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We study a universal structure of two- and three-dimensional self-gravitating systems in the quasiequilibrium
state. It is shown numerically that the two-dimensional self-gravitating system in the quasiequilibrium state has
the same kind of density profile as the three-dimensional one, especially when null virial conditions are fulfilled.
It is unveiled why the conditions are necessary for the universal structure by the envelope equation. We develop
a phenomenological model to describe this universal structure by using a special Langevin equation with a
distinctive random noise to self-gravitating systems. We find that the density profile derived theoretically is very
consistent with results of observations and simulations.
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Introduction. Systems with long-range forces exhibit vari-
ous specific properties which systems with short-range forces
do not have. One of the prime examples is the presence of
another stable state differing from the thermal equilibrium
state. In this paper, we call it quasiequilibrium state (QES).
It has been found numerically that the distribution of QES
depends not only on the energy or other thermodynamical
quantities but also on how particles distribute at initial time [1].
The three-dimensional self-gravitating system (3DSGS) satis-
fying initial conditions that the velocities are isotropic and
the virial ratio V 3(≡ 2K3(0)/|�3(0)|) is 1 is trapped in QES,
whose number density can be obtained by coarse graining the
distribution function of particles under the mean field potential
in phase space [2], where we denote respectively the total
kinetic and gravitational energy at a time t by K3(t) and �3(t)
and the superscript means the three-dimensional space. On
the other hand, we have obtained numerically the result that
the number density N of 3DSGS around the center of the
system can be approximated by the following representation
especially when V 3 = 0:

N (r) � N (0)

(1 + r2/a2)κ
(1)

with κ ∼ 3/2, where r means the distance from the center
of the system [3,4]. The number density of globular clusters
which are the best example of 3DSGS also can be depicted by
Eq. (1) with κ ∼ 3/2 [5–7]: This density profile is universal
for 3DSGS.

The recent observations have made it clear that the
universality is not just limited to 3DSGS. As discussed later,
the cylindrically symmetric filamentary structure of molecular
clouds can be treated as a two-dimensional SGS (2DSGS).
The Herschel Space Observatory revealed the 27 filamentary
structures in IC 5146, which is a reflection nebula in the
Cygnus, and the number density of molecular clouds have
a cylindrical symmetry around the axis of the filament [8]. All
the number densities of molecular clouds around the axis can
be fitted by Eq. (1) with κ from 0.75 to 1.25 [8], where r means
the distance from the axis. On the other hand, Eq. (1) with
κ = 1 was utilized in order to describe the number density of
a filament in the Taurus [9]. Therefore, 2DSGS has a similar
universality depicted by Eq. (1) with κ ∼ 1. As explained

later, the interaction potentials of 2D and 3DSGS differ, with
one being bounded and the other unbounded. However, the
universality is beyond this difference.

Obviously, the universal number density cannot be derived
by assuming the system is in the isothermal equilibrium:
2DSGS has a global maximum of the Massieu function if
the temperature is larger than a critical value [10,11]. The
equilibrium state for 2DSGS has an exact solution for number
density represented by Eq. (1) with κ = 2 [11,12]. On the other
hand, 3DSGS has a local maximum of the Massieu function
if the temperature is larger than a critical value [13,14].
The number density of 3DSGS in this state decays with
r−2 at large radius r [7,14]. Therefore, a new theory ex-
plaining the physical mechanism behind the universality is
necessary.

Here, let us explain that there are two kinds of QES in
systems with long-range forces. One is a collisionless state
described by the Vlasov equation [1,7]. During the two-body
relaxation time, the system is in this state. Generally, this
relaxation time is dependent on the number of particles N

in the system, e.g., 0.1N/ ln Ntcross for 3DSGS where tcross

is the crossing time [7]. Therefore, in the limit N → ∞, the
system is trapped by the state permanently. The other one is a
collisional state. The method with a mean field approximation
to describe this state is by utilizing the Fokker-Planck or the
Boltzmann equation [7,14].

