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Molecular dynamics simulations of bubble nucleation in dark matter detectors
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Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a
superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by
the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)], which uses classical nucleation
theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here
we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us
to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each
containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find
that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the
allowed spike length and the required total energy are about twice as large as predicted. This could be explained
by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we
observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle
tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events
were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the
background rejection in dark matter searches. We show that a large number of individual bubbles can form along
an α track, which explains the observed larger acoustic amplitudes.
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I. INTRODUCTION

Liquids can be heated to a temperature higher than their
boiling point, without yet going through a phase transition.
The liquids then exist in a metastable, or superheated state,
which can be locally disrupted to induce bubble nucleation. For
example, the scattering of cosmic radiation off the liquid nuclei
is an energy deposition, which can lead to bubble nucleation.

In the 1950s, this process motivated the use of such
superheated liquids to detect particles in bubble chambers
[1], the most notable being Gargamelle at CERN, which
is credited with the discovery of weak neutral currents [2].
While these detectors have been used extensively in the past,
their applications today are limited mostly to monitoring and
dosimetry [3].

However, recent research projects, such as SIMPLE [4–
6], PICASSO [7–9], COUPP [10,11], and PICO [12] em-
ploy bubble chambers (or superheated droplet detectors—
modifications of bubble chambers) in the hope of directly
detecting dark matter in the form of weakly interacting massive
particles (WIMPs). While detection in bubble chambers used
to consist of event picture taking, nowadays this is achieved by
taking advantage of the explosive nature of the phase transition.
The explosions are accompanied by an acoustic shock wave,
which is recorded by piezoelectric transducers, located on
the chamber walls [13]. Superheated liquid detectors are
competitive and complementary to other dark matter detection
methods [14–16]. However there is still some discussion on
several issues, one being the discrimination of WIMP signals
from the α-particle background [17].

Thanks to increasing computing power, and highly scalable
and efficient molecular dynamics codes, it is now possible
to simulate phase transitions directly, within a realistic
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environment [18–20]. Homogeneous liquid-to-vapor nucle-
ation has recently been simulated by some of us [21], and
the resulting nucleation rates and bubble properties were
found to differ somewhat from classical nucleation theory.
In this work we simulate a similar liquid, just at a lower
level of superheating to avoid homogeneous nucleation, and
we add model heat spikes to probe their ability to induce
bubble formation. The simulations presented here provide an
atomistic description of heat-spike-induced bubble nucleation.

II. HEAT SPIKE MODEL

The classic heat spike model underlies the theory of the
bubble detector’s functionality and induced bubble nucleation,
and was developed by Seitz in 1958 [22]. It has since been
used to calibrate various detectors. However, its assumptions
and predictions on the nanoscale process of bubble nucleation
remain untested. The model describes the formation of bubbles
in highly localized and hot regions. The formation process of a
macroscopic bubble can be split into two parts: the formation of
a microscopic protobubble or nucleus, followed by the growth
phase into a macroscopic, gas-filled bubble. Because we wish
to determine the deposited energy and track length thresholds
for stable bubble formation, in this paper our focus remains on
the first part.

A spherical bubble in mechanical equilibrium experiences a
few competing influences: the outwards pressure of the vapor,
the pressure from the surface tension acting to collapse the
bubble, and the fluid pressure pushing inwards. This leads to
the condition

Rc = 2γ

�p
, (1)

where Rc is the minimal critical radius, γ the surface tension,
and �p = pv − pl the pressure difference between the (low)
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pressure pl in the superheated liquid and the vapor pressure
inside the bubble pv .

The energy required for the formation of a bubble with
critical radius Rc is the sum of surface energy and the energy
of vaporization

Em = 4πγR2
c + 4π

3
R3

c nvHs, (2)

where nv is the number of moles per unit volume at the
equilibrium pressure and Hs is the heat of sublimation per
mole. This means that bubbles are formed if sufficient energy
is deposited along a track of critical length lc = �Rc or shorter.
The classical heat spike model assumes that the critical length
is equal to the diameter of the critical bubble, i.e., � = 2. The
deposited energy Edep is calculated using the mean energy
deposited per unit distance, or linear energy transfer (hereafter
LET):

LETc = Em

�Rc

� dEdep

dx
. (3)

