
PHYSICAL REVIEW E 93, 013305 (2016)

Computational dynamics of acoustically driven microsphere systems
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We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a
pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dy-
namics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes
use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach
allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-
propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres
describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the
microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2)
that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of
the system, though we also observe both expansion and contraction of the cloud determined by the initial system
geometry.
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I. INTRODUCTION

Computational approaches that employ an integral equation
formalism to examine acoustic scattering from particles
typically assume a static environment in which scatterers
remain stationary. At present, a large body of work details
such scattering problems [1–3]. While these stationary integral
equation methods offer a large degree of accuracy in capturing
the underlying physics, many problems of interest require a
fully dynamical treatment. For instance, in biomedical physics,
gas-filled microspheres exposed to ultrasonic beams have
demonstrated effectiveness as a contrast imaging agent [4]
and as drug delivery method [5,6], and Ding et al. have
demonstrated their manipulation using acoustic tweezers in
microfluidic channels [7]. Moreover, composite materials
consisting of colloidal in-fluid suspensions have peculiar
sound propagation properties that can deviate from the ones
of homogeneous liquids [8]. In each of these applications, the
unconstrained motion of scatterers requires a self-consistent
description of their dynamics in conjunction with a description
of the acoustic field propagation.

Here we demonstrate the applicability of coupling particle
kinetics to a time-domain integral equation scattering
framework to model rigid-sphere motion induced by a
time-dependent acoustic potential. Specifically, we consider
the case of an acoustic pulse acting on microspheres that
move in a fluid. Effective Langevin time-averaged radiation
pressure forces [9,10], which consider the case of a steady
radiation flux incident on a body kept in static equilibrium, do
not provide an appropriate model in this case as they cannot
accommodate interparticle scattering effects. While many
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theoretical and computational descriptions of higher-order
acoustic interactions exist [11–15], few actually make use of
computed fields to predict particle trajectories. As we consider
only short-duration pulses, we refrain from time averaging
in favor of using a time-domain scattering formulation
to explicitly calculate particle trajectories resulting from
a prescribed pulse. By adopting a weakly compressible
potential formulation of the fluid media, our scalar wave
problem inherits a number of similarities and solution
techniques from scattering problems in electromagnetic
theory, a topic previous works discuss extensively [11,16,17].
Moreover, our time-domain formulation readily allows the
study of transient phenomena (such as acoustic tweezing), a
convenience not shared with more common frequency domain
approaches.

We structure the remainder of this paper as follows:
We first provide a formal mathematical description of the
problem—including details on both the kinetic and field
methods—followed by data obtained from various pulse and
microsphere configurations, demonstrating both attractive and
repulsive regimes suitable for subtle control of spherical
systems in a homogeneous fluid. Finally, we offer concluding
remarks on the effectiveness of the simulation as well as our
thoughts on possible future extensions.

II. CONTINUUM PROBLEM STATEMENT

Consider a collection of N rigid, nonintersecting spherical
scatterers (microspheres), each having radius ak , position xk ,
and enclosing volume Vk ⊂ R3 (Fig. 1). The microspheres
move in a homogeneous exterior fluid occupying VE , where
we denote the boundary of each microsphere as �k = ∂Vk

and thus may ascribe to each an outward-pointing normal
n̂k(θ,φ), where θ and φ represent colatitude and azimuthal
angles with respect to the local origin (microsphere center).
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FIG. 1. Coordinate notation.

We wish to investigate the reaction of the system to an
incident acoustic pulse, thus the fluid carries a prescribed
(band-limited) waveform through the microsphere system in
which it interacts with each of the ∂�k according to the
“sound-hard” regime presented in [17]. The incident acoustic
pulse, in combination with the acoustic field scattered from
each microsphere and the hydrodynamic field induced by the

relative velocity of each microsphere, acts as a perturbation
to the initially at-rest uniform ideal fluid [18,19]. We consider
here the linear regime, in which the perturbation induced by
the acoustic and aerodynamic contribution remain sufficiently
small so the velocity field v(x,t) satisfies the condition
|v(x,t)| � cs , where cs represents the speed of sound in
the fluid. In this limit, the velocity potential, defined by
v(x,t) = ∇ϕ(x,t), satisfies the scalar wave equation:(

