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Critical dynamics in two-dimension Ising lattices up to 2048 × 2048 is simulated on field-programmable-
gate-array- based computing devices. Linear relaxation times are measured from extremely long Monte Carlo
simulations. The longest simulation has 7.1 × 1016 spin updates, which would take over 37 years to simulate on
a general purpose computer. The linear relaxation time of the Ising lattices is found to follow the dynamic scaling
law for correlation lengths as long as 2048. The dynamic exponent z of the system is found to be 2.179(12), which
is consistent with previous studies of Ising lattices with shorter correlation lengths. It is also found that Monte
Carlo simulations of critical dynamics in Ising lattices larger than 512 × 512 are very sensitive to the statistical
correlations between pseudorandom numbers, making it even more difficult to study such large systems.
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I. INTRODUCTION

Static critical phenomena have been well understood since
Wilson’s renormalization group (RG) breakthrough [1]; on the
other hand, critical dynamics still attracts research attentions
[2–9]. An understanding of the “critical slowing down” effect
and accurate evaluation of the dynamic exponent z have
been the focal point for many such studies. For a long time,
linear relaxation simulations gave varied results on z due to
insufficient data, limited by the extremely long simulation
time [10–14]. Later on, methods based on nonequilibrium
relaxation simulations were developed, and accurate evalu-
ations of z around 2.167 were achieved with short simulation
times [2,3,15–23]. Furthermore, the stochastic matrix method
was utilized to calculate the relaxation times for small two-
dimensional (2D) Ising lattices (L � 16) and z was found
to be 2.167 as well [24,25]. The consolidation of the results
from linear and nonlinear (nonequilibrium) simulations led to
a consensus on the value of z. However, there are still reasons
to pursue the subject further.

First of all, the correlation lengths of the Ising systems
in these studies are all very short. The stochastic matrix-
based linear relaxation study is only carried out to L = 16.
The nonequilibrium studies are usually carried out in very
large lattices, but the relevant correlation lengths are very
short during the simulated initial relaxation process. Wang
and Hu obtained a similar z of 2.168 from nonequilibrium
relaxations in lattices less than 80 × 80 [21], indicating that the
correlations’ lengths involved in these nonequilibrium studies
are probably not more than 100. It is therefore very meaningful
to verify this result in finite size scaling (FSS) studies of Ising
systems with longer correlation lengths.

Second, reasonable agreement between computer simula-
tions and theoretical calculations has not been achieved. The
high-temperature series-expansion method gives estimations
between 2.0 and 2.3 [14,26–28], while the 4-ε expansion gives
an estimation of 2.05 [4,5,29–32] and the 1 + ε gives an estima-
tion of 2.50 [32]. Domany conjectured [33] that there is a dy-
namic critical point corresponding to the Lifshitz point for 2D
Ising models, and a dynamic exponent z of 2.0 is derived rigor-
ously from discrete dynamics based on certain cellular automa-
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tion (CA) rules [34]. Since theoretical treatment of the critical
dynamics generally involve Ising systems with infinitely long
correlations lengths, one may wonder whether simulations of
critical Ising systems with longer correlation lengths might
reach agreement with one of these theoretical treatments.

Finally, nonasymptotic behaviors can usually be observed
in critical phenomena as the system approaches its critical
temperature and infinite correlation length [35–37]. It would
be very interesting to see whether any such nonasymptotic
behaviors can be observed in Ising systems approaching
infinite size while maintaining critical temperature.

The main question that we would like to address in this
paper is whether critical Ising systems with longer correlation
lengths conform to the same dynamic exponent z value.
We will answer this question by simulating linear relaxation
processes in large 2D Ising models.

