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In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann
(LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture
the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where
a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB
models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the
perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through
the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for
the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary
spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the
model. It is found that the present model can capture accurate interfaces among three different fluids, which is
attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore,
the numerical results of three-phase flows agree well with the theoretical results or some available data, which
demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow
problems.
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I. INTRODUCTION

Multicomponent flows frequently arise in many important
engineering and scientific applications. A typical example in
this regard is enhanced oil recovery, which involves at least
three-phase fluids including oil, water, and air [1]. Another
example is the proton exchange membrane fuel cell, where
hydrogen reacts chemically with oxygen in the catalyst layer
and generates the water vapor. Then the transport of a fluid
system containing hydrogen, oxygen, water in the diffusion
layer, and a gas microchannel is a dramatic three-component
flow [2]. Oftentimes these flows are also encountered in
microfluidic devices [3], where multispecies droplet gener-
ation, coalescence, or breakup takes place. The theoretical
analysis on these flows is rather tough and challenging since
it involves complex interactions among multiple fluids and
solid materials, and experimental studies may be restricted
due to expensive costs and arbitrarily changed setups. With
the rapid development of the computer technology, numerical
modeling plays a significant role in studying three-phase flows,
and many researchers have made an effort to construct efficient
numerical approaches for simulating three-phase flows, such
as the level set [4–6], front-tracking [7], volume of fluid [8],
smoothed particle hydrodynamics [9], and phase field [10–15]
methods.

The lattice Boltzmann (LB) method, as an alternative
simulation technique, has received great success in modeling
both fluid dynamics [16,17] and nonlinear equation systems
[18–22]. Different from the traditional numerical methods,
the LB method is suitable for parallel computation and easy
to treat complicated boundary conditions. Additionally, the
microscopic interactions between fluids can be incorporated

*shibc@hust.edu.cn

straightforwardly in the LB method such that multiphase flows
can be simulated effectively [16,17]. Up to now, several types
of LB models for multiphase flows have been established under
different physical pictures of the interactions, which can be
commonly classified into four categories: the color model
[23], the pseudopotential model [24–28], the free-energy
model [29,30], and the phase-field-based model [31–37].
In succession, a large number of successful applications of
these models to multiphase systems have also been reported
[38–40]. However, almost all models are able to deal only
with two-phase systems, and relatively little attention has
been paid to the modeling of multiphase flows with three or
more fluids. Halliday et al. [41,42] introduced a color gradient
for each of fluid-fluid interfaces in the color model such
that continuum multicomponent flows can be simulated. Due
to the numerical instability problem, however, their models
are limited to density-matched fluids where the Boussinesq
approximation holds. To simulate multicomponent flows with
density contrast, Leclaire et al. [43] developed a LB model
based on the improved color-gradient model [44], where three
subcollision operators are incorporated in their model, and to
improve numerical stability, a high-order discrete operator is
also used for the calculation of the color gradient. Recently
the widely used pseudopotential model [24,25] was also
extended to simulate multicomponent flows by introducing the
interaction among three fluids [45], while it is not clear whether
the model can recover the correct macroscopic equations [46].
On the other hand, it is known that the phase-field theory can
provide a firm foundation on the interface physics such that
interface dynamics can be well described, while to the authors’
knowledge, there is no available work on the construction
of LB model for three-phase flows based on the phase-field
theory.

In this paper, we propose an alternative LB model for
three-phase flows based on the multicomponent phase-field
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theory. The proposed model has some distinct features. First,
the model utilizes two LB equations to track the interfaces
among three phases, where some proper source terms on time
derivative are incorporated to derive the correct interfacial
equations. Second, due to the elaborate choice of bulk free
energy [12,14], the present model coincides exactly with the
diphasic phase-field model when one component vanishes.
Third, different from some previous LB models [36,47,48], a
novel distribution function for the forcing term is delicately
designed and incorporated into the LB equation for flow field
such that the Navier-Stokes (NS) equations can be recovered
correctly. In addition, the interfacial force is not used to shift
the macroscopic velocity, and the computation then is much
simpler.

The rest of this paper is organized as follows. In Sec. II,
we present a brief introduction to multicomponent phase field
theory. Then the developed LB model for three-phase flow
systems is given in Sec. III, where the Chapman-Enskog
(CE) analysis is also conducted to match the NS equations.
In Sec. IV, we perform a series of numerical experiments to
test the performance of the model. Finally, a brief summary is
given in Sec. V.

II. MULTICOMPONENT PHASE-FIELD THEORY

The phase-field method is a special class of diffuse-interface
models that has become more and more popular for modeling
multiphase flows [49–51]. In this work, we consider an in-
compressible system constituting three immiscible Newtonian
fluids. Three order parameters denoted by c1, c2, and c3 are
introduced to describe this ternary system, and each of them
represents the volume fraction of one fluid within the mixture.
The values of these order parameters cannot be arbitrarily
chosen, and they are linked through the constraint [12–14]

3∑
i=1

ci = 1,0 � ci � 1. (1)

Denoting the flow domain by �, one can postulate the free
energy of a three-phase system as [12,14]

� =
∫

�

[
12

D
F (c1,c2,c3) +

3∑
i=1

3

8
Dλi |∇ci |2

]
d�, (2)

where F (c1,c2,c3) is the bulk free energy to be determined
later, D is a characteristic scale of the interface thickness, and
λi are physical parameters related to the surface tensions. In
the phase-field theory, the time evolution of the phase function
ci is described by its advection with the fluid velocity, and
the gradient of the free energy which can be taken in H−1(�)
[49,51]. However, in order to satisfy the conservation (1), a
Lagrangian multiplier β should be introduced into the gradient
term on the free energy [12,13]. Then the system of equations
can be written as

∂ci

∂t
+ ∇ · ciu = ∇ · (Mi∇μi), i = 1,2,3, (3)

where Mi is a mobility, and μi is the chemical potential given
by

μi = ∂�

∂ci

+ β = 12

D

∂F

∂ci

− 3

4
Dλi∇2ci + β, i = 1,2,3.

(4)
Now we give details on how to derive the expression of β.
Summing Eq. (3) over i and denoting the variable S = c1 +
c2 + c3, we can easily derive the following equation:

∂S

∂t
+ ∇ · Su = ∇ · M0∇

(
−3

4
D∇2S

+
3∑

i=1

12

Dλi

∂F

∂ci

+ β

3∑
i=1

1

λi

)
, (5)

where the condition M1λ1 = M2λ2 = M3λ3 = M0 has been
enforced [12]. Because of the conservation (1), S = 1 should
be the solution of Eq. (5), and we can ultimately derive the
Lagrangian multiplier β as

β = −
3∑

i=1

4λT

Dλi

∂F

∂ci

, (6)

where λT is defined by

3

λT

=
3∑

i=1

1

λi

. (7)

Based on Eq. (6), the Cahn-Hilliard (CH) phase equations for
the three-component system can be recast as

∂ci

∂t
+ ∇ · ciu = ∇ ·

(
M0

λi

∇μi

)
(8)

with

μi = 4λT

D

∑
j �=i

[
1

λj

(
∂F

∂ci

− ∂F

∂cj

)]
− 3

4
Dλi∇2ci,

i = 1,2,3. (9)

Supposing the physical parameters D and M0 being fixed, the
system of Eq. (8) then can be completely determined once the
bulk free energy F and the coefficients λi are given. Up to now,
several researchers [10–14] have given theoretical analyses
of the choice of the bulk free energy. In this work, the one
reported in Refs. [12,14] is adopted in that the model can
be well posed and also preserves algebraical and dynamical
consistency properties with the diphasic systems when one
component vanishes. Following Refs. [12,14], the expression
of the bulk free energy F can be presented as

F (c1,c2,c3) = F0(c1,c2,c3) + λc2
1c

2
2c

2
3

× [ϕ(c1) + ϕ(c2) + ϕ(c3)], (10)

where λ is a non-negative parameter, and F0(c1,c2,c3) is given
by

F0(c1,c2,c3) = λ1

2
c2

1(1 − c1)2 + λ2

2
c2

2(1 − c2)2

+ λ3

2
c2

3(1 − c3)2, (11)

013308-2



LATTICE BOLTZMANN MODELING OF THREE-PHASE . . . PHYSICAL REVIEW E 93, 013308 (2016)

where the coefficients λi are related to the surface tensions,

λ1 = σ12 + σ13 − σ23,

λ2 = σ12 + σ23 − σ13, (12)

λ3 = σ13 + σ23 − σ12,

where λi (i = 1,2,3) is a positive parameter, and σ12, σ13,
and σ23 represent the surface tension between two fluids
of a three-phase system. Here ϕ in Eq. (10) is the func-
tion ϕ(x) = 1

(1+x2)α , where α varies between 0 and 1 for

the two-dimensional flows and changes from 0 to 8
17 for

the three-dimensional case. Without loss of generality, we
fix the parameter α to be 0 in this work. Finally, we would
like to point out that using the conservation (1), the system of
equations reduce to a set of two coupled CH phase equations,
which will be used for the construction of LB model. In a
similar way, it is easily to derive the relationship among three
chemical potentials:

3∑
i=1

μi

λi

= 0. (13)

To describe the fluid flows, the CH phase equations should
be coupled with the NS equations with surface tension force,
which can be written as [36,49–51]

∇ · u = 0, (14a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [νρ(∇u + ∇uT )]

+ Fs + G, (14b)

where ρ is the fluid density, p is the pressure, ν is the kinematic
viscosity, Fs = ∑3

i=1 μi∇ci is the surface tension force [12],
and G is the external force.

