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Macroscopic fluctuation theory and first-passage properties of surface diffusion
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We investigate nonequilibrium fluctuations of a solid surface governed by the stochastic Mullins-Herring
equation with conserved noise. This equation describes surface diffusion of adatoms accompanied by their
exchange between the surface and the bulk of the solid, when desorption of adatoms is negligible. Previous
works dealt with dynamic scaling behavior of the fluctuating interface. Here we determine the probability that
the interface first reaches a large given height at a specified time. We also find the optimal time history of the
interface conditional on this nonequilibrium fluctuation. We obtain these results by developing a macroscopic
fluctuation theory of surface diffusion.
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The stochastic Mullins-Herring equation with conserved
noise can be written in a rescaled form as

∂th = −∇4h + ∇ · ξ (x,t), (1)

where h(x,t) is the interface height, and ξ is a Gaussian noise
which is δ correlated in x and t and has zero mean and unit
variance.

The noiseless version of Eq. (1) was suggested by Mullins
almost 60 years ago [1]. It describes the capillary flattening
of a perturbed solid surface to its equilibrium shape, where
the surface diffusion of adatoms is accompanied by adatom
exchange between the surface and the bulk of the solid,
while the adatom desorption is negligible [2–6]. Equation (1)
was extensively studied in the context of dynamic scaling
behavior of fluctuating interfaces [7–10]. A closely related
discrete model is the restricted solid-on-solid model with
conserved noise [11]. In this model a pair of nearest-neighbor
sites (i,i + 1) is randomly selected on a (d − 1)-dimensional
substrate. One particle is moved from the site i to the site i + 1,
or vice versa, with probability 1/2. The move, however, is only
allowed if the inequality |h(i + 1,t) − h(i,t)| � 2 is satisfied
after the move.

The previous works [7,8,11] focused on the interface width
w(L,t) which, for the conserved equation like Eq. (1), is
defined by w2(L,t) = 〈h2(r,t)〉, where L is the linear size
of the system. Assuming an initially flat interface, w(L,t)
exhibits scaling behavior:

w(L,t) ∼
{

tβ ,0 � t � L4,

Lα ,t � L4,

(2)

(3)

where β = (2 − d)/8, α = (2 − d)/2, and d is the dimension
of space [7–11]. The dynamic exponent z = 4 is related to α

and β via z = α/β. The most interesting case here is d = 1,
when both the growth exponent β = 1/8 and the roughness
exponent α = 1/2 are positive. That is, in one dimension the
small intrinsic noise makes the interface roughen without any
external driving, in spite of the smoothing effect of the surface
diffusion. The roughening disappears if one replaces in Eq. (1)
the surface diffusion term −∇4h by the more customary term
∇2h [8–10,12].
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The interface width w(L,t) is a useful integral measure of
the fluctuating interface. Here we will address Eq. (1) from
a different angle, by focusing on a first-passage property of
the interface [13]. We will evaluate the probability that the
interface first reaches a (large) given height at time T and
find the optimal history of the interface conditional on this
nonequilibrium event.

To achieve this goal we will develop a macroscopic
fluctuation theory (MFT) for Eq. (1). This is a WKB-like theory
in the spirit of the (weak-noise limit of) Martin-Siggia-Rose
field-theoretical formalism [14]. More recently, variants of
this theory were developed for diffusive lattice gases: for their
nonequilibrium steady states, see Ref. [15] for a review, and for
nonstationary settings [16–18]. Using the MFT formulation,
we will first evaluate the probability to observe, at t = T , a
specified height profile hT (x) when starting from a flat profile
at t = 0. The solution also gives the optimal height profile
history leading to this hT (x). Then we will deal with the
first-passage problem. Here there are two different regimes:
the equilibrium regime at T � L4, and the nonequilibrium
regime at T � L4. In the equilibrium regime the first-passage
probability can be found from a minimization of the free energy
of the system under proper constraints, whereas the optimal
activation history coincides with the time-reversed relaxation
history, as to be expected from the Onsager-Machlup symme-
try [19]. In the nonequilibrium regime a full time-dependent
solution of the MFT equations is needed for the evaluation
of the first-passage probability, whereas the activation and
time-reversed relaxation histories are entirely different. In the
nonequilibrium regime we uncover dynamic scaling behavior
of the first-passage probability and of the height profile
corresponding to reaching the maximum height at t = T .
Finally, we will show how to extend some of our results to
the Mullins-Herring equation with nonconserved noise.