In linear relaxation studies, one can increase the correlation
length of the Ising system by increasing the size of the Ising
lattice. However, the “critical slowing down” effect puts strict
limits on such efforts. To obtain adequate data, simulation
time over 1000 times the relaxation time τ is needed for
each data point, and as size L increases, τ increases even
faster. The adequate computation time for simulating critical
2D Ising models scales to the 2 + z power of L. Computational
resources can be dried up quickly by such an explosive scaling
effect. No significant advancement has been reported since
the few early studies that were carried out on the best vector
supercomputers or special purpose computing machines at
the time [13,38–41]. The reason for such stagnation in this
pursuit, despite the tremendous progresses in high perfor-
mance computing (HPC) technology, is due to the so-called
“Von Neumann bottleneck” [42]. Monte Carlo simulations
are communication-intensive computing tasks which have
severe “Von Neumann bottleneck” latency problems on any
central-processing-unit- based (CPU) computers while the
advances in HPC have been mostly on cluster-based CPU
platforms, which are an ill-fit for Monte Carlo simulations.
The benchmarks left by the earlier studies are still not easy to
beat on the current general purpose computers.

Recent advances in customizable HPC platforms, such as
graphic processing unit (GPU) and field programmable gate
array processor (FPGA) have brought significant progresses
on communication-intensive tasks such as the Monte Carlo

2470-0045/2016/93(2)/022113(8) 022113-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.022113


Y. LIN AND F. WANG PHYSICAL REVIEW E 93, 022113 (2016)

simulations [43–47]. A FPGA-based computing system con-
structed by this group carried out Monte Carlo simulations
of 1024 × 1024 Ising lattices at a speed of 10.6 picoseconds
per spin update, a 1500x times speedup over an optimized
CPU implementation [44]. The FPGA system has since been
upgraded and Ising lattices up to 2048 × 2048 can be simulated
now. The system can carryout Monte Carlo simulations at
speeds up to 4.88 picoseconds per spin update, which is
close to a 2.2 times speedup over the previous best FPGA
system, a 26 times speedup over a single GPU and a 3300
times speedup over a single CPU. This spin update speed also
breaks the previous record of 4.94 picoseconds per spin update
achieved by a 64-GPU cluster [46]. The popular symmetric-
multiprocessing-based (SMP) multiprocessor general purpose
computers are expected to have similar speedup factors as the
acceleration acquired from multithreading is mostly offset by
less optimization in synchronized codes.

The longest single simulation consists of 1.7 × 1010 Monte
Carlo sweeps (MCS) and runs for about 4.1 days on the
upgraded FPGA device, which would need over 37 years of
equivalent simulation time on a general purpose computer.
The study has a total of over 3200 hours of simulation time on
the FPGA systems, which is equivalent to over 1000 years
of simulation time on a single general purpose computer.
The steep computational cost makes accurate measurement
of the linear relaxation time on general purpose computers
impractical for lattice sizes greater than 512.

The paper is constructed as follows: Sec. II gives a brief
description of the theoretical background; Sec. III introduces
the FPGA system and the simulation parameters; Sec. IV
presents the simulation data and their analysis; and Sec. V
discusses implications of the obtained results.

II. LINEAR RELAXATION TIME

The dynamics of Ising models (model A) can be described
by a purely dissipative stochastic Langevin equation with
the Ginsburg-Landau Hamiltonian, also known as the time-
dependent Ginsburg-Landau equation (TDGL) [48,49]

∂σ (x,t)

∂t
= −�

δH [σ ]

δσ (x,t)
+ ζ (x,t)

(1)〈ζ (x,t)ζ (x ′,t ′)〉 = 2�δ(x − x ′)δ(t − t ′),

where σ (x,t) is an one-component continuous spin field, H [σ ]
is the dimensionless Ginsburg-Landau Hamiltonian of the
system, ζ (x,t) represents the Gaussian noise from the heat
bath, and � is the dissipation constant. The corresponding
Fokker-Planck equation for distribution of the spin field P (σ,t)
is

∂P (σ,t)

∂t
= −HFPP (σ,t), (2)

where the operator HFP is the Fokker–Planck Hamiltonian
given by

HFP = −�

∫
ddx

δ

δσ (x)

[
δH

δσ (x)
+ δ

δσ (x)

]
.