III. LB MODEL FOR THREE-PHASE FLUID FLOWS

A. LB model for three-component CH equations

Due to the conservation c1 + c2 + c3 = 1, one needs only
two LB equations to capture the interfaces among three-phase
fluids. The LB equations with the BGK collision operator for
the interface tracking are proposed as

f i
k (x + ekδt ,t + δt ) − f i

k (x,t)

= − 1

τi

[f i
k (x,t) − f

i,eq

k (x,t)] + δtF
i
k (x,t), (15)

where the superscript i = 1 or 2 denotes the 1-phase or
2-phase, f i

k (x,t) is the distribution function for the order
parameter ci , f

i,eq

k (x,t) is its corresponding equilibrium state,
τi is a nondimensional relaxation time for the ci field, δt is
the time increment. To derive the correct three-component CH
equations, a linear equilibrium distribution function f

i,eq

k can
be introduced as [33,36]

f
i,eq

k =
{

ci + (ωk − 1)ημi, k = 0

ωkημi + ωkci
ek ·u
c2
s

, k �= 0,
(16)

where ωk and ek are weighting coefficient and discrete velocity,
and they depend on the choice of lattice model, and η is a free
parameter that can be used to adjust the value of the mobility.
For the D2Q9 lattice model adopted in this work, ωk are set as
ω0 = 4/9, ω1−4 = 1/9, and ω5−8 = 1/36, and ek can be given
by

ek =

⎧⎪⎨
⎪⎩

(0,0)c, k = 0,

(cos[(k − 1)π/2], sin[(k − 1)π/2])c, k = 1 − 4,√
2(cos[(k − 5)π/2 + π/4], sin[(k − 5)π/2 + π/4])c, k = 5 − 8,

(17)

where c = δx/δt is the lattice speed with δx being the grid
spacing. Note that the parameter cs in Eq. (16) is the sound
speed satisfying cs = c/

√
3. By convention, δx and δt are both

normalized and set to be unity.
To recover the CH phase equations without any artificial

terms, a proper source term is incorporated in the LB evolution
equation, which can be defined as [36]

F i
k =

(
1 − 1

2τi

)
ωkek · ∂tciu

c2
s

. (18)

In this model, the order parameter ci can be calculated by
taking the zeroth moment of the order distribution function

ci =
∑

k

f i
k (19)

for i = 1,2. Because of the conservation, the order parameter
c3 can be derived based on the relation c3 = 1 − c1 − c2. For
simplicity, the fluid density can be determined by the linear

interpolation of three order parameters [13],

ρ = c1ρ1 + c2ρ2 + c3ρ3, (20)

where ρi (i = 1,2,3) represents the density of the i phase.
We recall the CE analysis technique in order to demonstrate
the consistency of the LB evolution equation (15) to the CH
phase equations (8). Similar discussion can also be found in
Refs. [36,37]. Based on the CE analysis, one can find that
the CH phase equations can be recovered correctly from the
present model, and the relationship between the mobility Mi

and the relaxation factor can also be derived as

Mi = ηc2
s (τi − 0.5)δt, i = 1,2. (21)

Note that if the parameter η vanishes in Eq. (16), and for
the situation with very small mobility, the dimensionless
relaxation time τi would be close to 0.5, which may cause
instability of the LB method and bring some large errors.
However, an additional free parameter η introduced in Eq. (16)
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can provide much more potential in coping with this case,
while without increasing any computational cost.

B. LB model for the NS equations

To complete the modeling of three-phase incompressible
flows, the multicomponent CH system should be coupled with
the NS equations. In this section, we will develop a LB model
for the NS equations with surface tension force. This LB model
for the NS equations follows our previous work on the two-
phase case [36], and a remarkable difference between them lies
in that one must take into consideration of the capillary forces
among three-phase fluids here. The LB evolution equation with
a source term for the NS equations can be written as [52]

gk(x + ekδt ,t + δt ) − gk(x,t)

= − 1

τg

[gk(x,t) − g
eq

k (x,t)] + δtGk(x,t), (22)

where gk(x,t) is the particle distribution function for fluid
field, g

eq

k (x,t) is the corresponding equilibrium state, τg is a
dimensionless relaxation time related to the fluid kinematic
viscosity, and Gk(x,t) is the distribution function for the
total force. To recover the continuity equation correctly, the
equilibrium distribution function g

eq

k is delicately designed as
[36]

g
eq

k =
{ p

c2
s
(ωk − 1) + ρsk(u), k = 0,

p

c2
s
ωk + ρsk(u), k �= 0,

(23)

where

sk(u) = ωk

[
ek · u
c2
s

+ (ek · u)2

2c4
s

− u · u
2c2

s

]
. (24)

Different from the previous LB models [36,47,48], a novel
distribution function for the forcing term is defined as

Gk =
(

1 − 1

2τg

)
(ek − u) ·

[
sk(u)∇ρ + (sk(u) + ωk)

F
c2
s

]

+ ωkek · Fa

c2
s

, (25)

where F is the total force and is composed of two parts:

F = Fs + G. (26)

Here Fs represents the surface tension force arising from the
interaction at interfaces among three fluids, G is the body
force. To derive the correct momentum equation, an additional
interfacial force Fa is introduced in Eq. (25), which is defined
by

Fa = u[(ρ1 − ρ3)∇ · (M1∇μ1) + (ρ2 − ρ3)∇ · (M2∇μ2)].

(27)

It is clearly seen that this additional term is nonzero in the
interfacial region when the densities of three fluids do not
equal to each other. This force term is very small in theory,
but its effect can be significant at a higher fluid velocity [47].
To incorporate these force effects, the fluid velocity should be

computed by

u = 1

ρ

[∑
k

ekgk + 0.5δt (Fs + G)

]
, (28)

where the interfacial force Fa is not included, while it has
been used to shift the macroscopic velocity in the previous LB
models [36,47,48]. We would like to point out that the former
is more reasonable since this force has an order of O(ε2) from
the viewpoint of the CE analysis, where ε is a small expansion
parameter. Additionally, the pressure can be computed in a
particular form [36]:

p = c2
s

(1 − ω0)

⎡
⎣∑

k �=0

gk + δt

2
u · ∇ρ + ρs0(u)

⎤
⎦. (29)

We also conducted the CE analysis on the LB equation (22),
and the details can be consulted in Appendix. The results show
that the present model can recover correctly the NS equations
with the following kinematic viscosity:

ν = c2
s (τg − 0.5)δt . (30)

In the implementation of the present model, one needs
to choose some suitable difference schemes to discretize
the derivative terms. Following Refs. [20,53], the following
explicit difference scheme is adopted for computing the time
derivative in Eq. (18):

∂tχ (x,t) = χ (x,t) − χ (x,t − δt )

δt

, (31)

and the widely used isotropic central schemes are applied to
calculate the gradient and the Laplacian operator [54,55]:

∇χ (x,t) =
∑
k �=0

ωkekχ (x + ekδt ,t)

c2
s δt

(32)

and

∇2χ (x,t) =
∑
k �=0

2ωk[χ (x + ekδt ,t) − χ (x,t)]

c2
s δ

2
t

. (33)

In the above equations, χ represents an arbitrary variable. It
should be noted that the schemes (32) and (33) not only have
a secondary-order accuracy in space, but also can ensure the
global mass conservation of a multiphase system [55].