In this paper, we shall derive the universal density Eq. (1)
from a phenomenological model particular for gravity by
utilizing a special Langevin equation for QES and the
corresponding Fokker-Planck equation in the μ-dimensional
space where μ is 2 or 3. We shall treat them in the overdamped
limit. Indeed, the normal Langevin equation in the limit and the
corresponding Fokker-Planck equation (i.e., Smoluchowski
equation) is appropriate for describing 3DSGS enclosed in
a box near the thermal equilibrium [14], since the Maxwell-
Boltzmann distribution is stable for 3DSGS in the thermal
equilibrium state with the total mass and energy fixed if the
radius of system is less than a critical value [13–16]. However,
it is well known empirically that SGSs without boundary are
trapped by another stable state, that is, QES, so that we must
modify the Langevin and the Fokker-Planck equation in order
to describe the state.
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Two-dimensional gravity. The two-dimensional gravita-
tional potential per unit mass φ2 generated by mass source
ρ2 satisfies the following Poisson equation:

1

r

∂

∂r

{
r
∂φ2(r,θ )

∂r

}
+ 1

r2

∂2φ2(r,θ )

∂θ2
= 4πG′ρ2(r,θ ), (2)

where the superscript means the two-dimensional space and
we denote the two-dimensional gravitational constant by G′ in
order to distinguish it from the ordinary gravitational constant
G. If the distribution of mass is circularly symmetric, the above
equation becomes

1

r

d

dr

{
r
dφ2(r)

dr

}
= 4πG′ρ2(r) . (3)

When the mass source is a mass point with a mass m existing
in the origin, ρ2(r) = mδ(r)/πr , where δ(r) means the Dirac
delta function. Then, one can see that a single-particle potential
per unit mass φ2

sp satisfies the following Poisson equation:

1

r

d

dr

{
r
dφ2

sp(r)

dr

}
= 4mG′δ(r)

r
. (4)

Therefore, the potential can be solved like

φ2
sp(r) = 2G′m ln r + const. (5)

Thus, the interaction potential of 2DSGS is bounded, whereas
one of 3DSGS is proportional to −1/r .

Finally, we shall provide a brief explanation for the reason
that cylindrically symmetric filaments of molecular clouds can
be regarded as 2DSGS: By using the mass density of molecular
clouds ρ3

mc and the gravitational potential per unit mass φ3
mc

where the superscript also means the three-dimensional space,
because of the symmetry, the Poisson equation becomes

1

r

d

dr

{
r
dφ3

mc(r)

dr

}
= 4πGρ3

mc(r), (6)

which is mathematically equivalent to the Poisson equation for
2DSGS, Eq. (3).

N-body simulations. Because the equivalence is merely
formal, we followed the time evolution of 104-body system in
the two-dimensional space interacting by Eq. (5) numerically
in order to investigate QES of 2DSGS.

A polytrope solution with a polytrope index n was adopted
as the initial condition. The solutions with n = 0 and n =
∞ respectively correspond to the uniform distribution and
the thermal equilibrium state: The finite n represents the
deviation from equilibrium. Generally, the solution in the
three-dimensional space is well known [7]. Here, we have
extended it to the two-dimensional space. The one-particle
distribution function (DF) f 2(r,v) in phase space can be shown
as

f 2(r,v) ∝
{
En−1 (E < 0)

0 (E � 0)
, (7)

where E ≡ φ2(R2) − { 1
2v2 + φ2(r)} and R2 means a radius of

the system. Then, we run the N -body simulation by varying
an initial virial ratio V 2 which can be represented by V 2 ≡
2K2(0)/G′M2 (see Refs. [17] and [18]) where we have utilized
N − 1 � N and denote the total kinetic energy of 2DSGS at t
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FIG. 1. (a) Number densities at QES for several initial polytrope
indices are plotted by open circles. The curve passing the circles is a
fitting function, Eq. (1). So as to be seen easily, each density is shifted
to the two digits. (b) The optimum values of κ in Eq. (1) for fitting
the number densities with respect to the initial polytrope index n.

and the total mass by K2(t) and M , respectively. Note that the
system is not enclosed in a circle.