Let us measure the coordinate x along the substrate,
|x| � L/2, and assume periodic boundaries. The MFT
equations follow from a saddle-point evaluation of the action
integral, obtained in a standard way from Eq. (1); see the
Appendix. They can be written as two Hamiltonian partial
differential equations:

∂th = δH/δp = −∂x(∂3
xh + ∂xp), (4)

∂tp = −δH/δh = ∂4
xp, (5)
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with the Hamiltonian

H =
∫ L/2

−L/2
dx H, H = ∂xp

(
∂3
xh + 1

2
∂xp

)
. (6)

With proper initial and boundary conditions, that we will
discuss shortly, Eqs. (4) and (5) describe the optimal interface
height history h(x,t). Once they are solved, we can evaluate
the probability P of the large deviation we are interested in:
− lnP � S, where

S =
∫ T

0
dt

∫ L/2

−L/2
dx (p∂th − H)

= 1

2

∫ T

0
dt

∫ L/2

−L/2
dx (∂xp)2 (7)

is the action. Let us briefly discuss some general properties
of this Hamiltonian flow. As follows from Eq. (6), there are
two invariant zero-energy manifolds. The manifold ∂xp = 0
corresponds to the noiseless Mullins-Herring equation
∂th = −∂4

xh. The second invariant zero-energy manifold,
described by the equation

∂xp = −2∂3
xh, (8)

corresponds to thermal equilibrium. Using Eqs. (4) and (8),
we obtain

∂th = ∂4
xh. (9)

That is, the equilibrium dynamics is described by the
time-reversed Mullins-Herring equation. As a result, an
activation trajectory at thermal equilibrium coincides with the
time-reversed relaxation trajectory [19].

Before dealing with the first-passage problem, we will solve
an auxiliary problem by specifying a height profile hT (x) at
time t = T . For simplicity, we assume a flat interface at t = 0
and set h(x,t = 0) = 0. In the limit of T � L4, the system
will explore equilibrium fluctuations in order to reach hT (x).
In this limit there is no need to find the activation trajectory: It
suffices to evaluate the difference between the free energies of
the final and initial states. Indeed, let us evaluate the action (7)
on the equilibrium manifold (8), using Eq. (9):

S = 2
∫

dt

∫
dx (∂3

xh)2 = 2
∫

dt

∫
dx ∂5

xh ∂xh

= 2
∫

dt

∫
dx ∂2

xth ∂xh =
∫ L/2

−L/2
dx [∂xhT (x)]2. (10)

The final expression is the free energy cost of the height profile
hT (x), as to be expected.

For finite T the system is out of equilibrium, and we need
to solve Eqs. (4) and (5) explicitly. We can write

h(x,t) =
∞∑

n=1

an(t) cos(knx) + bn(t) sin(knx), (11)

p(x,t) =
∞∑

n=1

αn(t) cos(knx) + βn(t) sin(knx), (12)

where kn = 2πn/L. By solving the ensuing ordinary differen-
tial equations for the coefficients, we obtain

[
an(t)
bn(t)

]
=

[
An

Bn

]
sinh(k4

nt)

sinh
(
k4
nT

) , and (13)

[
αn(t)
βn(t)

]
=

[
An

Bn

]
k2
ne

k4
nt

sinh
(
k4
nT

) , (14)

where An and Bn are the Fourier coefficients of hT (x). Now
we evaluate the double integral in Eq. (7) and obtain

S = L

∞∑
n=1

Kn(L,T )
(
A2

n + B2
n

)
, (15)

where

Kn(L,T ) = k2
n

2
(
1 − e−2k4

nT
) . (16)

Equations (15) and (16) yield the probability of observing a
given height profile hT (x) at an arbitrary time T . This is a
simple but fully nonequilibrium result.