Equation (2) has a similar form as the Schrödinger equation,
but operator HFP is not Hermitian. A modified distribution
P̃ (σ,t) = e−H/2P (σ,t) can be defined to satisfy a similar

equation

∂P̃ (σ,t)

∂t
= −H̃FPP̃ (σ,t), (3)

where

H̃FP = −�

(
− δ

δσ (x)
+ 1

2

δH

δσ (x)

)(
δ

δσ (x)
+ 1

2

δH

δσ (x)

)

is now a Hermitian operator. Solving Eq. (3), we will have a
solution as

P̃ (σ,t |σ0) =
∞∑

n=0

cn(σ0)e−λnt θn(σ ), (4)

where σ0 is the initial spin field distribution, λn � 0 are
the eigenvalues, and θn(σ ) are the eigenvectors of Eq. (3).
The ground state (n = 0) corresponds to the equilibrium
distribution of the system (Peq(σ ) = e−H ), while the excited
states (n > 0) give the thermal fluctuation modes. The time-
delayed correlations between thermal fluctuations of the order
parameter can then be expressed in terms of the excited states
(modes) as

〈M(t)M(0)〉=
∑
{σ,σ0}

M(σ,t)M(σ0,0)P (σ,t |σ0) =
∞∑

j=1

aj e
−t/τj ,

(5)
where M is the magnetization, τj = 1/λj is the relaxation time
for the j th excited mode, and aj are t independent constants.

For an infinite system with a temperature approaching the
critical temperature Tc, τj diverges and causes the “critical
slowing down” effect. According to the dynamic critical
scaling hypothesis [48,50–52], the diverging relaxation times
τj have a power-law relation to the diverging correlation length
ξ , which is defined as ξ ∝ |T − Tc|−ν . We define the exponent
of this power-law relation as the dynamic exponent z and have
the following relation

τj ∝ ξz. (6)

As τj diverges, the relaxation process is dominated by the
first excited mode. As a result, τ1 becomes the relaxation time
τ of the system, and Eq. (5) becomes

〈M(t)M(0)〉 ∝ e−t/τ . (7)

For finite systems at Tc, ξ goes to infinity and the relaxation
process is dominated by the Fourier component of the excited
modes that has the longest wavelength λmax ∝ L or the
smallest wave vector kmin ∝ L−1. The relaxation time of the
system is then hypothesized to have a power law-relation with
the λmax or kmin. We now have

τFSS(L) ∝ Lz, (8)

the FSS subscript is added to τ to distinguish it from simulated
τ (L). Comparing to Eq. (6), we can see that the effective
correlation length ξ in finite systems at Tc equals to the system
size L. Combining Eqs. (7) and (8), one can calculate the
relaxation times and the exponent z of finite Ising lattices
from simulations of their linear relaxation processes.

For small finite systems, corrections to the FSS relations
are needed. According to conformal invariance consideration
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and the corresponding numerical results [53], the following
corrected FSS relation can be used to study small Ising lattices

τFSS(L) = Lz

nc∑
k=0

bkL
−2k, (9)

where bk are constants and nc limits number of the correction
terms. This correction has been used in linear relaxation studies
discussed earlier [24,25].

III. SIMULATE ISING MODELS WITH FPGA

FPGA is a new type of computing device that can generate
user specific digital circuits in field, providing tremendous
flexibility in architectural design and achieving astonishing
performance improvements at certain computing tasks [54].
A high-end FPGA device can contain millions of logical
elements (LEs), each of which can be programmed to carryout
calculations concurrently, providing computational capabili-
ties equivalent to tens of thousands of CPUs. Furthermore,
the processing and the communicating of data in FPGA can
be synchronized in pipelines to achieve very high efficiency,
eliminating the “Von Neumann bottleneck” latency problem
suffered by all CPU-based general purpose computers.

The METROPOLIS updating scheme is communication in-
tensive, making it difficult and inefficient to implement them
on clustering type of supercomputers. FPGA systems can
be designed to carryout METROPOLIS updates very efficiently
[43,44]. In this study, FPGA development boards including
DE3 from Terasic R© and DK-DEV-3CI20N from Altera R© are
used to implement the simulation systems. The FPGA chip
on the DE3 board is a Stratix III (EP3SL340) from Altera R©,
which has 338k LEs and 18Mb Block RAM; the FPGA chip on
the DK-DEV-3CI20N board is a Cyclone III (EP3C120) also
from Altera R©, which has 120k LEs and 4Mb Block RAM.
The Cyclone III can only simulate Ising lattices no bigger than
1024 × 1024. It is used to ensure that simulation results are
device independent. Both systems run at a 100-MHz system
clock.