Especially when V 2 = 0, it is found that the number density
in QES has a universality and the density around the center of
the system can be fitted well by Eq. (1). The QES is so stable
that the characteristic of the number density does not change
during the simulations. The results are shown in Fig. 1. It can
be seen in Fig. 1(a) that the number density from n = 0 to 10
has the same profile. In addition, Fig. 1(b) denotes that κ which
is the index in Eq. (1) ranges from 0.8 to 1.1. These results
have a good consistency with the observations of molecular
clouds [8,9].

Null virial conditions. We have made sure that the number
density of 2DSGS without boundary in QES can be represented
well by Eq. (1) with κ ∼ 1, especially when V 2 = 0. On the
other hand, the number density of most globular clusters is well
known to be fitted by Eq. (1) with κ ∼ 3/2 [5–7]. Furthermore,
we have reported that the same density profile is obtained
through N -body simulations of 3DSGS, especially when V 3 =
0 (see Refs. [3] and [4]). Therefore, we can conclude that SGSs
without boundary have the universal density profile depicted
by Eq. (1) in QES, especially if the null virial conditions are
fulfilled.
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In order to find out why the conditions are necessary, we
shall utilize the following envelope equation (EEq) of the
μ-dimensional SGS with the total mass M where μ is 2 or
3 [1,18]:

r̈μ
e (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

(G′M)2

(
ε(t)2

4r2
e (t)3

− G′M
〈
r2 · ∂φ2

∂ r2

〉
t

r2
e (t)

)
(μ = 2)

M2

(
ε(t)2

4r3
e (t)3

− 1

M

〈
r3 · ∂φ3

∂ r3

〉
t

r3
e (t)

)
(μ = 3)

,

(8)
with ε(t)2 = 4(〈rμ · rμ〉t 〈vμ · vμ〉t − 〈rμ · vμ〉t 2), in which
rμ,vμ, and φμ are the position, the velocity vector, and
the mean gravitational potential per unit mass in the μ-
dimensional space, respectively. The average 〈•〉t of EEq can
be represented as follows by using DF f μ(rμ,vμ,t) satisfying
the Vlasov equation: 〈•〉t ≡ ∫

dμrμ
∫

dμvμ • f μ. Therefore,
EEq is valid for collisionless systems and ε(t)2 cannot be less
than 0 because of the Cauchy-Schwarz inequality

〈rμ · rμ〉t 〈vμ · vμ〉t � 〈rμ · vμ〉t 2
. (9)

Moreover, the envelope r
μ
e (t) is defined as r2

e (t) =√
〈r2 · r2〉t /G′M or r3

e (t) =
√

M〈r3 · r3〉t . For simplicity, we
shall utilize the following notations: r ≡ |rμ| and v ≡ |vμ|.
Then, the total kinetic energy at t can be represented by using
the average as M〈v2〉t /2. Therefore, the initial virial ratios are
V 2 = 〈v2〉0/G′M and V 3 = M〈v2〉0/|�3(0)|.

Here, we shall consider the following situation which is
consistent with the numerical simulations: The system is in
the dynamical equilibrium state until t = 0, which means that
the virial ratio is 1. Then, when t = 0, we shall alter the
velocity of each particle by multiplying a constant

√
V μ in

order to set the virial ratio V μ. Therefore, the system will be
in the collisionless state until the collapse which means the
contraction of the system as will be explained later occurs and
the system becomes collisional.