1

c2
s

∂2

∂t2
− ∇2

)
ϕ(x,t) = 0, (1)

and we may express the pressure perturbation at any point in
the exterior medium as

p(x,t) = −ρ0
∂ϕ(x,t)

∂t
, (2)

where ρ0 denotes the equilibrium density of the fluid. Rigidity
of the �k necessarily prescribes boundary conditions on the
normal velocity components at each interface, namely

∂ϕ(x,t)

∂n̂k

∣∣∣∣
x∈�k

= dxk

dt
· n̂k, (3)

where xk represents the center-of-mass coordinate for the kth

microsphere.
Using these relations, we apply the Kirchoff-Helmholtz

theorem to define the following system of integral equations:

ϕ(x,t) = ϕinc(x,t) +
N−1∑
i=0

∫
dt ′

∫
�k(t ′)

dA

[
ϕ(x′,t ′)

∂Gr (x,t ; x′,t ′)
∂n̂k

− Gr (x,t ; x′,t ′)
∂ϕ(x′,t ′)

∂n̂k

]
, (4)

where Gr (x,t ; x′,t ′) denotes the Green’s function for a retarded
potential,

Gr (x,t ; x′,t ′) = δ(t − t ′ − |x − x′|/cs)

4π |x − x′| . (5)

If the system remains localized to a region with small
dimensions when compared to the wavelength of sound, then
retardation effects become negligible and we may instead use
the Laplace-kernel Green’s function,

G(x,x′) = 1

4π |x − x′| . (6)

To ease notation, we define the following two integral
operators:

Ŝk[ϕ(x ∈ �k(t),t)] =
∫

�k(t)
dA G(x,x′) ∂n̂k

ϕ(x′,t), (7a)

D̂k[ϕ(x ∈ �k(t),t)] =
∫

�k(t)
dA ϕ(x′,t) ∂n̂k

G(x,x′), (7b)

reducing Eq. (4) to

ϕ(x,t) = ϕinc +
N−1∑
k=0

(D̂k − Ŝk)[ϕ(x ∈ �k(t),t)]. (8)

In solving Eq. (8), we obtain the velocity potential every-
where for a given time without retarded scattered fields. For
the incident pulse, ϕinc, we consider superpositions of wave
packets of the form

ϕinc(x,t) = P0 cos(ω0t − k · x)e−(cs t−k̂·x)
2
/(2σ 2). (9)

Finally, the variation in pressure (and thus ϕ) over each of
the �k necessarily propels each microsphere according to the
equation of motion,

mk

d2xk

dt2
= ρ0

∫
�k(t)

dS
∂ϕ(x,t)

∂t
. (10)

III. DISCRETIZATION OF THE INTEGRAL EQUATIONS

To solve the integral equation scattering problem, we begin
by discretizing our field in both space and time. As we have
restricted our particles to completely spherical geometries, the
spherical harmonics, defined by

Y�m(θ,φ) =
√

2� + 1

4π

(� − m)!

(� + m)!
P m

� (cos θ )eimφ, (11)

give simple eigenfunctions of the operators in Eq. (7). As a
result, they lend themselves well to an expansion of ϕ on the
surface of each microsphere with respect to the microsphere’s

013305-2



COMPUTATIONAL DYNAMICS OF ACOUSTICALLY DRIVEN . . . PHYSICAL REVIEW E 93, 013305 (2016)

center,

ϕ(x ∈ �k,t) =
∑
��0

∑
|m|��

Ck
�m(t) Y�m(θ,φ). (12)

By considering Eq. (2) and expressing the local velocity
potential at each of the �k as a linear combination of spherical
harmonics, we have a complete representation of the body
force acting on each microsphere,

Fk
body(t) = −

∫
�k(t)

dSp(x ∈ �k,t)

= ρ0

√
2π

3
r2([Ċk

11(t) − Ċk
1 −1(t)

]
x̂

+ i
[
Ċk

11(t) + Ċk
1 −1(t)

]
ŷ −

√
2Ċk

10(t)ẑ
)
, (13)

due to the orthogonality of dipole terms with the rest of the
multipoles.

