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Onset of time dependence in ensembles of excitable elements with global repulsive coupling
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We consider the effect of global repulsive coupling on an ensemble of identical excitable elements. An increase
of the coupling strength destabilizes the synchronous equilibrium and replaces it with many attracting oscillatory
states, created in the transcritical heteroclinic bifurcation. The period of oscillations is inversely proportional to the
distance from the critical parameter value. If the elements interact with the global field via the first Fourier harmon-
ics of their phases, the stable equilibrium is in one step replaced by the attracting continuum of periodic motions.
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I. INTRODUCTION

Classification of interactions among elements of various
ensembles is often defined by the way in which coupling affects
the difference between the close states of units. An interaction
that tends to decrease the difference is usually called attractive;
an interaction that sets the elements further apart is named
repulsive. In the context of synchronization, the focus has been
understandably put on the attractive coupling: It brings the
elements closer, facilitating their synchrony. Repulsive inter-
actions have received less attention, although they are widely
present both in nature and in technical applications. Indeed, the
famous observation of synchronization by Huygens apparently
dealt with repulsive (in terms of the phase) interaction: His
phrase “Oscillations of the pendulums, when they are in
agreement, are not parallel to each other; on the contrary, they
approach each other and depart” [1] portrays pendulums of
two clocks, oscillating in counterphase. Inhibitory interactions,
widespread in biophysical systems, e.g., neuronal ensembles,
turn in models into repulsive coupling. Recently, a rich
dynamics was reported for phase oscillators with purely
repulsive [2,3] and mixed [4,5] coupling.

In neuronal dynamics, excitability of separate cells is
often combined with repulsive interaction between them.
Below we consider bifurcations in the ensemble of identical
excitable elements. Each unit alone possesses a stable state
of equilibrium. If mutual repulsion is introduced into such an
ensemble, its intensity should be sufficiently large to overcome
the individual stability of each element and to destabilize
the collective equilibrium. For global coupling, we derive the
scenario of the onset of oscillations with finite amplitude and
large (asymptotically infinite) period.

We start with the highly degenerate transcritical bifurcation
that occurs when a synchronous state of equilibrium loses
stability. None of the ~2V~! steady states participating in the
bifurcation is stable beyond it. New attractors are periodic
orbits born in the global event: the transcritical heteroclinic bi-
furcation that accompanies destabilization of the synchronous
equilibrium. Remarkably, the period of oscillations is inversely
proportional to the distance from the bifurcational parameter
value. Generally, these orbits are isolated limit cycles, but
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in the situation of sinusoidal coupling when each element
interacts with the mean field via the first Fourier harmonics
of its phase, the Watanabe-Strogatz phenomenon takes place:
The dynamics preserves N — 3 quantities [6], hence periodic
orbits form in the phase space (N — 3)-dimensional attracting
manifolds. In this way, the bifurcation scenario leads in just
one step from the equilibrium to continua of periodic solutions.

II. STEADY STATES AND THEIR STABILITY

A paradigmatic simplification for ensembles of excitable
elements is the set of globally coupled active rotators
dy; :

?za)—smcp,-jtx;sin(wj—wi), (1

introduced by Shinomoto and Kuramoto [7]. Here the on-site
dynamics is described by the Adler equation. At w < 1 each
uncoupled unit is excitable: Sufficiently large perturbations
evolve to the stable equilibrium ¢ = arcsin @ nonmonoton-
ically, imitating a spike. The coupling term contains equal
contributions from all elements. Studies of Eq. (1), mostly with
added noisy terms, concerned the case of positive coupling
strength « [7-10].

Global coupling is a mean field created by the elements of
the ensemble and acting upon all of them. Not restricting it to
an arithmetic mean over units, we view it as a function or set
of functions that depend on the instantaneous state of every
element.