At the end of this section, we would like to give some
remarks on our model. If all the physical parameters λi (i =
1,2,3) are positive and further satisfy λi > λT

2 , the system
with the bulk free energy F = F0 not only can be well posed
but also can be algebraically and dynamically consistent with
the diphasic case [12,14]. So this simple choice F = F0 is
acceptable and will be adopted in most of our numerical
simulations. Substituting F = F0 into Eq. (9), one can simplify
the chemical potentials as

μi = 12

D
[λici(1 − ci)(1 − 2ci) − 2λT c1c2(1 − c1 − c2)]

− 3

4
Dλi∇2ci, i = 1,2, (34)

and μ3 can be derived by Eq. (13). If the condition λi > λT

2
is not satisfied, the system with the bulk free energy F = F0
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could not be dynamically consistent [12]. Then the high-order
bulk free energy Eq. (10) will be adopted, where the parameter
λ should be taken as a positive value. It is noted that in most
of previous works [10,11], the bulk free energy is chosen as
F = σ12c

2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3, which does not conform to

the corresponding diphasic system, and it will lead to some
unphysical behaviors. In addition, different from the previous
LB models [36,47,48], the interfacial force Fa is not applied
in the calculation of the macroscopic velocity, which not only
seems more reasonable based on the CE analysis, but also
makes the computation of the fluid velocity much simpler.
Finally, the miscibility properties of the flow components can
be described through the free energy. The present model deals
only with immiscible ternary fluids, and the extension to the
miscible case can be conducted when the free energy is a
convex function of the components [56].

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will validate the proposed LB model
through some numerical tests. The tests include two parts. In
the first part, an interface-capturing benchmark problem of
two circular interfaces is considered, where only the evolution
equation (15) is utilized since the velocity field has been
prescribed. In the second part, the present LB model will
be used to study some basic three-phase flows including the
ternary spinodal decomposition, spreading of a liquid lens,
and Kelvin-Helmholtz instability, where a detailed comparison
between present results and the theoretical results or some
available data is also conducted. Here we would like to point
out that the grid resolution has been tested, and it has been
demonstrated that the present grids used in our work are
adequately accurate to give grid-independent results.

A. Circular interface

A basic test of two circular disks is first performed to
verify the present LB model for the interface capturing. The
initial setup is given as follows. Two circular disks with
radius R = 20 are placed in a Nx × Ny = 200 × 100 lattice
domain with periodic boundary conditions in both x and y

directions. The centers of these disks are located at (xc1 ,yc) =
(50,50) and (xc2 ,yc) = (150,50), respectively. For this prob-
lem, the initial profiles of the order parameters are expressed
as

c1(x,y) = 0.5 + 0.5 tanh

[
2
R − (x − xc1 )2 + (y − yc)2

D

]
,

c2(x,y) = 0.5 + 0.5 tanh

[
2
R − (x − xc2 )2 + (y − yc)2

D

]
,

(35)

where the interface thickness D is fixed at 4.0, the c3 field
is determined by the conservation (1), and the velocity field
is fixed to be u = 0. Some other physical parameters in our
simulations are set as σ12 = σ13 = σ23 = 0.1, τ1 = τ2 = 0.8,
and M0 = 0.001. Figure 1 depicts the steady distributions of
three order parameters obtained by the present LB method
with the current bulk free energy F = F0 and the previous
one F = σ12c

2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 [10,11]. It can be seen

that the present LB scheme with the bulk free energy F =
F0 can preserve the exact profiles of order parameters with
initial configurations, while there are produced some artificial
apparitions of the phase represented by c1 or c2 in other phase
boundaries. So we can say that the current bulk free energy
is a better choice in capturing the interfaces among three-
component fluids. To further give a detailed comparison, we
also plotted the order distributions along the horizontal center
line (y = Ny/2) in Figs. 2(a) and 2(b). From Fig. 2(a), we
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FIG. 1. The steady distributions of three order parameters (c1,c2,c3) obtained by the present LB model with (a) the current bulk free energy
F = F0; (b) the previous bulk free energy [10,11].
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FIG. 2. The steady distributions of three order parameters (c1,c2,c3) along the horizontal center line (y = Ny/2) obtained by the present
LB model with (a) the current bulk free energy F = F0; (b) the previous bulk free energy [10,11].

can clearly observe that the order profiles obtained by the
LB simulations with the current bulk free energy match the
initial solutions closely. In contrast, some obvious deviations
between the results of the LB simulation with the previous
nonconsistent bulk free energy and the initial solutions can
be seen clearly, as shown in Fig. 2(b). This discrepancy may
trigger numerical instability in some cases, and the simulations
blow up in a short time.

To test the convergence rate of the present model, the rel-

ative error Ec = ∑
x,y

|c1(x,y)−c
(0)
1 (x,y)|

|c(0)
1 (x,y)| is used, where c

(0)
1 (x,y)

is the initial solution of the phase field c1. We computed the
relative errors with different lattice sizes and show the results
in Fig. 3. As seen from the figure, the present model with the
consistent bulk free energy F = F0 has a nearly second-order
convergence rate in space, while the model with the previous
bulk free energy [10,11] has only a first-order accuracy. In
addition, it is also observed that the magnitudes of the relative

100 200 300 400
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10
0

N
y

E
c

 

 

LB simulation with F=F
0

LB simulation with the previous bulk free energy [10, 11] 

Slope=−1.9

Slope=−1.0

FIG. 3. The relative errors of order parameter c1 at different lattice
sizes. The solid lines represent the results of the linear fitting.

error of the consistent model are smaller than those of the
nonconsistent model.

B. Ternary spinodal decomposition

Spinodal decomposition, also called phase or component
separation, is an important property of mixture fluids. When
a homogeneous mixture in a metastable state is imposed
by some tiny concentration fluctuations, the fluid system
is unstable and spinodal decomposition will take place. To
the best of our knowledge, most of the previous numerical
studies on this problem are confined to the two-phase situation
[24,35,57,58], and relatively little attention has been paid to
the three-phase case [13,59]. In this subsection, the ternary
spinodal decomposition is simulated using the present model
with the consistent bulk free energy F = F0. This exercise
is devoted to the demonstration of the capability of the
present model in the study of three-component separation. The
computational mesh used is 200 × 200 with periodic boundary
conditions at all boundaries, and the initial profiles of the order
parameters are given as

c1(x,y) = 1
3 + rand(x,y),

(36)
c2(x,y) = 1

3 + rand(x,y),

where rand(x,y) is a random function with the maximum
amplitude of 0.01 and is used to impose a small random
perturbation on the density field. Some physical parameters
in our simulation are fixed as σ12 = σ13 = σ23 = 0.01, M0 =
0.003, ρ1 = 1, ρ2 = 5, ρ3 = 10, τg = 0.8, and the rest are the
same as those in the last test. Figure 4 shows the time evolution
of the density distribution during the separating process. It can
be clearly observed from Fig. 4 that the small perturbation is
enlarged and some small drops emerged at the early stage. The
small drops increase in size, and some of them may merge into
larger ones as time goes on. Finally, the component represented
by c3 is totally separated from the other two components.
The present numerical results are qualitatively consistent with
some previous studies [13,59].
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FIG. 4. Time evolution of the density distribution during the separating process: (a) t = 0; (b) t = 10 000; (c) t = 20 000; (d) t = 25 000;
(e) t = 30 000; (f) t = 35 000; (g) t = 40 000; (h) t = 50 000.

C. Spreading of a liquid lens

The spreading of a liquid lens is a very classic benchmark
problem and has been widely used in the literature [5,12,13,42]
to test the numerical approaches for three-phase flows. In this
subsection, the spreading of a liquid lens was simulated to
validate the present LB model. As we know, if a circular lens is
initially located at the interface between the other two immisci-
ble fluids, it will undergo the deformation under the influence
of the surface tensions until reaching its equilibrium state.
According to Neumann’s law [60], the equilibrium shape of
the lens is determined by the three surface tension coefficients,

cos(θ1) = σ 2
23 + σ 2

12 − σ 2
13

2σ23σ12
, cos(θ2) = σ 2

23 + σ 2
13 − σ 2

12

2σ23σ13
,

(37)

where θi (i = 1,2) is the contact angle as illustrated in Fig. 5.
The theoretical length (d) between triple junctions at the
equilibrium state can be presented as [60](

d

2

)2 2∑
j=1

1

sin(θj )

[
θj

sin(θj )
− cos(θj )

]
= A, (38)

where A is the lens area. With simple geometrical
manipulations, the relation between the height (h1, h2)
and the length (d) can be given by

hj = 1 − cos(θj )

sin(θj )

(
d

2

)
, j = 1,2. (39)

In this test, the computational grid is first adopted as
Nx × Ny = 150 × 150. The boundary conditions are set to
be periodic in x direction, and the upper and lower boundaries
are the solid wall imposed by the no-slip bounce back
boundary condition. The profiles of the order parameters are

initialized by

c1(x,y) = 0.5 + 0.5 tanh

[
2
R − (x − xc)2 + (y − yc)2

D

]
,

c2(x,y) = max

[
0.5 + 0.5 tanh

2(y − yc)