The problem then becomes one of solving a system of linear
equations that we may compactly represent as

Z · ϕ = F , (14)

with the overbar denoting a matrix quantity. We define the
elements of F as projections of the incident field onto local
spherical harmonics,

F k
�m =

∫
�k(t)

dAY ∗
�m(θ,φ)ϕinc(x,t), (15)

and detail Zjk

�m,�′m′ for two cases: j = k and j 
= k. In the
instances where j = k, Eq. (7) propagates effects of the
interaction through to every point on a surface sharing a
coordinate system with the original, thus the harmonics remain
orthogonal and

Zjj

�m,�′m′ = � + 1

2� + 1
δ��′δmm′ (16)

after exploiting the well-known expansion theorem for Eq. (6),

G(x,x′) =
∑
�,m

1

2� + 1

r�
<

r�+1
>

Y�m(θ,φ)Y ∗
�,m(θ ′,φ′), (17)

where r< = min(|x|,|x′|) and r> = max(|x|,|x′|). A descrip-
tion of the off-diagonal terms where j 
= k proceeds much
the same way, though the surface expansions no longer
share a local origin, complicating the projections. Translation
operators for the spherical harmonics [20,21] allow analytic
expressions for these matrix elements, though we eschew such
operators in favor of numerical integration for speed.

Thus, at every time step of the simulation, the algorithm
proceeds as follows: (i) project the incident pulse and surface
velocities onto local expansions of spherical harmonics, (ii)
propagate scattering effects through space by inverting the
operators in Eq. (8), (iii) project these scattered fields onto
local spherical harmonics to give a total representation of ϕ

on each surface, and (iv) move each microsphere according
to Eq. (10) and advance t → t + t . For rigid microspheres
only � = 1 terms contribute to center-of-mass motion, thus we
use only the C1m coefficients in evolving Eq. (10).

The inversion in step (ii) above requires some care; by
simply inverting the entire propagation operator, D̂ − Ŝ , to

give a single surface pressure, Eq. (10) reduces to a differential
equation of the form

ẋk = f (t,xk,ẋk). (18)

This presents a number of irregularities with conventional
integration schemes and will rapidly diverge towards ±∞
due to the additional ẋk on the right if implemented naı́vely.
To remedy this, we note that Ŝ serves to produce only a
reaction or drag term on each microsphere that impedes
motion. By maintaining quantities for the inversion of D̂ and
Ŝ separately, we remove the explicit dependence on ẋk by
introducing a linear coefficient in the form of an additional
mass term—given by the ẋk-dependent contribution in the
single-layer Ŝ operator—when solving Eq. (10).

IV. ANALYTIC RESULTS

A. Single microsphere solution

As an example, consider a single sphere of density ρs and
radius a. Taking ka � 1, we may approximate Eq. (9) as
ϕinc(x,t) = v0(t)z and we wish to find the response velocity of
the sphere, u, in terms of the field velocity v = ∇ϕinc. It follows
that the expansion of ϕinc contains only � = 1 terms, thus

ϕinc = v0(t) a cos(θ ) (19)

on the surface of the sphere. Similarly, from Eq. (3),

∂n̂ϕ = u · n̂

= uz a cos(θ ) (20)

due to the symmetries present in x and y. As a result,

ϕ −
∫

dS ′ϕ(x′) ∂n̂′G(x,x′)

= v0a cos(θ ) −
∫

dS ′auz cos(θ ) G(x,x′), (21)

and it becomes apparent that only � = 1,m = 0 terms in
Eq. (17) remain after integrating. Consequently, the field
becomes

ϕ(x,t) =
[
v0(t)|x| + a3(v0(t) − uz)

2|x|2
]

cos(θ ) (22)

outside the microsphere and

ϕ(x ∈ �,t) =
(

3

2
v0(t) − 1

2
uz

)
a cos(θ ) (23)

on its surface. From this we conclude the total velocity
potential in the fluid arises from a surface-scattering term
alongside a term describing the transfer of momentum from
the moving microsphere to the fluid.