For T � L4 Kn(L,T ) � k2
n/2, and Eq. (15) reduces to the

free energy from Eq. (10), whereas the activation trajectory
coincides with the time-reversed relaxation trajectory. For
T � L4 the system is far from equilibrium. As a simple
example, suppose that hT (x) only includes long wavelengths,
comparable to L. Then

S � L

4T

nmax∑
n=1

A2
n + B2

n

k2
n

,

which diverges at T → 0, implying a very small probability
of observing a large given height at short time. In their
turn, the Fourier coefficients an and bn from Eq. (13) can
be approximated as an(t) � (t/T )An and bn(t) � (t/T )An,
so that the optimal interface height history becomes simply
h(x,t) � (t/T )h(x,T ). This is very different from the time-
reversed relaxation history at equilibrium.

With Eqs. (11)–(16) at hand, we can now evaluate the
probability that the interface first reaches a (large) given
height, say M , at time T . Without losing generality, we
assume that this happens at x = 0. We start from minimization
of the action (15) under constraint hT (x = 0) = M , without
demanding that this height was not reached at earlier times
0 < t < T . In view of Eq. (11), the constraint hT (x = 0) = M

becomes
∞∑

n=1

An = M. (17)

Let us introduce constrained action,

Sλ =
∞∑

n=1

[
LKn(L,T )

(
A2

n + B2
n

) − λAn

]
,

where λ is a Lagrange multiplier. Varying Sλ with respect to
An and Bn, we obtain

∞∑
n=1

[2LKn(L,T )(AnδAn + BnδBn) − λδAn] = 0,
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which yields

An = λ

2LKn(L,T )
, Bn = 0, n = 1,2, . . . .

Plugging these An into Eq. (17), we find

λ = 2LM∑∞
n=1 K−1

n (L,T )
= LM

Q(L,T )
, (18)

where

Q(L,T ) =
∞∑

n=1

1 − e−2k4
nT

k2
n

. (19)

Now we use Eq. (13) and find the time-dependent Fourier
coefficients an and bn:

an(t) = M sinh
(
k4
nt

)
2Kn(T )Q(L,T ) sinh

(
k4
nT

) , bn(t) = 0. (20)

Therefore, the optimal height profile history is

h(x,t) = M

Q(L,T )

∞∑
n=1

1 − e−2k4
nT

k2
n

sinh
(
k4
nt

)
sinh

(
k4
nT

) cos(knx).

(21)

Importantly, the value h = M is achieved at t = T for the
first time. Therefore, Eq. (21) solves the first-passage problem
that we are after. Figure 1 shows the optimal interface height
histories h(x,t) for large (the top panel) and small (the bottom
panel) values of T . As one can see, these histories are very
different. This includes the height profiles at t = T ,

h(x,T ) = M

Q(L,T )

∞∑
n=1

1 − e−2k4
nT

k2
n

cos(knx). (22)

which, surprisingly, develop a corner singularity at x = 0
where the value h = M is first reached. Note also that at large T

(the top panel) most of the dynamics happens at times close to
T : The system has enough time to thermalize before producing
a large deviation.

The first-passage action can be found from Eq. (15):

− lnP � S = LM2

2Q(L,T )
. (23)

The resulting probability P(M) is Gaussian, with the standard
deviation σ (L,T ) = √

Q(L,T )/L. The asymptotics of the
function Q(L,T ) are the following:

Q(L,T ) �
{

L2/24 , T � L4,

	(3/4) T 1/4 L

23/4π
, T � L4,

(24)

(25)

where 	(. . . ) is the 	 function. The T � L4 asymptotic is
obtained by neglecting e−2k4

nT compared to 1; the remaining
infinite sum is equal to L2/24. To obtain the T � L4

asymptotic, we replaced the infinite sum in Eq. (19) by the
integral, which yields Eq. (25). The standard deviation of
P(M) has the following asymptotics:

σ (L,T ) �
{

L1/2

2
√

6
, T � L4,

[	(3/4)]1/2 T 1/8

23/8π1/2 , T � L4.