D
− c1(x,y), 0

]
,

(40)

where R is the radius of the circular lens with a value of
30, and (xc,yc) is the coordinate of the lens center. The other
physical parameters in our simulations are fixed as ρ1 = 10,
ρ2 = 1, ρ3 = 5, M0 = 0.01, D = 4.0, τ1 = τ2 = τg = 0.8.
Figure 6 shows the equilibrium shapes of the lens at three

FIG. 5. Schematic of the lens shape at the equilibrium state.
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FIG. 6. The equilibrium shapes of the lens at different surface tension ratios: (a) σ12:σ13:σ23 = 1: 4
3 :1; (b) σ12:σ13:σ23 = 1:1:1; (c)

σ12:σ13:σ23 = 0.6:0.6:1.

typical surface tension ratios (σ12:σ13:σ23 = 1: 4
3 :1, 1:1:1, and

0.6:0.6:1). Since the conditions λi > 0 and λi > λT

2 can
be satisfied, the bulk free energy F0 is algebraically and
dynamically consistent and is adopted in these simulations.
From Fig. 6, we can see that the lens will undergo some
deformations due to the surface tension effect and eventually
forms into distinct interface shapes at different surface tension
coefficients. The shapes of the liquid interface in the current
study compare well with the previous results [5,12]. To give a
quantitative comparison, we also measured the contact angles
θ1 and θ2 and present the results in Table I together with the
analytical solutions. Here from simple geometry, the numerical
contact angles θ1 and θ2 are obtained based on the following
relations:

tan

(
θ1

2

)
= 2h1

d
, tan

(
θ2

2

)
= 2h2

d
, (41)

where h1, h2 are the measured heights, and d is the measured
length. It is clearly observed from Table I that the numerical
predictions of the contact angles θ1 and θ2 are in agreement
with the corresponding theoretical values. The relative error
for the θ1 is smaller than 0.9%, while the relative error of θ2 is
less than 5.0%. We further compare the length (d) between
triple junctions and the height (h1, h2) calculated by the
present model with the corresponding theoretical values and
summarize the results in Table II. It is seen that the comparison
between our numerical results and the analytical solutions
shows good agreement in general. The maximum relative error
of the lens length (d) is about 3.1%, while the maximum
relative errors for both the heights h1 and h2 are smaller than
2.4% and 7.7%, respectively. Here we also display the spurious

velocities generated by the present model. It is shown that the
maximum magnitude of the spurious velocities has an order of
10−5, which is enough small so that they almost have no effect
on the simulated results.

As mentioned above, if the condition λi > λT

2 is not
satisfied, the model with the bulk free energy F0 could not be
dynamically consistent, which may induce some unphysical
phenomena. For this reason, a more advanced bulk free
energy [Eq. (10)] with the nonzero λ is a better choice and
can be used to overcome above shortcoming. To illustrate
this point, a comparison between them was conducted with
this example. In these simulations, the computational grid is
set to be 200 × 200, and the surface tension ratio is fixed
as σ12:σ13:σ23 = 0.5:0.55:1 such that the condition λ1 > λT

2
is not ensured. Figure 7 depicts the steady shapes of the
lens obtained by the LB model with both the bulk free
energy F0 and the bulk free energy [Eq. (10)] with λ = 0.1.
It is seen that the interface shows similar behavior. The
computed contact angles θ1 and θ2 for both cases are 19.3◦
and 17.8◦, which match the analytical ones (θ1 = 18.6◦ and
θ2 = 16.9◦) closely. To show the effect of the bulk free energy,
however, we plotted quantitatively the distributions of the
order parameter c1 in Fig. 8. It can be observed that there
exists some unphysical apparitions in the results of the model
with F = F0, while the model with Eq. (10) can eliminate
these unphysical apparitions. Furthermore, we also present
the c1 distribution at the line x = 12 in Fig. 9, where the
LB models with F = F0 produce a larger error than those
of the model with Eq. (10). Therefore the bulk free energy
Eq. (10) is a better choice in coping with the case with
λi � λT

2 .

TABLE I. The equilibrium contact angles θ1 and θ2 in the lens spreading test.

Surface tension ratios Present LB model Analytical solutions Relative errors

(σ12:σ13:σ23) θ1 θ2 θ1 θ2 θ1 θ2

1: 4
3 :1 83.6◦ 50.0◦ 83.5◦ 52.5◦ 0.1% 5.0%

1:1:1 60.9◦ 60.9 60.8◦ 60.8◦ 0.2% 0.2%
0.6:0.6:1 34.3◦ 34.5◦ 34.0◦ 34.0◦ 0.9% 1.5%
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TABLE II. The equilibrium length (d) and height (h1, h2) in the lens spreading test.

Surface tension ratios Present LB model Analytical solutions Relative errors

(σ12:σ13:σ23) d h1 h2 d h1 h2 d h1 h2

1: 4
3 :1 75.5 33.7 16.9 73.8 32.9 18.2 2.3% 2.4% 7.7%

1:1:1 83.1 24.0 24.0 80.7 23.7 23.7 2.9% 1.3% 1.3%
0.6:0.6:1 117.5 17.7 17.7 113.9 17.4 17.4 3.1% 1.7% 1.7%

We now consider the effect of the gravity on the equilibrium
configuration of the interface. According to the de Gennes
theory [61], the equilibrium shape of the interface depends on
the relative importance of the gravity and the surface tensions.
When the surface tension dominates over the gravity, the
middle phase may form into a lens. Otherwise, it may form a

puddle, and the asymptotic thickness (H ) of the puddle can be
analytically given by [61,62]

H =
√

2(σ12 + σ13 − σ23)
ρ1

ρ3
(ρ3 − ρ1)g

. (42)

x
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FIG. 7. The equilibrium shapes of the lens with the surface tension ratio σ12:σ13:σ23 = 0.5:0.55:1 obtained by the present LB model: (a)
the bulk free energy F = F0; (b) the bulk free energy [Eq. (10)] with λ = 0.1.

FIG. 8. The steady distributions of the order parameter c1 obtained by the present LB model with (a) the bulk free energy F = F0; (b) the
bulk free energy Eq. (10) with λ = 0.1.
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λ

0.06

FIG. 9. The steady distributions of the order parameter c1 along
the line x = 12 obtained by the present LB model with (a) the bulk
free energy F = F0; (b) the bulk free energy Eq. (10) with λ = 0.1.

To incorporate the gravitational effect, in our simulations the
body force G = (0, − ρg) is imposed on the fluids, where g

is the gravity acceleration. Due to the large deformation of
the interface, the computational domain is increased to Nx ×
Ny = 300 × 150. The physical parameters are set to be ρ1 = 5,
ρ2 = 1, ρ3 = 10, and σ12 = σ23 = 0.01. Figure 10 shows the
equilibrium shapes of the interface at three typical values of
the gravitational acceleration. It can be seen from Fig. 10 that
at a low gravity, the middle phase forms a lens, which is made
of two circular caps. As the gravity magnitude increases, the
shape of the middle phase becomes flatter. When the gravity is
sufficiently large, the interface undergoes a large deformation
and a puddle is formed. The present numerical results are
qualitatively consistent with the de Gennes theory [61]. We
further conducted a quantitative comparison of the asymp-
totic thickness as a function of gravity between the current
simulation and the de Gennes theory and present the results in
Fig. 11. It can be observed that at a large gravity, the numerical
prediction agrees well with the corresponding theoretical one.
While at a small gravity, an obvious deviation between them
can be observed. This is because that the shape of the interface
is no longer that of a puddle when the gravity is very small,
and the theoretical formula (42) is invalid in this case. The
similar result was also reported in the previous study [15].

The effect of surface tension on the equilibrium config-
uration of the interface is also examined. Here we vary the
surface tension between 1-phase and 3-phase, while fixing
the gravity acceleration at g = 1 × 10−5. Figure 12 depicts
the equilibrium shapes of the interface at two typical values
of σ13. It can be seen that the interface shows a larger
deformation and becomes flatter at a smaller surface tension.
To quantitatively show the surface tension effect, we plot
the asymptotic thickness in Fig. 13. For a comparison, the
results of the de Gennes theory [61] are also presented. From
Fig. 13, we can see that the asymptotic thickness increases with
the surface tension σ13. In addition, the comparison between

FIG. 10. The equilibrium shapes of the interface at different
gravity forces: (a) g = 5 × 10−6; (b) g = 1 × 10−5; (c) g = 5 ×
10−5. The surface tension σ13 is fixed to be 0.01.
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FIG. 11. Comparison of the asymptotic thickness as a function
of gravity between the current simulation and the de Gennes theory
[61]. The surface tension σ13 is fixed to be 0.01.
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FIG. 12. The equilibrium shapes of the interface at different
surface tensions: (a) σ13 = 0.018; (b) σ13 = 0.004. The gravity
acceleration is 1 × 10−5.

the simulated results and the theoretical values shows good
agreement in general.

