ D′(O,R2), φ ∈ D(O,R2), and smooth f : R → R. This means that, for any φ ∈ D(O,R2) and smooth function
f : R → R, the real-valued process

f (〈X(z),φ〉) −
∫ z

0
dz′ Lf (〈X(z′),φ〉)

is a martingale. More generally, if n ∈ N, φ(1), . . . ,φ(n) ∈ D(O,R2), and f : Rn → R is a smooth function, then

f (〈X(z),φ(1)〉, . . . ,〈X(z),φ(n)〉) −
∫ z

0
dz′ L(n)f (〈X(z′),φ(1)〉, . . . ,〈X(z′),φ(n)〉) (A7)

is a martingale, where

L(n)f

(〈
X,φ(1)

〉
, . . . ,

〈
X,φ(n)

〉)

=
n∑

j,l=1

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[〈X,F∗(0,h)φ(j )〉〈X,F∗(ζ,ζ + h)φ(l)〉] ∂2

j lf (〈X,φ(1)〉, . . . ,〈X,φ(n)〉)

+
n∑

j=1

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[〈X,F∗(0,h)F∗(ζ,ζ + h)φ(j )〉]∂jf (〈X,φ(1)〉, . . . ,〈X,φ(n)〉). (A8)

To calculate the first moment of the limit process X(z), let n = 1 and f (y) = y in (A7) and (A8). We find that

dE[〈X(z),φ〉]
dz

= E[〈X(z),H∗φ〉],

where

H∗ =
∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[F∗(0,h)F∗(ζ,ζ + h)].

This shows that

X (z) = E[X(z)]

satisfies a closed system of ordinary differential equations

d〈X (z),φ〉
dz

= 〈X (z),H∗φ〉,

or, equivalently in D′,

dX (z)

dz
= HX (z), (A9)

where H is the adjoint of H∗. The kernel matrix of H is H(κ ′,κ) = H∗(κ,κ ′)T . Recalling from (A2)–(A5) the expression of the
kernel F (κ ′,κ,ζ,ζ ′)T of F∗(ζ,ζ ′), we obtain that the matrix kernel H∗(κ ′,κ) of H∗ is

H∗
j l(κ,κ ′) =

2∑
q=1

∫
O

d(kκ ′′)
(2π )d

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[Flq(κ ′,κ ′′,ζ,ζ + h)Fqj (κ ′′,κ,0,h)],

for j,l = 1,2. For instance,

H∗
11(κ,κ ′) =

∫
O

d(kκ ′′)
(2π )d

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[F r(κ ′,κ ′′,ζ,ζ + h)F r(κ ′′,κ,0,h)]

−
∫

O

d(kκ ′′)
(2π )d

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dhE[F i(κ ′,κ ′′,ζ,ζ + h)F i(κ ′′,κ,0,h)],
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and using (A4) and (A5), we get

H∗
11(κ,κ ′) = Re

{(
ikα

2γ d

)2 ∫
O

d(kκ ′′)
(2π )d

∫ ∞

0
dζ lim

Z→∞
1

Z

∫ Z

0
dh

×E

[̂
ν

(
k(κ ′ − κ ′′)

γ
,γ ζ

)̂
ν

(
k(κ ′′ − κ)

γ
,0

)]
[�aa(κ ′,κ ′′,ζ + h)�aa(κ ′′,κ,h)]

}
.

Moreover, using the identity

E

[̂
ν

(
k(κ ′ − κ ′′)

γ
,γ ζ

)̂
ν

(
k(κ ′′ − κ)

γ
,0

)]
= (

2πγ
)d

δ[k(κ − κ ′)]R̂
(

k(κ − κ ′′)
γ

,γ ζ

)
,

with

R̂(q,ζ ) =
∫
Rd

R(r,ζ )e−iq·rd r,

derived from the definition of the autocovariance function with straightforward algebraic manipulations, and obtaining from (45)
that

�aa(κ,κ ′′,ζ + h)�aa(κ ′′,κ,h) = 1

β(κ)β(κ ′′)
eik[β(κ ′′)−β(κ)]ζ ,

we get

H∗
11(κ,κ ′) = −k2α2

4γ d
Re

{∫
O

d(kκ ′′)
(2π )d

∫ ∞

0
dζ R̂

(
k(κ − κ ′′)

γ
,γ ζ

)
eik[β(κ ′′)−β(κ)]ζ (2π )d

β(κ)β(κ ′′)
δ[k(κ − κ ′)]

}
.

The expressions of the other components of H∗
j l(κ,κ ′) are of the same type. Substituting into (A9) we obtain the explicit

expression of the differential equations satisfied by the mean wave amplitudes. This is Eq. (52), written in complex form.
The calculation of the second moments is similar, by letting n = 1 and f (y) = y2 in (A8), and carrying the lengthy calculations.
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