III. SIMULATION SETUP

We use the classical molecular dynamics code, the Large-
scale Atomic/Molecular Massively Parallel Simulator (or
LAMMPS) [23]. We use simulation boxes of length L =
323.6 σ with periodic boundary conditions. The interaction
between the particles is described by a truncated force-shifted
Lennard-Jones (LJ) potential:

uT SF (r) =
{
uLJ (r) − (r − rc)u′

LJ (rc) − uLJ (rc),
0 if r > rc,

(4)

with the well-known Lennard-Jones potential uLJ , and a cutoff
distance rc = 2.5 σ , where the potential and force smoothly
approach zero. At our run temperature (T = 0.855 ε/kB )
the truncated force-shifted LJ fluid has a surface tension
of γ = 0.0895 εσ−2, a latent heat of Hs = 6.9 ε, and an
equilibrium pressure of Peq = 0.0461 εσ−3 (� pv; see [21,24]
for details). At the simulation density (ρ = 0.5792 mσ−3)
the liquid pressure is pl = 0.028 εσ−3, which results in a
minimal critical bubble radius of Rc = 10.47 σ and required
energy deposition of Em = 2164 ε, where ∼2041 ε is used
for vaporization and ∼123 ε goes into work against surface
tension.

LJ fluids are often used to model noble gases. Fortunately
our LJ fluid also has thermodynamic properties similar to
those of the liquids used in dark matter search experiments.
For example C2ClF5 used in the SIMPLE experiment can be
approximated quite well using the following factors when
converting from LJ to SI units: ε = 377.65 kB K = 0.0325
eV, σ = 0.501 nm, and m = 154.466 g/mol. At 9 ◦C (the
running temperature of SIMPLE) this results in an equilibrium
pressure and a surface tension which both agree to within 26%
between C2ClF5 [25] and our LJ fluid. The main difference
is that our simulations have a higher amount of superheat, a
smaller critical radius (10.47 σ = 5.26 nm vs around 40 nm in
SIMPLE [6]), and a much smaller required energy deposition
(Em = 2164 ε = 70.42 eV vs a few keV in SIMPLE). Simu-
lating heat spikes at comparable thermodynamic conditions
to those in the experiments is therefore possible with the
same interaction potential, but will require significantly larger

simulation volumes (which is computationally very expensive)
to accommodate the formation of large critical bubbles at
constant ambient pressure.

To prepare the liquid in a superheated, metastable state,
we use a procedure similar to that of Diemand et al. [21]:
First 19 652 000 atoms are placed on a lattice correspond-
ing to a density of ρ = 0.58 mσ−3. The particles are then
randomly assigned velocities corresponding to a temperature
of T = 0.95 ε/kB . A fixed time step of �t = 0.0025 τ =
0.0025

√
σ 2m/ε was used throughout all runs. A run of 10 000

time steps is initiated under NVT integration (constant particle
number, volume, and temperature ensemble) at a temperature
of T = 0.95 ε/kB . These are stable liquid conditions, used
to equilibrate the atoms which were initially placed on a
lattice. The liquid is superheated by lowering the temperature
from T = 0.95 ε/kB to T = 0.855 ε/kB over a relatively short
period of 15 000 steps as an NVT ensemble.

Another NVT run of 15 000 steps is performed to stabilize
the system at the new temperature T = 0.855 ε/kB . The
thermostat is then turned off, and the simulation allowed to
continue for 450 000 time steps with simple direct integration
of the classical equations of motion (i.e., as a microcanonical
or NVE ensemble). A typical simulation spreads 256 MPI tasks
over the same number of cores, and runs for between six and
eight hours.

Bubbles are identified with the same method as in [18,26]:
The simulation volume is divided up into cubic cells of size
(3σ )3. Cells with a density ρ < 0.2 mσ−3 are marked as
vaporized regions and are recursively linked with neighboring
vapor cells into a connected vapor bubble. As expected,
these runs did not result in spontaneously nucleated bubble
formation due to the fact that the density was too close to
the stable equilibrium value, making the free energy barrier
between the liquid and the gaseous phase too high for
spontaneous homogenous bubble nucleation.

Following Seitz’s model, we mimic the nuclear recoil
energy injection heat spike by assigning higher velocities to
all particles within a cylindrical region (see the upper panels
of Fig. 1). Each simulation continues for 200 000 to 500 000
time steps after the heat spike, in order to determine whether
or not a stable, growing bubble manages to form out of the heat

FIG. 1. Projected snapshots of run at 7.5 τ , 37.5 τ , 125 τ , 500 τ ,
812.5 τ , and 1250 τ after a heat spike of 12k ε along a length of 8 Rc.
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spike. In total 40 simulations with different deposited energies
and track lengths were performed.