D. Kelvin-Helmholtz instability

To show the capacity of the present model in dealing with
complex fluid systems, here we also consider the Kelvin-
Helmholtz instability (KHI) with a more complicated inter-
facial dynamics. KHI is a fundamental interfacial instability
in fluid mechanics, which occurs when a small perturbed
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FIG. 13. Comparison of the asymptotic thickness as a function
of surface tension between the current simulation and the de Gennes
theory [61]. The gravity acceleration is 1 × 10−5.

FIG. 14. Schematic of the initial setup in the three-component
immiscible KHI test.

interface between fluids is subject to a parallel shear flow
[63]. The study of this instability is extremely important since
it plays a dominant role in the understanding of turbulent
mixing processes [64,65]. Due to its important applications,
the KHI has been widely investigated by using analytical
[66,67], experimental [68], as well as numerical [33,69–72]
approaches. However, most of the previous works dealt with
the KHI at the interface of a two-phase system [33,67–71] and
the numerical studies on the KHI of three-component systems
are quite limited due to the complexity of interfacial dynamics
and the rareness of a robust numerical approach. To fill this gap,
we will apply the present LB model to simulate the immiscible
KHI of three-component fluids.

The physical problem we considered here is a square box
with an aspect ratio of L × W , where L and W are the box
length and width. As illustrated in Fig. 14, the initial interfaces
are located at y1 = L

3 and y2 = 2L
3 , with an imposed sinusoidal

perturbation:

h = 0.01L sin

(
4πx

W

)
. (43)

To be smoothed across the interface, the initial profiles of the
order parameters are given by

c1(x,y) = 0.5 + 0.5 tanh 2

(
y − y2 − h

D

)
,

c2(x,y) = 0.5 + 0.5 tanh 2

(
y − y1 − h

D

)
− c1(x,y),

(44)

and similar to Ref. [72], we seed the initial distribution for
fluid velocity (u,v) as

u = U0 + U0

[
tanh 2

(
y − y2 − h

D

)
− tanh 2

(
y − y1 − h

D

)]
,

v = 0, (45)

013308-11



H. LIANG, B. C. SHI, AND Z. H. CHAI PHYSICAL REVIEW E 93, 013308 (2016)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 15. Evolution of the density contours in the immiscible KHI of three-component fluids: (a) t = 0; (b) t = 2000; (c) t = 3000;
(d) t = 4000; (e) t = 5000; (f) t = 6000; (g) t = 7500; (h) t = 9000.

where U0 is half the velocity difference across the shear layer.
The dimensionless Reynolds number characterizing the KHI
is defined as

Re = LU0

ν
. (46)

The simulation was carried out in a L × W = 256 × 256
lattice with the periodic boundary condition in the horizontal
direction. The velocities for the upper and lower plates
are fixed at u = U0 and v = 0, and the nonequilibrium
extrapolation scheme [73] is utilized to treat these boundaries.
The remaining physical parameters in our simulation are
set as Re = 5000, ρ1:ρ2:ρ3 = 0.98:0.99:1, σ12 = σ13 = σ23 =
1 × 10−4, U0 = 0.04, M0 = 2 × 10−4, D = 4, τ1 = τ2 = 0.8.
Since the condition λi > λT

2 can be satisfied, the simple bulk
free energy F0 is adopted in this simulation. Figure 15 depicts
the evolution of the density contours in the immiscible KHI of
three-component fluids. It can be observed, due to the shear
effect, the middle fluid penetrates into the upper and lower ones
at early time, while the interfaces among them gradually roll
up. As time goes on, several pair of vortices then appear and the
flow region becomes nonlinear, which leads to the formation
of the main billows. These vortices continue to grow in size,
and the structure becomes more and more complex at late time.
The above behaviors of the liquid interfaces obtained by the
present model are in line with the previous results presented in
Fig. 8 of Ref. [72]. We also calculated the vorticity magnitudes
(∂xv − ∂yu) in the KHI and presented the results in Fig. 16. It
is found that the vorticity gradually accumulates in the billow
region, and the strength becomes larger as time advances.
As a result, a large vorticity concentrates in the cores of the
vortex pairs. The vortices develop further and become chaotic
at late time, which leads to the formation of several secondary

vortices at the vicinity of fluid interfaces. It is also observed
from Fig. 16 that the vortex structures match the corresponding
density patterns closely at the early stage, while they become
more complex than the density patterns at the late stage.

V. SUMMARY

In this paper, a LB model based on the multicomponent
phase-field theory is proposed for three-phase flow systems.
This model utilizes three LB evolution equations, two of which
are used for capturing the interfaces among three-phase fluids
and the third is adopted to to solve flow fields. The distribution
function for the force term is modified in the LB equation for
flow field, which seems more reasonable from the multiscale
analysis, and simultaneously, the calculation of the velocity
can be much simpler. The multiscale analysis also demon-
strates that both the multicomponent CH equations and the NS
equations can be recovered correctly from the present model.
In addition, due to the particular choice of bulk free energy,
the present model is well posed and also shows algebraical
and dynamical consistency properties with the binary one.
To test the performance of the present model, a series of
numerical experiments, including two circular interfaces, the
ternary spinodal decomposition, the spreading of a liquid lens,
and the Kelvin-Helmholtz instability, have been conducted. It
is found that the present model with the consistent bulk free
energy is able to capture the interface more accurately than
the one with the previous bulk free energy. Furthermore, it
is also shown that the numerical results of three-phase flows
agree well with the the analytical solutions or available data,
which demonstrates that the present LB model is a reliable and
efficient method for studying three-phase flow problems.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 16. Evolution of the vorticity magnitudes in the immiscible KHI of three-component fluids: (a) t = 0; (b) t = 2000; (c) t = 3000;
(d) t = 4000; (e) t = 5000; (f) t = 6000; (g) t = 7500; (h) t = 9000.

Finally, we give a discussion on the maximum density ratio
among three fluid components that can be reached by our
model. It is shown that the critical density ratio depends on the
flow velocity. In the test of the lens spreading where the fluid
velocity is very small, our model can deal with the case with the
density ratio of about 100. We also simulated a dynamic case
of the ternary spinodal decomposition with the present model.
It is found that our model is stable at the largest density ratio of
about 20. To our best knowledge, to develop a large-density-
ratio model is still an attractive problem in the framework
of the LB method. It may benefit from the extra flexibility to
overcome the limitation on the density ratio if some approaches
are adopted, such as introducing a nonuniform mobility in the
Cahn-Hilliard equation, using a more stable difference scheme
[32], or adopting a flux solver LB method [74]. The present
scheme is developed based on the BGK collision operator for
its simplicity and high computational efficiency. The construc-
tion can be easily generalized to the case with a more advanced
multiple-relaxation-time collision model [75]. And also, the

extension to the three-dimensional case can be conducted
directly. These will be considered in our future works.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS OF THE
PRESENT LB MODEL FOR THE NAVIER-STOKES

EQUATIONS

We now conduct the CE analysis to show the consistency
of the LB evolution equation (22) to the NS equations (14).
From Eqs. (23) and (25), one can derive the following moment
conditions:

∑
k

g
eq

k = 0,
∑

k

ekαg
eq

k = ρuα,

∑
k

ekαekβg
eq

k = ρuαuβ + pδαβ,
∑

k

ekαekβekγ g
eq

k = ρc2
s �αβγ θuθ ,

(A1)

∑
k

Gk =
(

1 − 1

2τg

)
uα∂αρ,

∑
k

ekαGk =
(

1 − 1

2τg

)
Fα + Faα,� =:

∑
k

ekαekβGk

=
(

1 − 1

2τg

)
[uαFβ + uβFα + uα∂β(ρc2

s ) + uβ∂α(ρc2
s ) + (uγ ∂γ ρc2

s )δαβ], (A2)
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where �αβγ θ = δαβδγ θ + δαγ δβθ + δαθ δβγ , and the terms of
O(Ma3) have been omitted from Eq. A(2) in the incom-
pressible limit. To derive the macroscopic equations, we first
introduce the following multiscale expansions:

gk = g
(0)
k + εg

(1)
k + ε2g

(2)
k + · · ·, (A3a)

∂t = ε∂t1 + ε2∂t2 ,∂α = ε∂1α, (A3b)

Gk = εG
(1)
k + ε2G

(2)
k ,Fα = εF (1)

α ,Faα = ε2F (2)
aα . (A3c)

Applying the Taylor expansion and the above formulas,
Eq. (22) can be expanded into a series of equations in different
order of ε,

ε0 : g
(0)
k = g

(eq)
k , (A4a)

ε1 : D1kg
(0)
k = − 1

τgδt

g
(1)
k + G

(1)
k , (A4b)