Many ensembles (e.g., those of neurons) admit a di-
chotomy: Each element either activates or inhibits the rest.
A corresponding generalization of (1) is a set of N globally
coupled identical one-dimensional elements, each one with its
own coupling coefficient y; that defines its action upon every
other unit: It attracts all elements if y; is positive and repels
them if y; is negative. The equations read

dy

EzF((/)i)—i-Zijin((pj—(p,-), i=1,...,N, (2
J

with a 2 -periodic continuous function F(¢) that has two zeros
in the interval [0,27). Of these zeros, one corresponds to the
stable fixed point ¢gp in dynamics of the isolated element.
We do not demand that all y; are negative; as we will
see, the sign of ' = ) ; vj 1s important. Since ¢; have the
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meaning of angles, we represent the instantaneous state of the
system by plotting ¢; on the same circle which we call the state
space. Several units that incidentally share the value of ¢ stay
together forever, forming in the state space a cluster. In the
N-dimensional phase space, solutions with M clusters form
M-dimensional invariant manifolds. Common for systems of
identical units, this property is crucial for the bifurcation
scenario considered.

The second-order Taylor expansion of (2) near the syn-
chronous equilibrium ¢; = @pp reads

dx,

o = ax; +bx? +ZV,(X, Xi),

J

where x; = ¢; — ¢pp, a = F'(¢pp), and b = 2F" (¢pp). Sta-
bility of equilibrium for the decoupled unit implies a < 0.
At the synchronous equilibrium all x; vanish; the Jacobian
matrix has the simple eigenvalue a and the eigenvalue a — I"
with multiplicity N — 1. AtI" > 0 when attractive interactions
dominate, the largest eigenvalue is a, hence the equilibrium
stays stable. To observe the synchrony breakup, we concentrate
on the case of prevailing repulsion I' < 0.

In terms of ¢ =a —I', the synchronous state is stable
at negative ¢ and unstable at ¢ > (. Below we treat ¢ as a
bifurcation parameter. Other steady states of (3) fulfill

ex; +bx? +S=0, i=1,...,N, 4)

i=1,...,N, (3

with § =" ; ¥jx;j. For each steady state, every coordinate x;
can, regardless of i, attain either of two values

2bx; = —g £ /2 — 4bS. (5)

Therefore, each steady solution is a two-cluster state, uniquely
characterized by the set {0y, ...,oy}, where o; equals 1 if
the square root in (5) for the ith coordinate is chosen with +
and —1 if it is taken with —. Summation of y;x; yields the
self-consistent equation for S:

2bS = —el + Qv &% — 4bS, 6)

where Q =}, y;o; is the weighted sum of signs. In contrast
to the overall coupling I' shared by all states, the value of Q
depends on configuration: on the choices of signs in (5) for all
coordinates. Formally, Q assumes 2N different values, but for
the bifurcation at & = 0 only the half is relevant. Smallness of
solutions near ¢ = 0 implies

Q2 _ F2

_e-lo 3
S = 1507 &” + 0(g). @)

This turns (5) into

2bx; = —¢ —I—aigs + 0@, i=1,....N. (8
Solvability of (6) at Q # 0 and small |e| requires eT'Q > 0
Negative I' turns it into ¢ @ < 0. Hence, the number of two-
cluster steady states that at ¢ = 0 and Q # 0 collide with the
synchronous equilibrium equals 2V~

Pitchfork bifurcations occur in the nongeneric situation of
vanishing Q; at negative I" pitchforks are subcritical and their
branches lie in the region ¢ < 0. At Q # 0, all branches are
transcritical: While approaching ¢ = 0, every coordinate of
every steady state varies linearly and changes sign after passing
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FIG. 1. (a) Transcritical bifurcation: collision of 2¥~! steady
states with synchronous equilibrium at ¢ = 0, with N = 4. The solid
line shows the stable state and the dashed lines show the unstable
states. (b) Sketch of heteroclinic trajectory in the phase space. Here
M,, M,, and M5 are the invariant manifolds built by two-cluster
states. Circles are replicas of equilibrium. (c) Snapshot of state
space at k = k. Circles are the positions of clusters; 1 and 9 show
the populations of clusters, and the plus indicates the location of
synchronous equilibrium.

through ¢ = 0. Accordingly, along each branch the value of

| Q| stays constant, but Q has a different sign for ¢ > 0 and

& < 0. A typical bifurcation diagram is sketched in Fig. 1(a).
Concerning stability, eigenvalues A of the steady state fulfill