Using Eq. (10), we may then write the equation of motion
for the system as

ρsV u̇z = ρ0V

(
3

2
v̇0 − 1

2
u̇z

)
. (24)

where V = 4πa3/3 gives the volume of the microsphere. The
transfer of momentum from the moving microsphere to the
fluid becomes a reaction force of the fluid due to the sphere.
Landau and Lifshitz [19] initially derived this nondissipative
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FIG. 2. Perpendicular configuration.

drag force by way of momentum and energy conservation.
Note that this drag force presents only in the case of accelerated
motion of the microsphere and we may recast its effect in the
form of a virtual mass that includes a contribution due to the
mass of the displaced fluid,(

ρs + ρ0

2

)
V u̇z = 3ρ0V

2
v̇0. (25)

This expression leads to a simple relation linking uz(t) and
v0(t) provided the velocity does not remain constant and that
the sphere does not move in the absence of the field:

uz

v0
= 3ρ0

ρ0 + 2ρs

. (26)

The idea of a virtual mass for the accelerated motion
of a single sphere in an ideal fluid readily generalizes to
the case of a moving collection of mutually interacting
spheres. Through this, we may compute the dynamics of each
microsphere in the group, taking into account the effect of the
momentum exchange between the fluid and the microspheres,
resulting in both drag and interparticle forces in addition to the
displacement caused by the driving acoustic field.

B. Low-order interactions

We now consider two identical microspheres arranged
perpendicularly to an incident waveform as in Fig. 2. Within
the Born approximation, we may take Eq. (19) as the incident
field and use it in place of the total field on the right-hand side
of Eq. (8), assuming negligible contributions from scattering.
In doing so, the field everywhere becomes

ϕ(x,t) = v0(t)z + a3

3

cos(θ1)

|x − d12/2|2 [v0 − u1]

+ a3

3

cos(θ2)

|x + d12/2|2 [v0 − u2]. (27)

By inserting this into Eq. (10) for x1, we have

m1u1 · ẑ = 2πρ0a
2
∫

cos2 θ1a
3

(
4

3
v0 − u1

3

)
d(cos θ1)

+ ρ0

∫
�1

a5

3

v0 − u2

|x − d12|2 cos θ1 cos θ2dφ1d(cos θ1).

(28)

Writing

cos θ2 = a

d12

cos θ1√(
1 − a

d12
sin θ1

)2 + (
a

d12
cos θ1

)2
(29)

TABLE I. Typical simulation parameters.

Quantity Symbol Value

Sound speed cs 1500 ms−1

Microsphere radius ak 1 μm
Density (exterior) ρ0 1000 kgm−3

Density (interior) ρs 1 kgm−3

Pulse amplitude P0 0.05 m2s−1

Center frequency f0 0.5 MHz to 20 MHz
Pulse duration (st. dev.) σ 7 μs to 24 μs

and noting u1 = u2 ≡ us due to symmetry in the initial
configuration, we may expand Eq. (28) in a/d12 to give

ρsus = ρ0

(
4

3
v0 − 1

3
us

)
+ ρ0(v0 − us)

3

(
a

d12

)3

. (30)

In the limit of d12 → ∞, this becomes

us

v0
= 4ρ0

ρ0 + 3ρs

. (31)

By considering negligible scattered fields at the surface of
each microsphere, we qualitatively recover Eq. (27) with dif-
ferent coefficients arising only from the Born approximation.
Moreover, the additional interaction term in Eq. (31) scales
as |dij |−3; a behavior anticipated from the dipolar nature of
Eq. (22).