Circuitries for simulating 2D square Ising models with
periodical boundaries are implemented using the VERILOG

hardware description language (HDL) [44,55]. Processing
units (PUs) are implemented to update Ising spins concur-
rently. A total of L PUs are implemented for a L x L Ising
lattice, achieving linearly scaling simulation time over lattice
size L. The speedup of the FPGA simulation system over
general purpose computers increase with L, and the largest
speedup close to 3300 times is achieved at L = 2048 in this
study.

Nearest-neighbor METROPOLIS updating is implemented in
each PU. The following VERILOG statement implements a PU
that updates spin m according to its neighboring spin a, b, c,
and d in the lattice

d < = ((m ˆa + m ˆb + m ˆc + m ˆd + R < p1

+R < p2) < 2) ? m :∼ m. (10)

Here ⇐ and ˆ are the nonblocking assignment and the XOR

operators in VERILOG. R is the register that stores the pseudo-
random number, and p1 = exp(−4/T ), p2 = exp(−8/T ) are
registers that store the flipping probabilities. Temperature T is

FIG. 1. Processing units (colored squares) that update nonneigh-
boring spins concurrently. The arrows indicate the direction of the
movements of the data after each updating operation.

set to the critical temperature Tc of the bulk 2D square Ising
model. Notice that the updated value of spin m is assigned to
the memory register occupied by neighboring spin d after the
updating operation. In a similar fashion, every spin moves to
one of their neighboring registers after each clock. A pipelining
scheme shown in Fig. 1 is used so that only nonneighboring
spins are updated concurrently at each clock. Details of the
circuit designs have been reported elsewhere [44].

Random number generator (RNG) is an important part of
any Monte Carlo simulation. Independent RNGs are allocated
for each PU to parallelize the simulation process and to
ensure their statistical independence. Implementations of high
quality RNGs such as Mersenne twister [56] and WELL1024a
[57] on FPGA are possible, but require too many resources.
Instead, a 32-bit shift-register-type of RNG such as the linear
feedback shift register (LFSR) and cellular automata shift
register (CASR) are implemented to supply up to 6.6 THz high-
quality random bits. LFSRs are constructed using primitive
polynomials taken from [58] to ensure maximum length bit
sequences. LFSR and CASR are combined via mod-2 addition
(XOR) to obtain new sequences with a much longer period and
better statistical quality [59–62]. A drawback of LFSR is that it
can only produce one new bit from each update operation. One
would need to either use random numbers with overlapping bit
sequences or to carryout multiple update operations for each
random number. Recently, Gu et al. developed a new type of
FPGA-based LFSR called Leap LFSR, which can combine
multiple update operations into a single one [63]. With Leap
LFSR, one can obtain nonoverlapping random numbers using
just one tick of the system clock.

Three types of 32 bit RNGs are implemented and tested in
this study. RNG No. 1 is an 81 bit Leap LFSR with a period of
281 − 1 using primitive polynomial x81 + x77 + 1. RNG No. 2
is constructed via mod-2 addition (XOR) of a 52-bit Leap LFSR
and a 37-bit CASR. Primitive polynomial x52 + x49 + 1 and
CA rule 30 are used respectively and the period should be close
to 289 [34,44,58,61]. Finally, RNG No. 3 is the same type of
RNG reported in [44], which is the mod-2 addition (XOR) of a
43-bit LFSR, a 37-bit CASR and a 1-bit true random source.
The 43-bit LFSR in RNG No. 3 can only produce overlapping
32-bit random numbers, and the 37-bit CASR is the same as
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in RNG No. 2. The true random bit is obtained by harvesting
thermal jitters in the FPGA circuit and is updated at a minimum
frequency of 3.1 KHz [44,64,65]. The period of RNG No. 3
is theoretically infinite due to the inclusion of a true random
bit. Segments of the VERILOG programs that implement these
RNGs are listed in the supplemental material [66].