1+QZ

If the number of positive entries in the set {o;} is p, then (9)
has p — 1 equal positive roots I'e/Q and N — p — 1 negative
roots —I["e/ Q. Two remaining eigenvalues solve

A=Al —Te—(Te/0P =0 (10)

Qk ]‘[(rw, 0V =0. (9

and at small |¢| are A = " and A & —¢. The latter ensures that
at negative ¢, when the synchronous equilibrium is stable, all
other steady states are unstable. Summarizing, while crossing
& = 0 along transcritical branches, for each steady state all
coordinates and all eigenvalues, except for one negative,
change their signs. After the bifurcation, at positive ¢, all
nontrivial steady states with p > 1 are unstable. Stable states
with p = 1 acquire relevance only under strongly unbalanced
coupling, which in systems like (1) never occurs: One element
repels more strongly than the whole rest of the ensemble.! Then
events around ¢ = 0 remind us of the classical transcritical
bifurcation: a complete exchange of stability between two
steady states, one of them stable, the other one with an
(N — 1)-dimensional unstable manifold. Below we treat the
case where none of the |y;| exceeds the sum of all other
coupling coefficients: There, all nontrivial steady states at
either sign of ¢ are unstable.

III. TRANSCRITICAL HETEROCLINIC BIFURCATION

After destabilization of the synchronous equilibrium, its
vicinity contains neither a stable steady state (see above) nor a
small limit cycle: Eq. (2), like many similar systems, obeys

YAt p = 1, the plus sign in (5) is present only once; let it correspond
to the coordinate x;. Then Q =y, — Z Y= 2y, — I'. Hence,
inequalities " < 0and2y; — I' < 0 hold simultaneously; this implies
that y; is negative, whereas |y; | exceeds the absolute value of the sum
of all other y;.
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gradient dynamics. Instead, a big limit cycle appears: All
oscillators, one after another, rotate their phases by 2. This
limit cycle is born at ¢ = 0 in the transcritical heteroclinic
bifurcation [11] from the contour which, in the phase space,
connects the neutral point of equilibrium to its N replicas
shifted by 2 along one of the coordinates.’

Components of heteroclinic connections lie on the invariant
manifolds of two-clustered states. The system evolves along
one of such manifolds, switches to the other one when
it reaches their crossing, proceeds to the third one, etc.
[Fig. 1(b)]. In the simplest case when all y; are negative, the
ensemble breaks into a cluster of N — 1 units and a solitary
element.

Heteroclinic dynamics looks as follows. At ¢ =0 the
synchronous state is neutrally stable. Since the bifurcation is
transcritical, in the state space only one direction is unstable. If
the equilibrium is slightly disturbed, the element farthest from
orp departs from the rest of the cluster. The latter sways close
to ¢rp, Whereas the renegade element performs a full rotation
around ¢ [Fig. 1(c)].

The loss of one repelling element consolidates the re-
mainder: The cluster loses a portion of repulsion and the
remaining amount of repulsion is insufficient for further
fragmentation. Let the renegade have number r. In (2) the
instantaneous growth rate for the perturbations in the cluster of
size N — 1is X.(t) = ¢ + y,{1 — cos[e,(t) — ¢pp]}; at e =0
and y, <0, X.(¢) is negative for all ¢, outside gpp. When
the turn around the circle is accomplished, the renegade joins
the cluster, which thereby again becomes fragile; the next
element breaks away to perform a full rotation and so on.
Since identical one-dimensional units cannot overtake each
other, all of them, one by one, make the excursion around the
circle. When the last one returns to the cluster, the contour
gets completed. Permutations of elements produce (N — 1)!
contours that differ by the succession of individual rotations.
For the permutationally invariant model (1), all contours
belong to the same orbit of the symmetry group, but in the
generic case of different y; none of them is equivalent to
another one.