V. NUMERICAL RESULTS

Here we present a series of numerically solved systems to
illustrate the utility of the method in investigating acoustic
phenomena. We perform simulations of one- and two-particle
and/or pulse systems to determine the principal particle-field
and particle-particle interactions, followed by simulations of
larger assemblages of spheres to investigate group phenomena
and effects in systems without symmetry. Unless otherwise
stated, Table I gives the simulation parameters for each of the
following simulations; as our interests lie in hydrodynamic
applications, we use material parameters characteristic of
water to define our external fluid medium. Similarly, we
consider here the case of gas-filled microspheres [4], and
therefore set their density much smaller than that of the exterior
medium. The acoustic pulses lie in the ultrasonic regime, and
the chosen frequency of 20 MHz corresponds to that of typical
applications in acoustic microscopy.

A. Single microspheres

Figure 3 gives the trajectory of a single microsphere initially
at rest under the effects of an incident Gaussian pulse. Under
the linear and ideal fluid approximations and absent the Gaus-
sian envelope in Eq. (9), the microsphere merely oscillates
about its origin in accordance with Eq. (26). In the pulsed case,
however, the variation in pressure imposed by the finite value
of k modifies the system dynamics to yield a net translation
of each microsphere. Note that the regime considered here
produces no net transfer of momentum between the acoustic
field and the microsphere—a consequence of the ideal fluid.
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FIG. 3. Translation of a single microsphere interacting with an
incident pulse (f0 = 0.5 MHz, σ = 7 μs). Microspheres interacting
with the pulse translate a finite distance along k due to the Gaussian
envelope in Eq. (9).

Figure 4 depicts smoothed results of 128 trajectories
corresponding to single microspheres initially spaced along ẑ
and excited by identical counter-propagating pulses. By taking
the width of each pulse much greater than the radius of each
microsphere, the two pulses reproduce the effects of interfering
standing waves. The confinement occurs at ∇P = 0 (nodal)
planes where the net force on each microsphere vanishes. The
half-wavelength associated with the dominant pulse frequency
gives the separation between neighboring planes.
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Pressure gradient, ẑ · ∇p (relative scale)

FIG. 4. Confinement of noninteracting spheres to planes; identi-
cal counter-propagating pulses (f0 = 20 MHz, σ = 23.8 μs) initially
displaced along ẑ tend to align objects in ∇P = 0 planes at λ/2
intervals. Field and trajectories sampled every 30 time steps and
smoothed with a 16-sample windowed average.

−2 0 2

−2

0

2

z (µm)

x
(µ

m
)

FIG. 5. Calculated isopotential contours near a lone microsphere.
Red and blue colorations represent regions of positive and negative
potential. The motion of each microsphere through the background
medium serves primarily to produce a dipolar field of velocity
potential with vs serving as the sphere’s dipole moment.

Finally, Fig. 5 shows the relative velocity potential near
a single microsphere; given a surface expansion of ϕ, we
may compute the potential everywhere through application of
Eq. (8). As predicted by Eq. (22), this field greatly resembles
that of a pointlike “velocity dipole” with vs acting as a dipole
moment.

The simulations described thus far demonstrate precise
acoustic control; through careful application of the incident
field parameters, we may induce a (finite, given a finite
pulse) translation along the principal k̂ vector with a large
degree of accuracy in the overall displacement. In addition, the
application of multiple pulses serves to confine microspheres
to highly localized regions in space, offering a self-consistent
model of acoustic tweezing.

B. Many-particle simulations

We now turn our attention to collections of mutually
interacting microspheres. To quantify the effects of scattering,
we first decouple scattering forces from the incident pulse
by arranging two microspheres perpendicularly to the pulse’s
k vector. Figure 6 gives results for such a simulation where
we plot the relative change in velocity as compared with the
single-particle simulation,

|vmax| = max(|vdouble(t) − vsingle(t)|). (32)

In principle, describing quantities found from a complete
simulation as a function of initial separation could obfuscate
scaling data considerably; forces arising from scattering could
alter the geometry of the system. In practice, however, the
perpendicular configuration used here gives scattering forces
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FIG. 6. Scaling behavior of two microspheres arranged perpen-
dicularly to an incident pulse for various radii and initial separations.
The ( , ) symbols on each axis denote data associated with that
axis. The follow a regression of |v|d = 0.250754d−3.00077

12 , and the
follow |vmax|r = 3.13328 × 10−5a2.99814

0 . These trends strongly
indicate dominant dipolar interactions between microspheres.