ε2 : ∂t2g
(0)
k + D1kg

(1)
k + δt

2
D2

1kg
(0)
k

= − 1

τgδt

g
(2)
k + G

(2)
k , (A4c)

where D1k = ∂t1 + ekα∂1α . With the help of Eq. (A4b),
Eq. (A4c) can be further simplified as

∂t2g
(0)
k + D1k

(
1 − 1

2τg

)
g

(1)
k

= − 1

τgδt

g
(2)
k − δt

2
D1kG

(1)
k + G

(2)
k . (A5)

Based on Eqs. (A1) and (A2), the zero-order moment of gk

can be defined by [37]∑
k

gk = −δt

2
uα∂αρ. (A6)

Applying the multiscaling expansions to Eqs. (28) and (A6),
and using Eqs. (A1) and (A2), one can easily derive∑

k

g
(1)
k = −δt

2
uα∂1αρ,

∑
k

g
(n)
k = 0,(n � 2), (A7)

∑
k

ekαg
(1)
k = −δt

2
F (1)

α ,
∑

k

ekαg
(n)
k = 0,(n � 2). (A8)

Summing Eq. (A4b), and Eq. (A4b) multiplied by ekβ over k,
respectively, the recovered equations at ε scale can be obtained,

∂1αuα = 0, (A9)

∂t1 (ρuβ) + ∂1α(ρuαuβ + pδαβ) = F
(1)
β , (A10)

where Eqs. (A1), (A2), (A7), and (A8) have been utilized.
In a similar way, from Eq. (A5) one can obtain the recovered

equations at ε2 scale,

∂t1

(
−δt

2
uα∂1αρ

)
+ ∂1α

(
−δt

2
F (1)

α

)

= −δt

2

[
∂t1 (uα∂1αρ) + ∂1αF (1)

α

]
, (A11)

∂t2 (ρuβ) +
(

1 − 1

2τg

)
∂1α�(1) = −δt

2
∂1α�(1) + F

(2)
aβ ,

(A12)

where �(1) = ∑
k ekαekβg

(1)
k is the first-order momentum

flux tensor, and � = ε�(1). From Eq. (A4b), we can
get

�(1) =
∑

k

ekαekβg
(1)
k = −τgδt

∑
k

ekαekβ

[
D1kg

(0)
k − G

(1)
k

]
= −τgδt c

2
s [∂1α(ρuβ) + ∂1β(ρuα) + (∂1γ ρuγ )δαβ]

+ τgδt�
(1), (A13)

in which the terms of O(δtMa2) have been neglected for
incompressible flows. Then the substitution of Eq. (A13) into
Eq. (A12) yields

∂t2 (ρuβ) − ∂1α

{(
τg − 1

2

)
δtc

2
s [∂1α(ρuβ) + ∂1β(ρuα)

+ (uγ ∂1γ ρ)δαβ] − τgδt�
(1)

}
= F

(2)
aβ . (A14)

Combining Eqs. (A9) and (A11) at ε and ε2 scales, together
with Eqs. (A10) and (A14), we have

∂αuα = 0, (A15)

∂t (ρuβ) + ∂α(ρuαuβ + pδαβ)

= ∂α{ν[∂α(ρuβ) + ∂β(ρuα) + (uγ ∂γ ρ)δαβ] − τgδt�}
+Fβ + Faβ, (A16)

where ν = c2
s δt (τg − 1

2 ) is the kinematic viscosity. Multiplying
ε on both sides of Eq. (A10), we can get

Fβ = O(Ma) (A17)

for incompressible flows. Substituting Eq. (A2) into Eq. (A16)
and using Eq. (A17), Eq. (A16) can be reduced to

∂t (ρuβ) + ∂α(ρuαuβ + pδαβ)

= ∂αρν(∂αuβ + ∂βuα) + Fβ + Faβ (A18)

with the order of O(δtMa2). Furthermore, based on the
identical relations

∂t (ρuβ) + ∂α(ρuαuβ)

= ρ(∂tuβ + uα∂αuβ) + uβ(∂tρ + ∂αρuα) (A19)

and

uβ(∂tρ + ∂αρuα) =
3∑

i=1

∂ρ

∂ci

(∂tci + ∂αciuα) = Faβ, (A20)

Eq. (A18) can be rewritten as

ρ(∂tuβ + uα∂αuβ) = −∂βp + ∂α[ρν(∂αuβ + ∂βuα)]

+Fsβ + Gβ. (A21)

From Eqs. (A15) and (A21), we can clearly see that the
NS equations can be exactly recovered from the present LB
model.

013308-14



LATTICE BOLTZMANN MODELING OF THREE-PHASE . . . PHYSICAL REVIEW E 93, 013308 (2016)

[1] A. Maghzi, S. Mohammadi, M. H. Ghazanfari, R. Kharrat,
and M. Masihi, Exp. Therm. Fluid Sci. 40, 168 (2012).

[2] H. Li et al., J. Power Sources 178, 103 (2008).
[3] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Rep.

Prog. Phys. 75, 016601 (2012).
[4] H. K. Zhao, T. Chan, B. Merriman, and S. Osher, J. Comput.

Phys. 127, 179 (1996).
[5] K. A. Smith, F. J. Solis, and D. L. Chopp, Interfaces Free Bound.

4, 263 (2002).
[6] R. I. Saye and J. A. Sethian, Proc. Natl. Acad. Sci. USA 108,

19498 (2011).
[7] M. Muradoglu and S. Tasoglu, Comput. Fluids 39, 615

(2010).
[8] R. Bonhomme, J. Magnaudet, F. Duval, and B. Piar, J. Fluid

Mech. 707, 405 (2012).
[9] N. Tofighi and M. Yildiz, Comput. Math. Appl. 66, 525

(2013).
[10] H. Garcke, B. Nestler, and B. Stoth, SIAM J. Appl. Math. 60,

295 (1999).
[11] J. Kim, K. Kang, and J. Lowengrub, Commu. Math. Sci. 2, 53

(2004).
[12] F. Boyer and C. Lapuerta, ESAIM: Math. Model. Numer. Anal.

40, 653 (2006).
[13] J. Kim, Comput. Methods Appl. Mech. Eng. 196, 4779

(2007).
[14] F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, and M. Quintard,

Transp. Porous Media 82, 463 (2010).
[15] S. Dong, J. Comput. Phys. 276, 691 (2014).
[16] S. Chen and G. Doolen, Annu. Rev. Fluid Mech. 30, 329

(1998).
[17] Z. L. Guo and C. Shu, Lattice Boltzmann Method and Its Appli-

cations in Engineering (World Scientific, Singapore, 2013).
[18] I. Ginzburg, Adv. Water Resour. 28, 1171 (2005).
[19] Z. H. Chai and B. C. Shi, Appl. Math. Model. 32, 2050

(2008).
[20] B. C. Shi and Z. L. Guo, Phys. Rev. E 79, 016701 (2009).
[21] X. G. Yang, B. C. Shi, and Z. H. Chai, Comput. Math. Appl. 68,

1653 (2014).
[22] J. T. Huang and W. A. Yong, J. Comput. Phys. 300, 70 (2015).
[23] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti,

Phys. Rev. A 43, 4320 (1991).
[24] X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).
[25] X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994).
[26] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama,

and F. Toschi, Phys. Rev. E 75, 026702 (2007).
[27] G. Falcucci, S. Ubertini, and S. Succi, Soft Matter 6, 4357

(2010).
[28] C. E. Colosqui, G. Falcucci, S. Ubertini, and S. Succi, Soft

Matter 8, 3798 (2012).
[29] M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett.

75, 830 (1995).
[30] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans,

Phys. Rev. E 54, 5041 (1996).
[31] X. He, S. Chen, and R. Zhang, J. Comput. Phys. 152, 642

(1999).
[32] T. Lee and L. Liu, J. Comput. Phys. 229, 8045 (2010).
[33] A. Fakhari and T. Lee, Phys. Rev. E 87, 023304 (2013).
[34] L. Zheng, S. Zheng, and Q. Zhai, Phys. Rev. E 91, 013309

(2015).
[35] Y. Q. Zu and S. He, Phys. Rev. E 87, 043301 (2013).

[36] H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phys. Rev. E 89,
053320 (2014).

[37] H. Liang, Z. H. Chai, B. C. Shi, Z. L. Guo, and T. Zhang, Phys.
Rev. E 90, 063311 (2014).

[38] H. Liu and Y. Zhang, Phys. Fluids 23, 082101 (2011).
[39] Q. X. Li, Z. H. Chai, B. C. Shi, and H. Liang, Phys. Rev. E 90,

043015 (2014).
[40] H. Liang, Z. H. Chai, B. C. Shi, Z. L. Guo, and Q. X. Li, Int. J.