As soon as & becomes positive, heteroclinic contours break
into stable periodic orbits. In general (see Sec. IV for the
remarkable exception), such orbits are isolated in the phase
space. Scaling argument shows that the passage duration near
the neutral equilibrium is inversely proportional to the initial
distance from its stable manifold. Therefore, when ¢ grows,
the period of oscillations decreases as ¢~!. At small ¢ the
dynamics reminds us of the heteroclinic situation: Elements,
one by one, depart from the cluster (which, in the state space,
swells to finite size), perform a rotation, and return from the
other side (Fig. 2). Every rotation of one unit results in a short
bump of the mean field. At larger ¢ clusters get fuzzy, but the
basic pattern persists: The cycle includes one rotation around
the circle for each element.

If some units are attracting, the picture is less uniform: After
departure of an attracting element from the neutral cluster,

2Heteroclinic terminology refers to the Euclidean phase space. If the
phase space is viewed as a torus [0 : 277)", the replicas coincide with
the equilibrium and heteroclinic orbits turn into homoclinic ones.
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FIG. 2. Periodic states in Eq. (1) at N = 10 and w = 0.7 for (a)
k = —0.724 143 (¢ = 0.01), period 580.657, and (b) k = —0.814 143
(¢ = 0.1), period 66.532. Solid curves show the mean field and dashed
curves show the separate elements.

repulsion prevails in the remainder, hence further splittings
occur before the return of the renegade [12]. Since dynamics
preserves the ordering on the circle, oscillations retain the
basic pattern, whereas the details of grouping depend on the
arrangement of repelling and attracting units.

IV. WATANABE-STROGATZ DYNAMICS

Two decades ago Watanabe and Strogatz discovered a
huge number of conserved quantities in dynamics of identical
elements, globally coupled through sinusoidal interactions:
For a set of N oscillators, there are N — 3 constants of motion
[6]. This property is shared by every system of identical
one-dimensional units, coupled to the mean field through their
first Fourier harmonics [13,14]: a system reducible to the form

¢,
dt

f(--) being a common field. Conserved quantities of the
dynamics are cross ratios [13]

g+e?f(pr,....pn)+cc., i=1,...,N, (11)

sin & ¢’ sin &L

I
ikt = ¢z ¢k

¢k &

sin 252 ¢’ % (12
Given a set of N —3 ratios and values of three phases
(¢i,¢.91), solving (12) for ¢; reconstructs the remaining
N — 3 phases in a unique way.

Once a set of constants is fixed (through, e.g., the choice of
initial conditions), the effective dynamics is three dimensional:
Instantaneous states of the system can be transformed into
each other by the Mobius transformation on the unit circle.
The latter, a tool from complex analysis, is completely defined
by three (in this case, time-dependent) real coefficients, whose
temporal evolution is mapped onto the evolution of N phases
[13]. Different sets of constants for the same equation (11)
define different invariant three-dimensional subspaces in its
N-dimensional phase space, hence their respective attractors
can differ, at least quantitatively.

We immediately notice that Eq. (2) falls in the class (11)
whenever F(¢) is a constant or the first-order trigonometric
polynomial in ¢, like the model (1). Indeed, in direct
simulations of Eq. (1) at N > 3, fixed w < 1, fixed « <

ke = —+/1 — @?, and randomly chosen initial states, all trials
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FIG. 3. Period of oscillations in Eq. (1) with o =0.7.
(a) Dependence on the cross ratio Iy, at k = —0.8 and N = 4.
(b) Asymptotics near i, at fixed (randomly chosen) I;j;.

eventually converge to periodic orbits, but practically every
new set of initial conditions ends up on a new periodic solution,
not transformable into already known ones by permutation of
coordinates.

Ambiguity is lifted when N — 3 cross ratios (and thereby
the three-dimensional subspace in the N-dimensional phase
space) are fixed. For N = 4, each subspace contains only
one (up to permutations) limit cycle; these cycles form in the
whole phase space the attracting continuum of closed orbits,
parametrizable, e.g., by I134. By varying I under fixed w and
k we observe a variation of the period along the continuum
[Fig. 3(a)]. Fixing I and varying « confirms that at all N in
every three-dimensional subspace periods of attracting orbits
diverge as ~ (k.. — k)~ [Fig. 3(b)].