Let us calculate 〈rμ · ∂φμ

∂ rμ 〉t . From here, we shall postulate
the system is circularly (μ = 2) or spherically (μ = 3)
symmetric and isotropic in velocity. Thus, we obtain

〈
rμ · ∂φμ

∂ rμ

〉
t

=
〈
r
∂φμ

∂r

〉
t

= Sμ

M

∫ Rμ

0
drrμ−1r

∂φμ

∂r
ρμ (10)

where Rμ is a radius of the system and Sμ means the
surface area of a unit sphere in the μ-dimensional space:
Sμ = μπμ/2/�(μ/2 + 1), where � is the gamma function.
Additionally, we have utilized the relation between DF and
the density ρμ: ρμ = M

∫
dvSμvμ−1f μ.

By using the Poisson equation

1

rμ−1

∂

∂r
rμ−1 ∂φμ

∂r
= 4πGμρμ, (11)

where Gμ relates quantities that appeared previously as G2 =
G′ and G3 = G, the representation (10) can be calculated as

〈
r
∂φμ

∂r

〉
t

= Sμ

4πGμM

∫ Rμ

0
drr

∂φμ

∂r

∂

∂r
rμ−1 ∂φμ

∂r
. (12)

When μ = 2, Eq. (12) can be simplified as [1,18]〈
r
∂φ2

∂r

〉
t

= 1

4G′M

(
r
∂φ2

∂r

)2∣∣∣∣
r=R2

. (13)

Here, because of M = ∫
dr2πrρ2 = 1

2G′
∫

dr ∂
∂r

r
∂φ2

∂r
=

1
2G′ r

∂φ2

∂r

∣∣∣
r=R2

, Eq. (13) becomes

〈
r
∂φ2

∂r

〉
t

= G′M . (14)

When μ = 3, by using Eq. (11), the total gravitational
potential �3(= − ∫

dr4πr2ρ3 G
r

∫
dr ′4πr ′2ρ3) can be calcu-

lated as

�3(t) = − 1

G

∫ R3

0
drr

∂φ3

∂r

∂

∂r
r2 ∂φ3

∂r
. (15)

Therefore, 〈
r
∂φ3

∂r

〉
t

= |�3(t)|
M

. (16)

Eventually, EEq becomes

r̈μ
e (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

4(G′M)2

ε(t)2

r2
e (t)3

− 1

r2
e (t)

(μ = 2)

M2

4

ε(t)2

r3
e (t)3

− |�3(t)|
r3

e (t)
(μ = 3)

. (17)

Let us discuss initial conditions for Eq. (17). Obviously,
r2

e (0) =
√

〈r2〉0/G′M,r3
e (0) =

√
M〈r2〉0, and ṙ

μ
e (0) ∝ 〈rμ ·

vμ〉0. Because the initial DF is circularly or spherically
symmetric and isotropic in velocity, 〈rμ · vμ〉0 = 0: The DF
does not have any information about the angle between the
position and the velocity. Indeed, the polytrope solution is
such a kind of distribution. Therefore, ṙ

μ
e (0) = 0.

The potential energy in Eq. (17) has a global mini-
mum when ε(t)2 > 0 which holds if V μ > 0 as explained
later. The r

μ
e

∗ minimizing this potential at t = 0 is as fol-
lows: r2

e
∗
(0) =

√
〈r2〉0〈v2〉0/G

′M =
√

V 2r2
e (0) or r3

e
∗
(0) =

M
√

〈r2〉0〈v2〉0/|�3(0)| =
√

V 3r3
e (0), which reflect how the

particles initially distributed. Therefore, if V μ � 1, the sys-
tems are stable [1,18].

If and only if V μ = 0, the potential has no global minimum,
i.e., ε(0)2 = 0. Therefore, only if the null virial conditions are
fulfilled, the envelope is attracted to the origin independently
of the initial distribution at the moment.