IV. SIMULATION RESULTS

The bubble nucleation event can be split into three stages
(see Fig. 2).

(1) The first stage is preceded by a heat spike, which
results in an explosion of the bubble radius [27], with an
initial expansion rate of about 0.40 σ /τ and up to 1.0 σ /τ
for simulations with large energy deposition. In all cases we
observe an overshoot right after this early explosive phase
and the bubble volume decreases slightly. If the heat spike
produces a bubble with a radius of about 10 σ to 15 σ at the
end of the first stage, it generally is stable and will transition
into the second growth stage. Bubbles which are too small,
however, are unstable, and recollapse completely.

(2) During the second stage we observe linear growth
perturbed by small oscillation patterns. Since the frequency of
the oscillations matches the speed of sound inside the medium
over the length of the box, the patterns can be explained by a
pressure wave propagating through the simulation box.

(3) In the third stage, the bubble grows linearly until
the system pressure increases due to the finite simulation
box size, which unrealistically slows the growth of large
bubbles in the final stages of our simulations. Typical average
expansion speeds over the linear regime are around 0.0085 σ/τ

to 0.0130 σ/τ . These growth rates are in good agreement with
Angélil et al. [24], where the bubble growth of homogeneous
nucleation was investigated under similar conditions.

We tested the stability of our simulations by observing
the box pressure after the heat spike throughout all the runs
and found a stable pressure of Pinit = 0.0288 ± 0.002 εσ−3

averaged over 10 000 time steps. This tells us that the
simulation box size and number of atoms that we use to model
our fluid are chosen reasonably and do not effect the physics
of the problem investigated.

FIG. 2. Three-stage bubble growth plot of a run with a heat spike
of 5000 ε (or 3000 ε) along a track of 1 Rc yielding a stable growing
(collapsing) bubble.

FIG. 3. Energy plot of all runs with cylinder radius rcyl = 2σ and
cylinder length lcyl = � Rc. The critical energy to nucleate a bubble
lies around 4500 ε, and can be spread over up to a length of four
critical radii, which is in both cases a factor of 2 greater than the
theoretical predictions.

Figures 3 and 4 show the outcome of simulations with a
fixed cylinder radius of 2 σ in a plot of the deposited energy
�E relative to the length of the cylinder lc.

V. COMPARISON TO THEORY

Seitz’s model predicts that the energy threshold �E in
our simulated fluid is 2164 ε = 70.3 eV. From the energy
inputs required to generate a growing bubble (Fig. 3) we find
�E(� = 2) = 4166.1 ± 125.0 ε = 135.4 ± 4.1 eV, which is
about a factor of 2 higher. The length scale over which the
energy must be deposited (�Rc) is also underestimated by
the theory: According to Seitz, the energy contributing to one
bubble formation event must be confined within a length of
2Rc; i.e., his model assumes � = 2. The simulations however
show that the critical energy can be spread over up to 4
critical lengths without losing bubble formation efficiency—a

FIG. 4. LET plot of same runs as in Fig. 3. The LET matches the
theoretical prediction, provided a length of at least four critical radii.

013301-3
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discrepancy of a factor of 2. On tracks longer than � = 4, the
required total energy for bubble formation is higher, since only
a fraction of this now too widely spread energy contributes to
a single bubble formation event.

For analysis it is also convenient to consider the rela-
tionship between the LET [see Eq. (3)] and the cylinder
length (see Fig. 4). For � = 4 and all larger values we
find LET values which are consistent with a constant value
of 69.31 ± 4.41 ε/σ = 4.50 ± 0.29 keV/μm. The theoretical
prediction for the LET is quite accurate, just somewhat larger:
89.80 ε/σ = 5.83 keV/μm.

The LET plots show that the Seitz predictions for the LET
are accurate, provided that the LET is sustained for at least four
times the critical radius. Twice the critical radius is insufficient.
Even up to lengths of � = 26.88 and � = 53.71 for α-particle
runs, the results match the predictions.

We have also investigated the dependence of the deposited
energy on the cylinder radius. For small cylinder radii (0.744 σ

and 2 σ ) and small �, the required energies are almost equal,
even though the number of atoms in the cylinder differs by a
factor of ( 2σ

0.744σ
)
2 ≈ 7.22. For much higher cylinder radii, the

required energy must be higher also, because heat diffusion is
accelerated with more atoms.