(26)

(27)
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FIG. 1. The optimal interface height history conditional on
reaching h = M at t = T . The initial state is h(x,t = 0) = 0. Shown
is the rescaled height h(x,t)/M vs the rescaled coordinate 2πx/L.
Top panel: T = 5 and t = 3 (dotted line), 4.99 (dashed line), and
t = 5 (solid line). Bottom panel: T = 0.01 and t = 0.003 (dotted
line), 0.009 (dashed line), and t = 0.01 (solid line). Time is rescaled
by (L/2π )4.

At long times σ is independent of T , and its scaling with L is
described by the roughness exponent α = 1/2. At short times
σ does not depend on L, and its scaling with T exhibits the
growth exponent β = 1/8.

Now let us examine the optimal height profiles at t = T in
the long- and short-time limits. In the long-time limit

h(x,T → ∞) = 6M

π2

∞∑
n=1

cos(knx)

n2

= M

[
6

(
x

L

)2

− 6|x|
L

+ 1

]
. (28)

This shape is very close to that observed at t = T on the
top panel of Fig. 1. In the short-time limit we can replace
the infinite sum in Eq. (22) by an integral. After a change of
variable,

h(x,T � 1) � M

	(3/4)

∫ ∞

0

dz

z2
(1 − e−z4

) cos(ξz), (29)

where ξ = x/(2T )1/4. The profile h(x,T ) is self-similar, as x

and T enter only through ξ . The integral in Eq. (29) can be
expressed via the generalized hypergeometric function [20],
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FIG. 2. The function �(ξ ) = h(x,T )/M from Eq. (30).

and we obtain h(x,T � 1) = M�(ξ ),

�(ξ ) = 1F3

(
−1

4
;

1

4
,
1

2
,
3

4
;

ξ 4

256

)

+ξ 2	
(

1
4

)
1F3

(
1
4 ; 3

4 , 5
4 , 3

2 ; ξ 4

256

)
8	

(
3
4

) − π |ξ |
2	

(
3
4

) . (30)

The graph of �(ξ ) is shown in Fig. 2. The optimal interface
shape is oscillatory; it is very close to the one observed at
t = T on the bottom panel of Fig. 1.

The long-time optimal height profile (28) can also be ob-
tained from a minimization of the equilibrium free energy (10),
constrained by the conservation law

∫ L/2
−L/2 hT (x) dx = 0.

Indeed, introducing a Lagrange multiplier �, we arrive at a
simple minimization problem for the Lagrangian

L(hT ,h′
T ) = (h′

T )2 − �hT , (31)

where the primes denotes the x derivative. The Euler-Lagrange
equation is 2h′′

T + � = 0. Its general solution is a parabola:

hT (x) = C1 + C2x − (1/4)�x2. (32)

As hT (0) = M , we obtain C1 = M . Importantly, the solution
cannot be smooth, because one cannot satisfy three additional
conditions—the conservation law and the periodicity con-
ditions hT (−L/2) = hT (L/2) and h′

T (−L/2) = h′
T (L/2)—

with only two arbitrary constants C2 and �. The way out is to
allow a discontinuity of dh/dx at x = 0, so that the maximum
at x = 0 is nonanalytic. In this case the coefficient C2 does not
vanish and has the same magnitude but opposite signs at x < 0
and x > 0. This immediately leads to the optimal profile (28).
This minimization problem has a simple mechanical analogy.
Indeed, Eq. (31) describes the motion of a classical particle
in a constant gravity field (directed upward), and the solution
with the jump of the first derivative corresponds to a bounce
of the particle from the floor at h = M . Additional bounces
(jumps in the first derivative) would cost more free energy, so
they are not allowed.