It is found that all three types of RNGs generate high-quality
pseudorandom numbers that pass the NIST random number
testing suit with similar fail rates as high quality RNGs such
as Mersenne twister and WELL1024a [44,56,57]. However,
further tests have shown that only RNG No. 2 gives the correct
static FSS behavior for large Ising lattices, while the other two
types of RNGs show considerable deviations from the static
scaling law (see Sec. IV).

To achieve high accuracy, Ising systems are simulated for
a total simulation time greater than 1000τ . The system starts
from a uniform spin orientation, and follows with a 300τ

relaxation period to relax the system to an equilibrium state.
After that, the magnetization of the system is recorded every
0.0005τ and about 2 × 106 samples are collected for each run.
Data from RNG No. 1 have three simulation runs per data
point while those from RNG Nos. 2 and 3 have five or more
simulation runs per data point. The standard deviation of the
mean of the runs at each data point is used for error estimation,
which are then calculated from unbiased standard deviations
of runs [67]. The errors in the results from linear regressions
are estimated according to methods described in [62].

IV. SIMULATION RESULTS

Before analyzing the dynamic FSS behavior of the critical
Ising lattices, we take a look at their static FSS behavior to
verify the simulation system. The FSS behavior of static prop-
erties like isothermal susceptibility χ (L) is well understood
[68], and can be calculated with a much higher accuracy. One
can therefore verify the simulation system by comparing the
observed FSS behavior to that of the static FSS theory.

According the static FSS theory, χ (L) should have the
following scaling property

χ (ε,L) = Lγ/νχ0(εL1/ν), (11)

where ε = (T − Tc)/Tc, and γ and ν are the critical exponents
of bulk 2D Ising lattice. At Tc, ε = 0, and Eq. (11) becomes

χFSS(L) ∝ Lγ/ν. (12)

The subscript FSS is added to distinguish it from simulated
χ (L).

Ising lattices with sizes between 32 and 2048 are simulated
with three types of RNGs. The susceptibilities χ (L) from these
simulations are calculated from the second moment of the
magnetization M . The log of χ (L)/χFSS(L) is plotted against
the log of L in Fig. 2, where the proportional constant in
Eq. (12) is determine by requiring χFSS(32) = χ (32). The
correct FSS scaling behavior should produce data points
identical to χFSS(L), which is along the horizontal axis. We see
that only data from RNG No. 2 (circles) show this behavior,
while those from the other two RNGs show considerable
deviations, indicating deficiencies in these RNGs. A linear
regression is carried out between the logs of χ (L) and L

from RNG No. 2, and a scaling exponent of 1.7498(4) is

FIG. 2. The log of susceptibility χ over FSS theory χFSS(L)
from RNG No. 1 (diamonds), RNG No. 2 (circles), and RNG No.
3 (squares). The error bars are the standard deviations of the mean of
the multiple runs at each point

obtained, which is very close to the theoretical value of 1.750.
We therefore conclude that our simulation system with RNG
No. 2 is sound.

The standard deviations of the mean are calculated from
multiple runs at each data point for its error bar. We observe
that the error bars are quite small compared to the displayed
fluctuations of the data points, especially for RNG No. 1. This
should be in part due to fluctuations caused by the limited
number of runs, e.g., RNG No. 1 data have only three runs per
data points, and in part due to the systematic errors introduced
by correlations in the RNGs.

We now start to analyze the dynamic FSS behavior of
the critical Ising lattices. A segment of the magnetization
for a 2048 × 2048 Ising lattice at the critical temperature
Tc is shown in Fig. 3. Frequent directional flips of the
magnetization are observed as expected even for such a large
lattice. The log of the autocorrelation 〈M(t)M(0)〉/〈M2〉 for

FIG. 3. Magnetization m of a 2048 × 2048 Ising lattice as a
function of simulation time t .
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FIG. 4. The log of the autocorrelation of the magnetization in a
2048 × 2048 Ising lattice as a function of time delay t . The straight
line is a linear fit to the data.

the Ising lattice is calculated and shown in Fig. 4. Due to the
extremely long simulation time, the average magnetization
〈M〉 is very small and hence has been assigned to its
theoretical value of zero for the autocorrelation calculations.
Most autocorrelation data have excellent linearity as the one
shown in Fig. 4. The relaxation time τ is calculated from a
linear fit according to Eq. (7). The autocorrelation data are
fitted between approximately 0.3τ and 1.1τ . This fitting range
is selected to avoid the initial nonlinearity and to retain a good
signal-to-noise ratio at the same time. Such an ideal choice
is only possible with the high quality data generated from
extremely long simulations.