Numerical studies of Eq. (1) show continua of periodic
motions for all tested values of N > 3 and x < k. Re-
markably, for N > 5 and every fixed (up to permutations)
set of N —3 cross ratios, there are two attracting periodic
orbits with slightly differing period values [12]. In the case
of (2) with all coupling weights y; negative and different, the
three-dimensional subspace with fixed cross ratios contains N !
different periodic attractors (except for N = 4, with 12 limit
cycles).

A few words about the limit N — oo are in order (see
[12] for details). There, a description in terms of phase
density p(¢,t) is more appropriate. Its Fourier coefficients

Ok = % fozn pek‘”dgo obey the infinite set of equations [7,9]

1, . Prk—=1 — Prt1 + k(P1pk=1 — P} Pr+1)
E/Ok = 1wp; + 5

complemented by the boundary condition pyp = 1. An infinite
number of conserved quantities in (1) induces infinite foliation
in the space of solutions of (13). The Ott-Antonsen subspace
with p; = a(¢)* [15] has an attracting fixed point that for x >
k¢ corresponds to the § distribution at ¢ = arcsinw and for
K < K¢ its coordinate ¢; = Re(w) solves the equation

13)

C?K + C%(l — 2K2) + C]K(IC2 + 40? — 2)+ k> =0.

The fixed point yields the only stationary distribution of density
in (13); all other distributions stay time dependent forever.

V. DISCUSSION

The mechanism presented, in one step, leads the ensemble
of rotators from the stable equilibrium either to a rather
high (~N'!) number of different periodic attractors or (under
sinusoidal coupling) to attracting continua of periodic states.
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Such systems with a multitude of attractors can be used as
simple models of information storage.

The analysis in Sec. II was based on Eq. (3): coupling via
the difference of instantaneous states, but its implications stay
valid for a broader class of interactions. Any linear coupling
can be put into this form by rearrangement of summands,
whereas the higher-order coupling terms influence neither the
character of bifurcation at ¢ = 0 nor the number and stability
of participating states.

In real systems the elements are not identical and the
coupling does not reduce to just one Fourier harmonic. The as-
sumption in (2) that each element acts upon all partners with the
same intensity y; is also a restriction: In many networks attrac-
tion or repulsion s a property of alink and not of anode. To dis-
cuss the implications of weak violations of the setup, we start
with the attracting high-dimensional Watanabe-Strogatz con-
tinuum of periodic orbits. When the units are slightly noniden-
tical and/or the coupling includes higher Fourier harmonics,
the continuum dissolves. What is left depends on the particular
kind of disturbances; the general perturbation theory near the
Watanabe-Strogatz class is yet to be constructed. Our empirical
observations show that in the simplest, but quite common, situ-
ation finitely many isolated periodic orbits survive and become
ultimate attractors of the system. If the permutation symmetry
persists, such orbits are often “ponies on the merry-go-round”
[16]: All N oscillators perform the same motion, while with
respect to each other they are shifted by 1/Nth of the period.
[In the nonperturbed Watanabe-Strogatz situation, equal shifts
are incompatible with a generic set of conserved cross ratios
(12); this explains uneven distances between the bumps of the
mean field in Fig. 2.] Generally, a separation of time scales
takes place: N — 3 local neutral directions in the phase space,
corresponding to conservation of cross ratios, turn into the
(N — 3)-dimensional slow manifold and the remaining three
directions correspond to fast dynamics. For certain distur-
bances, the system wanders along the slow manifold. Since in
the unperturbed case each point of that manifold corresponds to
periodic motion, this wandering looks like a slowly modulated
fast oscillation. If, in the phase space, parts of the slow
manifold are repelling, trajectories that cross the border of the
repelling region can exhibit canardlike dynamics: alternation
of slowly modulated oscillations and fast violent bursts.

Transcritical bifurcation of the synchronous equilibrium
does not survive introduction of diversity among the units:
It is replaced by a succession of saddle-node bifurcations,
which, after its completion, leaves no stable steady states.
The transcritical heteroclinic bifurcation breaks up as well;
depending on the particularities of diversity, limit cycles stem
from orbits heteroclinic to saddle points or from heteroclinics
to saddle nodes. The onset of time dependence turns into a
jump from the equilibrium to one of many available large-
amplitude limit cycles.
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