Fokker-Planck model. This behavior of the envelope under
the null virial conditions means that all the particles are
attracted to the origin, which is the collapse.1 Then, because
of the finite N , the inner particles arrive before the outer ones,

1Note that the emittance generally becomes nonzero while the
system contracts. Therefore, the collapse does not mean that all the
particles concentrate at the origin. When the initial distribution is
homogeneous, the position is proportional to the velocity, so that the
equality holds in Eq. (9), resulting in ε(t)2 = 0. Because of the finite
N , however, it is impossible that all the particles reach the origin at
the same time [19].
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so that the density around the center becomes quite high.
The high density causes a transition from the collisionless
to the collisional state.2 After this transition, EEq is not
appropriate for describing this system because this equation is
valid for collisionless systems as mentioned before. Therefore,
we shall derive the density profile uniformly by a special
Fokker-Planck equation in the μ-dimensional space. The
reason why we adopt the Fokker-Planck equation approach
rather than the Boltzmann equation is as follows: Because of
the high density around the center of the system, it is natural
to consider that each collision there cannot be distinguished.
Thus, the Boltzmann equation premising that the collision is
distinguishable is not appropriate.

Before constructing the Fokker-Planck equation, we shall
model forces influencing an particle of the system. In
other words, we shall begin by constructing a Langevin
equation.

We assume that the frictional force −mγ ṙμ(t) and the
random noise with constant intensity

√
2Dξμ(t) which are

essential for a many-body system to reach the thermal
equilibrium state act on the particle [14], where m is a mass
of the particle and ξμ(t) represents Gaussian-white noises.
The superscript means that the vector is in the μ-dimensional
space. Postulating the system to be circularly or spherically
symmetric,3 one can see that the particle is also influenced by
a mean gravitational force −Fμ(r) along the radial direction
of the system, which is derived by differentiating mφμ(r):
−Fμ(r) = −m∂rφ

μ(r). However, this is just a mean gravity. It
is natural to consider that the particle is actually influenced by a
fluctuating gravity around the mean value: The number density
producing φμ(r) through the Poisson equation is the mean
value, and the actual distribution of particles must fluctuate
around the value. This means that another noise which prevents
the system from reaching the thermal equilibrium state is added
to the normal Langevin equation, so that this system goes to
another stable state, i.e., QES. Therefore, we can consider the
noise distinctive to SGS. Note that the fluctuations appear
only because of the finiteness of the number of particles.
As mentioned in the introduction, if the number goes to
infinite the Vlasov equation becomes appropriate to describe
the system [1], which means that each particle is influenced
only by the mean potential.

If we assume the intensity of the noise to be constant, we
obtain the following Langevin equation in the overdamped
limit:

mγ ṙμ(t) = −Fμ(r){1 +
√

2εη(t)}eμ
r − ∂

∂r

ε

2mγ
Fμ(r)2eμ

r

+
√

2Dξμ(t), (18)

2In the case of 3DSGS, it is well known that the local two-body
relaxation time by which the system becomes collisional is inversely
proportional to the number density [20].

3Note that Pakter et al. showed that the symmetries in SGSs with low
virial ratio break down [22]. However, the symmetries remain around
the centers of SGSs, which is confirmed numerically. Therefore, the
assumption of symmetries is relevant as long as we discuss the vicinity
of the center.

where eμ
r is a unit vector along the radial direction in the

μ-dimensional space and the second term on the right-hand
side of the above equation is a correction term in order to
regard products as the Stratonovich product [21].

The corresponding Fokker-Planck equation is given
by

∂

∂t
P μ(r,t) = D

(mγ )2

{
∂2

∂r2
+ μ − 1

r

∂

∂r

}
P μ(r,t)

+ 1

mγ

1

rμ−1

∂

∂r
rμ−1Fμ(r)P μ(r,t)

+ ε

(mγ )2

{
∂2

∂r2
+ μ − 1

r

∂

∂r
+ μ − 1

rμ−1

∂

∂r
rμ−2

}

×Fμ(r)2P μ(r,t). (19)

We are treating the system as a circularly or a spherically
symmetric one including N particles. Hence, the probability
distribution function (PDF) P μ is a function of the distance
from the origin r . Note that, in this theory, the relation among
P μ, the number density N μ, and the mass density ρμ is as
follows: P μ = N μ/N = ρμ/(mN ).