Although the model makes some quite accurate predictions
(e.g., for the LET), it contains several unrealistic simplifying
assumptions:

(1) The microbubble thermophysical properties are as-
sumed to be the same as in a planar, static, isothermal
interface in equilibrium between bulk liquid and bulk vapor.
The inclusion of a more realistic surface tension, specifically,
its dependence on bubble size [28,29], should be addressed in
future refinement of the model.

(2) Viscosity is not included in the model.
(3) Microbubbles are assumed to be spherical and to have

a steplike vapor-liquid transition region. But critical bubbles
are nonspherical and the width of their transition regions can
be comparable to their radii [24].

(4) A more realistic model would include the complicated
and evolving non-isothermal bubble temperature profiles due
to the latent heat of transformation as well as compressive
heat in the fluid directly outside the bubble due to rapid
bubble expansion. Significant non-isothermal effects are found
in our heat spike simulations and also in homogeneous bubble
nucleation simulations; see [24].

VI. DISSIPATION OF HEAT

Seitz’s model assumes that a critically-sized bubble forms
before the deposited energy diffuses out of the critical volume.
As we shall show, this is not the case for our simulated
liquid. To establish a criterion related to the dissipation of
the deposited energy, we assume that the energy is deposited
uniformly in a spherical region of radius R0 smaller than Rc.
The volume shall be equal to a cylinder volume of length 2Rc

and cross section πa2, similar to a track covered by a recoil.
a is chosen such that 4π

3 a3 is the mean molecular volume,
where a is the van der Waals radius. Then, the critical time τc

for the dissipation of heat in a spherical spike of radius r is

determined by setting r = Rc:

τc = R2
c

4D
, (5)

in which D is the diffusion coefficient for heat. This is an
approximation, yet all the quantities are mostly constant with
variable pressure, so the values should be accurate to a factor of
2. With Eq. (5) one can assign an average minimum velocity
with which the walls of a bubble must expand to achieve
stability before the deposited heat is dissipated,

vc = Rc

τc

. (6)

It is interesting to compare this velocity with the speed of
sound in the liquid vsound. Comparing the literature values,
Seitz finds that vc is almost a factor of 10 less than vsound.
Consequently, the average velocity with which the walls of the
bubble have to expand in order to form a bubble during a time
around τc is subsonic (see [22] for more details). The kinetic
energy inside a sphere at the critical radius is expected to
decay exponentially. By fitting an exponential decay function
to the simulation data, the diffusion time and velocity can be
obtained: τc = 3.41 τ = 6.82 × 10−12 s and vc = 3.54 σ/τ =
601.03 m/s (see Fig. 5). These values can be compared to the
diffusion time calculated with literature values for Lennard-
Jones MD simulations, according to Eq. (5): vdiss = 96.02 m/s.
This value is in agreement with the simulations if one takes
into account that the analysis assumes perfectly spherical heat
spike bubbles, which is not the case in our runs (see Fig. 1).
Seitz assumes that critical bubble formation occurs within the
dissipation time scale τc. We find that this is clearly not the
case. The kinetic energy to density comparison makes it clear
that the heat dissipation is significantly faster than the bubble

FIG. 5. Evolution of kinetic energy and density within a spherical
volume of radius Rc. By fitting the data for the kinetic energy
with an exponential decay function Ekin(t) = A exp(K t) + b the
relaxation time τc = K−1 can be obtained. The results are (A,K,b) =
(1.3195,7.4640 × 10−4,1.1124) with squared diagonal elements
of the covariance matrix (6.8294 × 10−7,3.7630 × 10−19,8.5889 ×
10−11) in units of (ε, 0.0025 τ , ε).
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expansion: the average kinetic energy in a sphere of critical
radius disappears before the bubble number density drops.
The measured initial expansion velocities imply that the heat
dissipation is a factor of 3–10 times faster then the bubble
expansion.

On the other hand, Seitz compares his diffusion velocities
with acoustic velocities of the same media and concludes that
the diffusion is subsonic. The contrary is the case for our
simulations. The expansion velocities of simulated bubbles
are 3 to 10 times slower and lie in the same range as the speed
of sound for a monoatomic gas.