An extension of this theory to d dimensions is straightfor-
ward. The short-time regime is a bit involved technically, but
the equilibrium (long-time) regime is simple. Here minimiza-
tion of the free energy, constrained by the conservation law,

yields a Gaussian distribution of M with the variance

σd (L) = L1− d
2

22− d
2

√
3
. (33)

As one can see, d = 2 is the critical dimension [7–10]. The
optimal surface at t = T exhibits a pyramid-like top.

In conclusion, we have employed the MFT to evaluate
the probability that the stochastic Mullins-Herring interface
with conserved noise first reaches a large given height at a
specified time. We have also found the optimal time history
of the interface conditional on the first passage. It would be
interesting to apply the MFT to find the range of the surface
diffusion, that is to determine the joint distribution of the
(large) maximum and minimum of the interface height at a
given time. The results of this work can be also applied to the
stochastic Mullins-Herring equation with nonconserved noise,
∂th = −∂4

xh + ξ (x,t), with the same ξ as before. This equation
describes, in a moving frame, height fluctuations under particle
deposition [9,10,12]. By differentiating this equation with
respect to x, one again arrives at (the one-dimensional version
of) Eq. (1) but for the local slope of the interface s(x,t) =
∂xh(x,t). This mapping yields the probability that the interface
first develops a (large) given local slope, and the optimal
interface slope history conditional on this event.

Finally, the exact solution of Eqs. (4) and (5) was possible
due to their linearity. Analogous MFT equations for nonlinear
stochastic equations, such as the Kardar-Parisi-Zhang equa-
tion [21], are harder to solve. The situation, however, is far
from hopeless [22].

B.M. is grateful to Joachim Krug for useful discussions.
Financial support for this research was provided in part by
Grant No. 2012145 from the United States–Israel Binational
Science Foundation (BSF).

APPENDIX

The starting point of the derivation of the MFT equations
for d = 1 is the Langevin equation

∂th = −∂4
xh + ∂xξ (x,t), (A1)

where ξ is a δ-correlated Gaussian noise:

〈ξ (x1,t1)ξ (x2,t2)〉 = δ(x1 − x2)δ(t1 − t2).

The problem is defined on the interval |x| < L/2 with
periodic boundary conditions. Suppose we are interested in the
probability of transition from the initial state h(x,t = 0) = 0
to a given state h(x,t = T ) at a specified time T . Because
of the conservation law, h(x,T ) must satisfy the condition∫ L/2
−L/2 h(x,T )dx = ∫ L/2

−L/2 h(x,0)dx = 0. Let us introduce a
potential ψ(x,t) so that ∂xψ = h(x,t). Now Eq. (1) becomes
∂tψ = −∂4

xψ + ξ (x,t). The Gaussian action is, therefore,

S =
∫ T

0
dt

∫ L/2

−L/2
dx

ξ 2(x,t)

2

=
∫ T

0
dt

∫ L/2

−L/2
dx

(∂tψ + ∂4
xψ)2

2
. (A2)
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Being interested in large deviations, we minimize this action
with respect to the trajectory ψ(x,t). The variation of the action
is

δS =
∫ T

0
dt

∫ L/2

−L/2
dx

(
∂tψ + ∂4

xψ
)(

∂tδψ + ∂4
x δψ

)
. (A3)

Let us introduce the momentum density field p(x,t), so that
∂xp = −∂tψ − ∂4

xψ . This follows ∂txψ = −∂x(∂xp + ∂4
xψ),

or

∂th = −∂x

(
∂3
xh + ∂xp

)
, (A4)

the Hamilton equation (4). Now we can rewrite the varia-
tion (A3) as follows:

δs = −
∫ T

0
dt

∫ L/2

−L/2
dx ∂xp

(
∂tδψ + ∂4

x δψ
)
.

After several integrations by parts, we obtain the Euler-
Lagrange equation ∂xtp = ∂5

xp, which yields

∂tp = ∂4
xp, (A5)

the Hamilton equation (5). The boundary terms in time and
in space, resulting from the integrations by parts, all vanish
because we specified fixed states at t = 0 and t = T , and
because of the periodic boundary conditions in x.
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