Let us use Pμ = JμP μ instead of P μ, where Jμ means
Jacobian determinant: Jμ = Sμrμ−1. In doing so, we obtain

∂

∂t
Pμ(r,t) = D

(mγ )2

{
∂2

∂r2
− ∂

∂r

μ − 1

r

}
Pμ(r,t)

+ 1

mγ

∂

∂r
Fμ(r)Pμ(r,t)

+ ε

(mγ )2

∂2

∂r2
Fμ(r)2Pμ(r,t). (20)

When the system reaches QES, ∂tPμ
qe = 0. Here, we

integrate the Fokker-Planck equation over r . Owing to the
use of Pμ

qe, the integration becomes easier:

−
{

1 + εFμ(r)2

D

}
Pμ

qe
′(r)

+
[
μ − 1

r
− 2εFμ(r)Fμ′(r)

D
− mγFμ(r)

D

]
Pμ

qe(r)

= const. (21)

Let us determine the constant of the right-hand side of
the above equation by using the boundary condition at r =
0. Because of the symmetry, the mean field force can be
represented as Fμ(r) ∝ ∫ r

0 dr ′JμNP
μ
qe/rμ−1. Then,

Fμ(0) ∝ lim
r→0

∫ r

0 dr ′JμNP
μ
qe(r ′)

rμ−1

= lim
r→0

μπμ/2rμ−1

�(μ/2+1) NP
μ
qe(r)

(μ − 1)rμ−2
= 0, (22)

where we utilized the fact that P
μ
qe(0) is bounded. Since

P
μ
qe

′(0) is also bounded,Pμ
qe(0) = 0 andPμ

qe
′(0) = μπμ/2(μ −

1)δμ,2P
μ
qe(0)/�(μ/2 + 1), where δμ,2 is the Kronecker delta.

Thus, by taking the limit r → 0, the second term of the
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left-hand side of Eq. (21) goes to

lim
r→0

μ − 1

r
Pμ

qe(r) = lim
r→0

μπμ/2(μ − 1)rμ−2

�(μ/2 + 1)
P μ

qe(r)

= μπμ/2(μ − 1)δμ,2

�(μ/2 + 1)
P μ

qe(0), (23)

which cancels with the first term. Therefore, the constant of
Eq. (21) becomes 0. Additionally, by utilizing the number
density in QES N μ

qe(= NPμ
qe/J

μ), we can obtain

N μ
qe

′(r)

N μ
qe(r)

= − rFμ(r){mγ + 2εFμ′(r)} + (μ − 1)εFμ(r)2

r{D + εFμ(r)2} .

(24)
By substituting φμ = 1

m

∫
drFμ into the Poisson equation

φμ = 4πGμmN μ
qe, an equation governing Fμ can be ob-

tained as follows:

Fμ′(r) + μ − 1

r
Fμ(r) = 4πGμm2N μ

qe(r) , (25)

where ρ
μ
qe = mN μ

qe = mNP
μ
qe = mNPμ

qe/J
μ.

Here, we nondimensionalize these equations by using the
following units of length and force:

[length] =
√

μ2(μ + 2)T μ/2πGμm3N μ
qe(0), (26)

[force] =
√

8πμ2(μ + 2)GμmN μ
qe(0)T μ, (27)

where T μ=D/{μ2γ + 8π (μ2 + 4μ+ 2)εGμmN μ
qe(0)}. Then,

Eqs. (24) and (25) are altered to

N̄ μ

qe
′(r̄)

N̄ μ

qe(r̄)
= −2μ(μ + 2)

× r̄ F̄ μ(r̄)
{
1 + 2μqF̄ μ′(r̄)