Mod. Phys. C 26, 1550074 (2015).
[41] I. Halliday, A. P. Hollis, and C. M. Care, Phys. Rev. E 76, 026708

(2007).
[42] T. J. Spencer, I. Halliday, and C. M. Care, Phys. Rev. E 82,

066701 (2010).
[43] S. Leclaire, M. Reggio, and J. Trepanier, J. Comput. Phys. 246,

318 (2013).
[44] T. Reis and T. N. Phillips, J. Phys. A: Math. Theor. 40, 4033

(2007).
[45] J. Bao and L. Schaefer, Appl. Math. Model. 37, 1860 (2013).
[46] Z. H. Chai and T. S. Zhao, Acta Mech. Sin. 28, 983 (2012).
[47] Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Phys. Rev. E 85,

026704 (2012).
[48] H. Liu, A. J. Valocchi, Y. Zhang, and Q. Kang, Phys. Rev. E 87,

013010 (2013).
[49] D. Jacqmin, J. Comput. Phys. 155, 96 (1999).
[50] H. Ding, P. D. M. Spelt, and C. Shu, J. Comput. Phys. 226, 2078

(2007).
[51] J. Shen and X. F. Yang, SIAM J. Sci. Comput. 32, 1159

(2010).
[52] Z. L. Guo, C. G. Zheng, and B. C. Shi, Phys. Rev. E 65, 046308

(2002).
[53] B. C. Shi, B. Deng, R. Du, and X. W. Chen, Comput. Math.

Appl. 55, 1568 (2008).
[54] Z. L. Guo, C. G. Zheng, and B. C. Shi, Phys. Rev. E 83, 036707

(2011).
[55] Q. Lou, Z. L. Guo, and B. C. Shi, Europhys. Lett. 99, 64005

(2012).
[56] J. Kim and J. Lowengrub, Interfaces Free Bound. 7, 435

(2005).
[57] J. Chin and P. V. Coveney, Phys. Rev. E 66, 016303 (2002).
[58] A. G. Xu, G. Gonnella, and A. Lamura, Physica A 331, 10

(2004).
[59] K. A. Smith, F. J. Solis, L. Tao, K. Thornton, and M. Olvera de

la Cruz, Phys. Rev. Lett. 84, 91 (2000).
[60] J. S. Rawlinson and B. Widom, The Molecular Theory of

Capillarity (Clarendon Press, Oxford, 1982).
[61] P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity

and Wetting Phenomena (Springer, New York, 2003).
[62] I. Langmuir, J. Chem. Phys. 1, 756 (1933).
[63] R. Govindarajan and K. C. Sahu, Annu. Rev. Fluid Mech. 46,

331 (2014).
[64] P. Atsavapranee and M. Gharib, J. Fluid Mech. 342, 53

(1997).
[65] W. R. Peltier and C. R. Caulfield, Annu. Rev. Fluid Mech. 35,

135 (2003).
[66] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

(Clarendon Press, Oxford, 1961).
[67] T. Funada and D. D. Joseph, J. Fluid Mech. 445, 263 (2001).
[68] I. P. D. De Silva, H. J. S. Fernando, F. Eaton, and D. Hebert,

Earth Planet Sci. Lett. 143, 217 (1996).
[69] D. I. Pullin, J. Fluid Mech. 119, 507 (1982).