Next, a log-log plot of relaxation time τ over size L is
shown in Fig. 5, where the errors of the data points are less
than the size of the symbols. A straight line is fitted to the
data according Eq. (8), assuming correction terms shown in
Eq. (9) can be neglected. Excellent agreement between theory
and data is observed. The dynamic exponent z = 2.179(12)
is obtained from the slope of the straight line, which is very

FIG. 5. The log-log of relaxation time τ and lattice size L from
RNG No. 3.

FIG. 6. The log of relaxation time τ over FSS theory τFSS(L)
from RNG No. 1 (diamonds), RNG No. 2 (circles), and RNG No. 3
(squares). The error bars are the standard deviations of the mean of
the multiple runs at each point.

close to the 2.167 value obtained by previous nonequilibrium
and stochastic matrix studies. To compare the obtained τ to
the dynamic FSS theory more closely, we plot log(τ/τFSS) in
Fig. 6. τFSS is calculated according to Eq. (8) where z is set to
2.167 and the proportional constant is determined by requiring
τFSS equal to τ when L = 32. For comparison, data from RNG
Nos. 1 and 3 are also included in the plot. The error bars are the
standard deviations of the mean at each data point. We can see
that the log(τ/τFSS) data from RNG No. 2 (circles) stay close
to the horizontal axis which represents the scaling behavior of
τFSS, while those from the other two RNGs show noticeable
deviations as L is increased past 512.

To investigate the possible effects of the correction terms
in Eq. (9), we gradually remove the smaller lattices from
the RNG No. 2 data to gradually reduce the effects of the
correction terms. To make this analysis more effective, we
remove the point at L = 256, which can easily be identified
as an outlier. With this outlier, the following analysis produces
large fluctuations. Linear regressions are carried out on these
reduced data sets and the results are listed in Table I. We can
see that the z values are quite stable as the smaller lattices are
removed from the data. This means that the correction effects
are not important and the linearity between log(τ ) and log(L)

TABLE I. Linear regression of log(τ ) over log(L) for Ising lattices
with different range of sizes. The maximum size is always 2048 while
the minimum size is listed in the first column. The rest of the columns
are the dynamic exponent z, its fitting error, and the reduced χ2 of
the fits. The outlier at L = 256 is removed during this analysis.

L� z Error χ 2

32 2.177 0.009 0.22
64 2.179 0.012 0.16
128 2.176 0.018 0.16
512 2.165 0.036 0.21
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is very good. The errors are increased due to the reduction of
the number of data points.

Compared to Fig. 2, we see similar deviation patterns from
the “poor” RNGs, except the effect is much larger scale in
dynamic FSS. In both static and dynamic FSS, the effects
of “poor” RNGs only become significant when the size of
the Ising lattice is greater than 512. It also is interesting to
note that the directions of the deviations from the “poor”
RNGs are correlated in static and dynamic FSS, i.e., RNG
No. 1 produces smaller χ and shorter τ while RNG No. 3
produces larger and longer ones. Apparently, the statistical
correlations in RNGs can both decelerate and accelerate the
critical relaxation process in 2D Ising systems.

In Fig. 6, we also notice that the error bars increase with
L. This is due to the relative longer simulation times assigned
to the smaller Ising lattices. In our study, a constant number
of samples are collected for all runs and the sampling rate
is calculated so that the total simulation time is 1000 times
the relaxation time. The appropriate sampling rate for small
lattices is smaller than the minimum possible sampling period
of 1 MCS per sample, making the total simulation time
relatively longer for these smaller lattices. This means that
longer simulation time leads to smaller errors, which is in
accordance with the previous understandings on this matter
[44,69].