} + μ(μ − 1)qF̄ μ(r̄)2

r̄
{
μ + 2(μ2 + 4μ + 2)q + 2μ2(μ + 2)qF̄ μ(r̄)2

} (28)

and

F̄ μ′(r̄) + μ − 1

r̄
F̄ μ(r̄) = N̄ μ

qe(r̄), (29)

where q ≡ 4πεGμm2N μ
qe(0)/(μmγ ) and overbars denote

dimensionless. We should solve these equations with boundary
condition N̄ μ

qe(0) = 1.
Results. The numerical solutions for μ = 2 and 3 are

shown in Fig. 2 for different q. The curves with q = 0 on
both figures correspond to the thermal equilibrium state. For
comparison with observations, (1 + r̄2)−1 and (1 + r̄2)−3/2

are also plotted by a dashed curve in Figs. 2(a) and 2(b),
respectively. These dashed curves are typical best fit for
densities of molecular clouds or stars in a globular cluster.
From Fig. 2(b), one notices that the numerical result of our
model with q = 0.01 completely coincide with the typical
number density. Figure 2(a) also shows the good agreement
of our model with observations and numerical simulations
for small radius by setting q = 0.56, although the deviation
between two curves increases as r gets larger. Therefore, we
can understand that the best-fit curves are derived from our
model by varying q appropriately.

Finally, we examine the range of the index κ . From Eqs. (28)
and (29), the number density around the center of the system
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1.00

0.50

r

N
qe

( r
 )

(a)

2D

0.05 0.10 0.50 1.00
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r
N

qe
( r

 )

(b)

3D

FIG. 2. Numerical solutions of Eqs. (28) and (29) for μ = 2 (a)
and μ = 3 (b). As the curve changes from the left to the right in panel
(a), q gets larger from 0 to 0.28 in steps of 0.07. On the other hand,
q gets larger from 0 to 0.05 in steps of 0.01 in panel (b). The (red)
dashed curve in panels (a) and (b) means (1 + r̄2)−1 and (1 + r̄2)−3/2,
respectively.

in QES can be described by N̄ μ

qe(r̄) � (1 + r̄2)−κ(q), where κ

is a function of q:

κ(q) = (μ + 2){1 + (μ + 1)q}
μ + 2(μ2 + 4μ + 2)q

. (30)

From this equation, as q � 0, the range of κ is

(μ + 1)(μ + 2)

2(μ2 + 4μ + 2)
< κ � μ + 2

μ
. (31)

Therefore, with regard to μ = 2 and μ = 3, 3
7 < κ � 2 and

10
23 < κ � 5

3 , respectively. Both ranges include the observed
indices. However, the observed ranges of the index are
narrower, which means that the value of q is limited. The
limitation of q can be regarded as a kind of fluctuation-
dissipation relation [23], which is particular for SGS because
q includes a ratio of the intensity of mean gravity fluctuation
ε to the friction coefficient γ .

Concluding remarks. In this paper, we made it clear
numerically that 2DSGS without boundary goes to QES in
which the density profile is depicted by Eq. (1) with κ ∼ 1,
especially for the null virial condition. It is well known that
QES of 3DSGS without boundary can be described by Eq. (1)
with κ ∼ 3/2 through the observations of globular clusters and
N -body simulations: It was shown that there is the universal
structure in QES between 2D and 3DSGS. The discussion
based on EEq could explain why the null virial condition
is necessary for the universality, when a DF has a circular
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or spherical symmetry. Exploring the universality without
these symmetries remains as a future work. Furthermore, we
developed the model to derive the universal density from the
special Langevin equation including the distinctive noise of
SGS. Indeed, the solution of the corresponding Fokker-Planck
equation in QES was depicted by Eq. (1). In addition, it
was found that κ in Eq. (1) can be represented as a function
of the intensity of the particular noise for SGS, the friction
coefficient, and others. Therefore, we showed the range of κ

for each dimension analytically, which has a good consistency
with observations and simulations.
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