FIG. 7. Isosurfaces of velocity potential (arb. units) calculated
by evaluating the Ŝ and D̂ terms in Eq. (8) for a N = 16 particle
simulation. Red, blue, and yellow surfaces denote regions of positive,
negative, and zero potential, with holes appearing due to intersections
with the bounding box. The inset box shows the three-dimensional
arrangement of the microspheres superimposed with their velocity
vectors, as well as several positive and negative potential isosurfaces.
Rendered with VisIt [22].
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FIG. 8. Fractional change in the volume of 20 randomly initial-
ized microsphere clouds subject to the same incident pulse, smoothed
with a 128-sample moving average. Positive and negative values
denote expansion and contraction. σ = 1.5 cm.

that only influence the motion along k. Consequently, v ∝
z and the microspheres’ initial separation remains a good
estimator of scaling behavior. We see in Fig. 6 that the
radii data scale as a3

k and the separation data exhibit strong
|d12|−3 scaling, again indicating a dominant dipolar interaction
between microspheres as shown by Ilinskii et al. in 2007 [14]
and predicted by Eq. (22).

Finally, we consider the dynamics of large (N = 16) clouds
of microspheres. For each simulation, we generate a collection
of microspheres initialized with zero velocity and random
positions within a 10-μm ball subject to a minimum-separation
constraint to prevent collisions. Figure 7 shows a snapshot
of the velocity potential isosurfaces calculated in one such
simulation. Even with mutual interactions, the shape of each
isosurface remains consistent with the presence of a dipolar
field oriented along the microspheres’ velocity. Again, due to
the localization assumption used to justify Eq. (6), each system
predominantly translates a finite distance in accordance with
the results found for a single microsphere in Fig. 3. To quantify
small changes in the geometry of a system, we compute Vh,
the volume of the convex hull containing each microsphere,
at every time step in the simulation [23]. Figure 8 shows the
fractional change in the hull volume,

Vh = Vh(t) − Vh(0)

Vh(0)
, (33)

for 20 such systems after smoothing with a weighted moving
average. Curves ending above and below zero indicate larger
and smaller hull volumes (system expansion and contraction).
We note from Fig. 8 a greater tendency for random clouds
to expand; the effective dipole-dipole interaction between
particles with dij ⊥ k gives purely repulsive forces, while the
interaction between particles with dij ‖ k gives both repulsive
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and attractive effects depending on σ and the relative phase of
the oscillating microsphere velocities.

VI. CONCLUSIONS

This work lends a novel, fine-grained approach to the
study of acoustic response via integral equation methods. By
considering a potential representation in terms of spherical har-
monics on the surfaces of microspheres coupled to a standard
molecular dynamics scheme, we obtain a description of the
microspheres’ dynamics under the effect of ultrasound pulses
without resorting to time-average approximations, though the
confined microsphere geometries under consideration allow us
to neglect small effects arising from time delays in scattering.
We have shown that the net effect of an ultrasound pulse
on a single microsphere consists of a translation that we can
tune through careful control of pulse parameters. Additionally,
systems with multiple incident waveforms tend to confine
microspheres to nodes in the pressure field governed by
acoustic interference. Finally, in the dynamics of systems
with many microspheres, we have observed the effect of

weak interparticle transient effects induced by the driving
acoustic pulse. These effects can produce both expansion and
contraction of a cloud of microspheres, in addition to the
overall translation.

Prior work in this area [24,25] makes use of deformable
bubble boundaries about fixed locations. Incorporation of
these methodologies to our theoretical model naturally offers
possibilities for future research, as does the addition of
retardation effects. Additionally, we expect a straightforward
approach to experimental confirmation of the results presented
here. Optical tracking of tracer particles [26] has demonstrated
its effectiveness in similar fluid-trajectory studies and would
readily adapt to track physical analogues of our theoretical
microspheres.
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