In Fig. 5, we show the evolution of density and average
of the kinetic energy, which is proportional to temperature,
averaged over a fixed volume of radius Rc centered on
the midpoint of the heat spike, which was inserted at time
t = 0. After a time of about 60 τ the density values do
not change significantly anymore inside this volume, since
the bubble exceeds the critical size after this time. A quick
dimensional analysis with values from [30] lets us expect
a thermal conductivity of 0.1 J K−1 m−1 s−1, and we get a
heat flow of Q

t
= 3.4 J/τc. The internal energy per atom is

U = 3
2kBT ≈ 10−21 J within a time of τc, which means that

an energy of about 32 000 atoms can be transported out of the
critical volume. These dimensions lie well within the range of
our simulation results.

It would also be very interesting to measure the evolution of
pressure inside the bubble volume after the heat spike, which
then would give insights to the surface tension at the bubble
boundary, i.e., the surface tension as a function of the bubble
radius. Unfortunately, the measurements were much too noisy
to deduce anything from them.

VII. α-PARTICLE DISCRIMINATION

Superheated liquids function as threshold detectors. All
particles able to deposit more energy than this (tunable)
detector threshold will lead to bubble nucleation and an
observable acoustic signal. A setup to search for WIMPs
is also sensitive to α particles, because they are able to
deposit higher energies. Tracks from α particles are far longer,
and their discrimination is essential for a convincing dark
matter detection. Empirically it has been found that the longer
α-particle tracks lead to larger acoustic signals compared to
neutrons [11,17] (which have tracks similar to typical WIMPs),
presumably because a large number of bubbles can form along
a longer track. However the origin of the louder signal remains
unclear. Currently there is some discussion around robustness
of the α-particle discrimination [6,17]. For this reason, we go
beyond testing Seitz’s model, and simulate far longer tracks
(see Fig. 3 and 4). Only a small fraction of an α track can be
simulated, because the computation cost of simulation boxes
of lengths in the μm range would be too large. For the α

runs we set the track length equal to the box size L. We
also ran additional large box α simulations with L = 647.1 σ

and 157 216 000 atoms and found consistent results: Fig. 4
shows that even for long tracks with � = 53.71, the required
LET is the same. α tracks above the required LET produce
several stable bubbles separated by only 4 to 5 critical radii.
Rescaled to an experiment such as SIMPLE (Rc ∼ 40 nm),

this indicates a bubble density of 5 per micrometer and around
200 microbubbles on a typical α-particle track. The acoustic
signal is generated mostly in the linear growth phase [17] and a
large number of linearly growing (and later merging) bubbles
explains the louder signal compared to the single bubble
case.

VIII. CONCLUSIONS

We have studied dark matter interaction induced bubble
nucleation using direct molecular dynamics simulations of
the process. Our molecular dynamics simulations of dark
matter bubble detectors are the first attempt of an atom-
istic, computational description of the heat-spike-induced
bubble nucleation event. Our results qualitatively confirm
the general framework assumed in the classical heat spike
model by Seitz, but also show some interesting quantitative
differences.

(1) In comparison to the model predictions, for stable
bubbles to be successfully nucleated, we find that the deposited
energy must be approximately twice as much, whereas the
length over which it is deposited can be twice as long. This
means that the model predictions actually are rather accurate
for the linear energy transfer prediction for tracks, which are
at least 4 critical radii long, twice the length assumed in
the model. The measured heat diffusion time scale is shorter
than the time it takes to form a critical size bubble, contrary
to what is assumed in the model, which could explain the
larger-than-expected required energy deposition for bubble
formation.

(2) In the bubble-chamber dark matter particle search
community there is still some discussion on the discrimination
of WIMP signals from the α-particle background [17], which
depends on exact energy predictions from the model of
induced bubble nucleation. By giving corrections to the energy
predictions of the model, this paper and further work could
help in the correct calibration of the detectors and analysis of
data, especially the discrimination of α-particle background,
and generally gives a better understanding of the measuring
processes.

Large future simulations would be needed to explore more
stable fluid critical bubbles as large as in the detectors.
The rescaled thermodynamic properties of our LJ fluid are
comparable to some of the detector fluids; however to
closely match one specific detector it would be worthwhile
to simulate more specific and more complicated fluids. Our
simulations demonstrate complications (bubble properties,
non-isothermal effects, etc.) which are neglected in the
classical heat spike model by Seitz, which might provide
an opportunity for constructing more realistic models of the
process.
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