013308-15

http://dx.doi.org/10.1016/j.expthermflusci.2012.03.004
http://dx.doi.org/10.1016/j.expthermflusci.2012.03.004
http://dx.doi.org/10.1016/j.expthermflusci.2012.03.004
http://dx.doi.org/10.1016/j.expthermflusci.2012.03.004
http://dx.doi.org/10.1016/j.jpowsour.2007.12.068
http://dx.doi.org/10.1016/j.jpowsour.2007.12.068
http://dx.doi.org/10.1016/j.jpowsour.2007.12.068
http://dx.doi.org/10.1016/j.jpowsour.2007.12.068
http://dx.doi.org/10.1088/0034-4885/75/1/016601
http://dx.doi.org/10.1088/0034-4885/75/1/016601
http://dx.doi.org/10.1088/0034-4885/75/1/016601
http://dx.doi.org/10.1088/0034-4885/75/1/016601
http://dx.doi.org/10.1006/jcph.1996.0167
http://dx.doi.org/10.1006/jcph.1996.0167
http://dx.doi.org/10.1006/jcph.1996.0167
http://dx.doi.org/10.1006/jcph.1996.0167
http://dx.doi.org/10.4171/IFB/61
http://dx.doi.org/10.4171/IFB/61
http://dx.doi.org/10.4171/IFB/61
http://dx.doi.org/10.4171/IFB/61
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1016/j.compfluid.2009.10.009
http://dx.doi.org/10.1016/j.compfluid.2009.10.009
http://dx.doi.org/10.1016/j.compfluid.2009.10.009
http://dx.doi.org/10.1016/j.compfluid.2009.10.009
http://dx.doi.org/10.1017/jfm.2012.288
http://dx.doi.org/10.1017/jfm.2012.288
http://dx.doi.org/10.1017/jfm.2012.288
http://dx.doi.org/10.1017/jfm.2012.288
http://dx.doi.org/10.1016/j.camwa.2013.05.012
http://dx.doi.org/10.1016/j.camwa.2013.05.012
http://dx.doi.org/10.1016/j.camwa.2013.05.012
http://dx.doi.org/10.1016/j.camwa.2013.05.012
http://dx.doi.org/10.1137/S0036139998334895
http://dx.doi.org/10.1137/S0036139998334895
http://dx.doi.org/10.1137/S0036139998334895
http://dx.doi.org/10.1137/S0036139998334895
http://dx.doi.org/10.4310/CMS.2004.v2.n1.a4
http://dx.doi.org/10.4310/CMS.2004.v2.n1.a4
http://dx.doi.org/10.4310/CMS.2004.v2.n1.a4
http://dx.doi.org/10.4310/CMS.2004.v2.n1.a4
http://dx.doi.org/10.1051/m2an:2006028
http://dx.doi.org/10.1051/m2an:2006028
http://dx.doi.org/10.1051/m2an:2006028
http://dx.doi.org/10.1051/m2an:2006028
http://dx.doi.org/10.1016/j.cma.2007.06.016
http://dx.doi.org/10.1016/j.cma.2007.06.016
http://dx.doi.org/10.1016/j.cma.2007.06.016
http://dx.doi.org/10.1016/j.cma.2007.06.016
http://dx.doi.org/10.1007/s11242-009-9408-z
http://dx.doi.org/10.1007/s11242-009-9408-z
http://dx.doi.org/10.1007/s11242-009-9408-z
http://dx.doi.org/10.1007/s11242-009-9408-z
http://dx.doi.org/10.1016/j.jcp.2014.08.002
http://dx.doi.org/10.1016/j.jcp.2014.08.002
http://dx.doi.org/10.1016/j.jcp.2014.08.002
http://dx.doi.org/10.1016/j.jcp.2014.08.002
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1016/j.advwatres.2005.03.004
http://dx.doi.org/10.1016/j.advwatres.2005.03.004
http://dx.doi.org/10.1016/j.advwatres.2005.03.004
http://dx.doi.org/10.1016/j.advwatres.2005.03.004
http://dx.doi.org/10.1016/j.apm.2007.06.033
http://dx.doi.org/10.1016/j.apm.2007.06.033
http://dx.doi.org/10.1016/j.apm.2007.06.033
http://dx.doi.org/10.1016/j.apm.2007.06.033
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1016/j.camwa.2014.10.023
http://dx.doi.org/10.1016/j.camwa.2014.10.023
http://dx.doi.org/10.1016/j.camwa.2014.10.023
http://dx.doi.org/10.1016/j.camwa.2014.10.023
http://dx.doi.org/10.1016/j.jcp.2015.07.045
http://dx.doi.org/10.1016/j.jcp.2015.07.045
http://dx.doi.org/10.1016/j.jcp.2015.07.045
http://dx.doi.org/10.1016/j.jcp.2015.07.045
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c2sm06353k
http://dx.doi.org/10.1039/c2sm06353k
http://dx.doi.org/10.1039/c2sm06353k
http://dx.doi.org/10.1039/c2sm06353k
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.1103/PhysRevE.87.023304
http://dx.doi.org/10.1103/PhysRevE.87.023304
http://dx.doi.org/10.1103/PhysRevE.87.023304
http://dx.doi.org/10.1103/PhysRevE.87.023304
http://dx.doi.org/10.1103/PhysRevE.91.013309
http://dx.doi.org/10.1103/PhysRevE.91.013309
http://dx.doi.org/10.1103/PhysRevE.91.013309
http://dx.doi.org/10.1103/PhysRevE.91.013309
http://dx.doi.org/10.1103/PhysRevE.87.043301
http://dx.doi.org/10.1103/PhysRevE.87.043301
http://dx.doi.org/10.1103/PhysRevE.87.043301
http://dx.doi.org/10.1103/PhysRevE.87.043301
http://dx.doi.org/10.1103/PhysRevE.89.053320
http://dx.doi.org/10.1103/PhysRevE.89.053320
http://dx.doi.org/10.1103/PhysRevE.89.053320
http://dx.doi.org/10.1103/PhysRevE.89.053320
http://dx.doi.org/10.1103/PhysRevE.90.063311
http://dx.doi.org/10.1103/PhysRevE.90.063311
http://dx.doi.org/10.1103/PhysRevE.90.063311
http://dx.doi.org/10.1103/PhysRevE.90.063311
http://dx.doi.org/10.1063/1.3615643
http://dx.doi.org/10.1063/1.3615643
http://dx.doi.org/10.1063/1.3615643
http://dx.doi.org/10.1063/1.3615643
http://dx.doi.org/10.1103/PhysRevE.90.043015
http://dx.doi.org/10.1103/PhysRevE.90.043015
http://dx.doi.org/10.1103/PhysRevE.90.043015
http://dx.doi.org/10.1103/PhysRevE.90.043015
http://dx.doi.org/10.1142/S0129183115500746
http://dx.doi.org/10.1142/S0129183115500746
http://dx.doi.org/10.1142/S0129183115500746
http://dx.doi.org/10.1142/S0129183115500746
http://dx.doi.org/10.1103/PhysRevE.76.026708
http://dx.doi.org/10.1103/PhysRevE.76.026708
http://dx.doi.org/10.1103/PhysRevE.76.026708
http://dx.doi.org/10.1103/PhysRevE.76.026708
http://dx.doi.org/10.1103/PhysRevE.82.066701
http://dx.doi.org/10.1103/PhysRevE.82.066701
http://dx.doi.org/10.1103/PhysRevE.82.066701
http://dx.doi.org/10.1103/PhysRevE.82.066701
http://dx.doi.org/10.1016/j.jcp.2013.03.039
http://dx.doi.org/10.1016/j.jcp.2013.03.039
http://dx.doi.org/10.1016/j.jcp.2013.03.039
http://dx.doi.org/10.1016/j.jcp.2013.03.039
http://dx.doi.org/10.1088/1751-8113/40/14/018
http://dx.doi.org/10.1088/1751-8113/40/14/018
http://dx.doi.org/10.1088/1751-8113/40/14/018
http://dx.doi.org/10.1088/1751-8113/40/14/018
http://dx.doi.org/10.1016/j.apm.2012.04.048
http://dx.doi.org/10.1016/j.apm.2012.04.048
http://dx.doi.org/10.1016/j.apm.2012.04.048
http://dx.doi.org/10.1016/j.apm.2012.04.048
http://dx.doi.org/10.1007/s10409-012-0123-6
http://dx.doi.org/10.1007/s10409-012-0123-6
http://dx.doi.org/10.1007/s10409-012-0123-6
http://dx.doi.org/10.1007/s10409-012-0123-6
http://dx.doi.org/10.1103/PhysRevE.85.026704
http://dx.doi.org/10.1103/PhysRevE.85.026704
http://dx.doi.org/10.1103/PhysRevE.85.026704
http://dx.doi.org/10.1103/PhysRevE.85.026704
http://dx.doi.org/10.1103/PhysRevE.87.013010
http://dx.doi.org/10.1103/PhysRevE.87.013010
http://dx.doi.org/10.1103/PhysRevE.87.013010
http://dx.doi.org/10.1103/PhysRevE.87.013010
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1016/j.jcp.2007.06.028
http://dx.doi.org/10.1016/j.jcp.2007.06.028
http://dx.doi.org/10.1016/j.jcp.2007.06.028
http://dx.doi.org/10.1016/j.jcp.2007.06.028
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1016/j.camwa.2007.08.016
http://dx.doi.org/10.1016/j.camwa.2007.08.016
http://dx.doi.org/10.1016/j.camwa.2007.08.016
http://dx.doi.org/10.1016/j.camwa.2007.08.016
http://dx.doi.org/10.1103/PhysRevE.83.036707
http://dx.doi.org/10.1103/PhysRevE.83.036707
http://dx.doi.org/10.1103/PhysRevE.83.036707
http://dx.doi.org/10.1103/PhysRevE.83.036707
http://dx.doi.org/10.1209/0295-5075/99/64005
http://dx.doi.org/10.1209/0295-5075/99/64005
http://dx.doi.org/10.1209/0295-5075/99/64005
http://dx.doi.org/10.1209/0295-5075/99/64005
http://dx.doi.org/10.4171/IFB/132
http://dx.doi.org/10.4171/IFB/132
http://dx.doi.org/10.4171/IFB/132
http://dx.doi.org/10.4171/IFB/132
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1016/j.physa.2003.09.040
http://dx.doi.org/10.1016/j.physa.2003.09.040
http://dx.doi.org/10.1016/j.physa.2003.09.040
http://dx.doi.org/10.1016/j.physa.2003.09.040
http://dx.doi.org/10.1103/PhysRevLett.84.91
http://dx.doi.org/10.1103/PhysRevLett.84.91
http://dx.doi.org/10.1103/PhysRevLett.84.91
http://dx.doi.org/10.1103/PhysRevLett.84.91
http://dx.doi.org/10.1063/1.1749243
http://dx.doi.org/10.1063/1.1749243
http://dx.doi.org/10.1063/1.1749243
http://dx.doi.org/10.1063/1.1749243
http://dx.doi.org/10.1146/annurev-fluid-010313-141351
http://dx.doi.org/10.1146/annurev-fluid-010313-141351
http://dx.doi.org/10.1146/annurev-fluid-010313-141351
http://dx.doi.org/10.1146/annurev-fluid-010313-141351
http://dx.doi.org/10.1017/S0022112097005399
http://dx.doi.org/10.1017/S0022112097005399
http://dx.doi.org/10.1017/S0022112097005399
http://dx.doi.org/10.1017/S0022112097005399
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161144
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161144
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161144
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161144
http://dx.doi.org/10.1017/S0022112001005572
http://dx.doi.org/10.1017/S0022112001005572
http://dx.doi.org/10.1017/S0022112001005572
http://dx.doi.org/10.1017/S0022112001005572
http://dx.doi.org/10.1016/0012-821X(96)00129-X
http://dx.doi.org/10.1016/0012-821X(96)00129-X
http://dx.doi.org/10.1016/0012-821X(96)00129-X
http://dx.doi.org/10.1016/0012-821X(96)00129-X
http://dx.doi.org/10.1017/S0022112082001463
http://dx.doi.org/10.1017/S0022112082001463
http://dx.doi.org/10.1017/S0022112082001463
http://dx.doi.org/10.1017/S0022112082001463


H. LIANG, B. C. SHI, AND Z. H. CHAI PHYSICAL REVIEW E 93, 013308 (2016)

[70] R. D. Moser and M. M. Rogers, J. Fluid Mech. 247, 275
(1993).

[71] R. Zhang, X. He, G. D. Doolen, and S. Chen, Adv. Water Res.
24, 461 (2001).

[72] H. G. Lee and J. Kim, Eur. J. Mech. B-Fluid 49, 77 (2015).

[73] Z. L. Guo, C. G. Zheng, and B. C. Shi, Phys. Fluids 14, 2007
(2002).

[74] Y. Wang, C. Shu, H. B. Huang, and C. J. Teo, J. Comput. Phys.
280, 404 (2015).

[75] P. Lallemand and L. S. Luo, Phys. Rev. E 61, 6546 (2000).

013308-16

http://dx.doi.org/10.1017/S0022112093000473
http://dx.doi.org/10.1017/S0022112093000473
http://dx.doi.org/10.1017/S0022112093000473
http://dx.doi.org/10.1017/S0022112093000473
http://dx.doi.org/10.1016/S0309-1708(00)00067-1
http://dx.doi.org/10.1016/S0309-1708(00)00067-1
http://dx.doi.org/10.1016/S0309-1708(00)00067-1
http://dx.doi.org/10.1016/S0309-1708(00)00067-1
http://dx.doi.org/10.1016/j.euromechflu.2014.08.001
http://dx.doi.org/10.1016/j.euromechflu.2014.08.001
http://dx.doi.org/10.1016/j.euromechflu.2014.08.001
http://dx.doi.org/10.1016/j.euromechflu.2014.08.001
http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1016/j.jcp.2014.09.035
http://dx.doi.org/10.1016/j.jcp.2014.09.035
http://dx.doi.org/10.1016/j.jcp.2014.09.035
http://dx.doi.org/10.1016/j.jcp.2014.09.035
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1103/PhysRevE.61.6546