V. DISCUSSIONS

To answer the questions posed at the beginning of the paper:
the dynamic exponent z remain the same for Ising systems
with much longer correlation lengths. This result confirms
Eq. (9) and the dynamic critical scaling hypothesis [50–52] for
2D Ising lattices up to 2048 × 2048. Combining results from
[24], Eq. (9) has been verified for 2D Ising lattices ranging
from 4 × 4 to 2048 × 2048, which is a much more extended
test than any previous studies. This is also the first time that
linear relaxation simulations give a consistent exponent z as
the nonequilibrium and stochastic matrix studies.

Assuming a lattice constant of 1 nm, which is reasonable
for a diluted ferromagnet, the largest Ising lattice simulated
in this study corresponds to a 2 × 2 μm2 ferromagnet, which
is already in the macroscopic range. It seems that we have
extended the test close to the macroscopic limit and one can
conclude that the exponent z of all finite 2D Ising lattices is
indeed around 2.167. On the other hand, the obtained exponent
z does not agree with either the 2.50 value from the 1 + ε RG
transformation study [32] or the 2.0 value from Domany’s
report [33], leaving some uncertainties on the issue. Recently
in several studies, Schwartz and Edwards present theoretical
evidences of slower than exponential decay of correlations in
nonlinear systems including critical Ising lattices approaching
infinite size [7,70,71]. This result suggests that deviations
from the dynamic FSS theory may occur as the system size
approaching infinity. Future dynamic FSS investigations may
confirm such predictions.

From Figs. 2 and 6, we can see that the simulation
of the critical processes in Ising lattices, especially of the
dynamics critical processes, becomes sensitive to the statistical
correlations in the RNGs as the lattice size becomes larger
than 512. It seems that the statistical correlations in the RNGs

can both accelerate and decelerate the relaxation process,
which in turn gives shorter and longer relaxation times
for the system. It has long been suspected that statistical
correlations which unavoidably exist in all RNGs would
manifest themselves in larger systems and longer processes.
Figures 2 and 6 demonstrate when and how such manifestation
becomes significant. It also demonstrates that passages in the
current random number test suites are not a proof of adequate
randomness in the RNGs, at least not for critical dynamics
studies; further tests such as static FSS tests are required.
Understanding of the mechanisms behind these behaviors may
gain us insights on both the random number generation and
the critical relaxation processes.

The observed bias amplification effect makes the investi-
gation of larger Ising lattices even more difficult, as a RNG
with even “higher” quality and more logical resources may
be required to produce consistent simulation results. It would
be interesting to find out in the future when and how high
quality RNGs such as Mersenne twister and WELL1024a give
noticeable deviations in large critical Ising lattices.

Shchur and Blöte studied the bias effects of LFSR-type
RNGs on the calculation of static properties such as energy
and specific heat of critical Ising lattices [72]. They found that
the bias reaches a maximum and decreases as the lattice size
increases further. This behavior was explained by the relative
bit shifting patterns in their LFSR RNGs. We do not see such a
behavior in this study because our random numbers are either
a combination of two RNGs or do not have overlapping bit
sequences so that no relative bit-shifting patterns exists in
consecutive random numbers.

Our FPGA-based simulation system allows us to test both
the static and the dynamic critical FSS behavior in larger
systems and longer periods that are unreachable before, and
the continued progress of the FPGA technology will enable
us to explore even larger systems and longer periods in the
future. The platform can easily be adapted for studying of
similar systems such as spin glass and random bond or random
site Ising models, which also display interesting long time
behaviors.

VI. CONCLUSION

Nearest-neighbor square Ising lattices with periodical
boundaries sizing from 32 × 32 up to 2048 × 2048 are studied
on FPGA-based computing devices. The linear relaxation
processes in these lattices are simulated at the bulk critical
temperature for extremely long durations to obtain accurate
evaluations of their linear relaxation times.

It is found that the linear relaxation time scales with the
power of the lattice size in accordance with the dynamic FSS
theory for correlation lengths as long as 2048. The dynamic
exponent z is determined to be 2.179(12), which is consistent
with the previous nonequilibrium and stochastic matrix studies
of Ising systems with much shorter correlation lengths.

It is noticed that simulations of critical dynamics in Ising
lattices become sensitive to the statistical correlations between
pseudorandom numbers when the lattices size is larger than
512, and this effect makes the investigation of critical dynamics
in larger Ising lattices even more difficult.
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