
PHYSICAL REVIEW E 93, 013129 (2016)

Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions
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We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded
by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the
influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field
effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and
magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet
formalism, we have been able to find a family of exact stationary N -fold polygonal shape solutions for the
interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.
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I. INTRODUCTION

The Saffman-Taylor problem in Hele-Shaw cells is a
paradigmatic example for studying the development of com-
plex interfacial patterns in confined geometry [1]. It takes
place when a fluid displaces a more viscous one in the
narrow passage separating two parallel glass plates. The
interplay between surface tension and viscous forces makes
the two-fluid interface unstable, giving rise to the formation
of characteristic fingering structures [2]. Visually striking
interfacial patterns can also be produced in a rotating Hele-
Shaw setup [3–5], where the cell rotates with constant angular
velocity and the density difference between the fluids drives
the system unstable.

An alternative way to generate interesting fingered mor-
phologies is to consider the interfacial disturbances generated
when a magnetic fluid (e.g., a ferrofluid) droplet is confined
in a Hele-Shaw cell and an external magnetic field is
applied. Ferrofluids [6–8] are stable colloidal suspensions
where nanometer-sized magnetic particles are dispersed in a
nonmagnetic carrier fluid. These magnetic fluids present a
superparamagnetic behavior and are distinguished by their
prompt response to even modest magnetic stimuli. In this
case, the competition between surface tension and magnetic
forces can create a vast variety of interfacial shapes ranging
from labyrinthine structures [9–11] to spiral and protozoanlike
patterns [12,13].

No matter what the nature of the driving force (viscous,
centrifugal, magnetic, etc.) acting against surface tension is, it
is well known that the determination of exact solutions for the
finger shapes in Hele-Shaw flows is not a trivial task. Since
these exact solutions are not restricted to small perturbations
of an initially circular two-fluid interface, they are particularly
useful in providing valuable insights into possible complex
shapes assumed by the emerging fingering structures at fully
nonlinear regimes. However, in contrast to the equivalent
zero-surface-tension situation (see, for example, [14–22] and
references therein), the establishment of such exact solutions
when nonzero capillary forces take effect are relatively scarce.
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In the context of viscous fingering, only three general types
of systems allow the determination of exact finger shape solu-
tions with finite surface tension, where capillary forces balance
the corresponding driving forces of the problem. The first one,
which refers to the development of fingers in rectangular (chan-
nel) Hele-Shaw cells, was originally examined in Ref. [23]
and was later more thoroughly investigated in Ref. [24]. In
these works, the resulting exact stationary solutions display
teardroplike shapes that resemble the classical Euler elastica
solutions of ideal bending rods [25,26]. A second system
studies the elasticalike exact stationary solutions that arise
in rotating Hele-Shaw cells, when surface tension is matched
by centrifugal forces [24,27,28] at the fluid-fluid boundary.
In these articles, regular N -fold petal-shaped patterns set in,
as well as peculiar cusped structures connected to satellite
drops located at infinity. It is worth noting that similar types of
steady patterns arise in various other systems including closed
elastic wires under pressure in a plane [29,30], cylindrical fluid
membranes [31], two-dimensional vesicles [32], and softly
constrained films [33]. Still, in the Hele-Shaw cell context,
there are unstable N -fold symmetric solutions (which look like
polygons with smoothed edges) presented in Ref. [34], where
the regularizing action of both surface tension and kinetic
undercooling are considered. Families of unstable N -fold
solutions similar to the related problem for the porous medium
equation were also found in Refs. [35–38].

A third kind of system involves the consideration of
magnetic forces acting on magnetic fluids (ferrofluids and
magnetorheological fluids [39–41]) subjected to a radial
magnetic field in motionless Hele-Shaw cells [42,43] and
to an azimuthal magnetic field in both rotating [44] and
motionless [45,46] Hele-Shaw cell arrangements. The action
of the external magnetic fields induces the appearance of
generalized unstable elasticalike stationary solutions, where
various types of polygon-shaped structures and starfishlike
patterns have been obtained.

Despite the nontrivial nature and the morphological vari-
ety exhibited by the stationary shape solutions obtained in
Refs. [23,24,27,28,34–38,42–46], in most of these studies it
has been found that such solutions are unstable. This means
that these solutions are possibly very difficult to directly
observe in real experimental realizations, so their relevance
to the dynamics of such systems is uncertain. Remarkably,
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FIG. 1. Representative sketch of a rotating Hele-Shaw cell setup
containing a viscous ferrofluid droplet subjected to an applied radial
magnetic field H produced by anti-Helmholtz coils. The outer fluid
is nonmagnetic and has higher density. The cell rotates around the z

axis with constant angular velocity �. The directions of the electric
currents I in both coils are also indicated. In this configuration the
magnetic field destabilizes the interface, while surface tension and
centrifugal forces stabilize it.

it seems that the only existing case in which linearly stable,
nonzero-surface-tension, exact stationary solutions are avail-
able is offered by a biology-motivated fluid model, where the
morphology and anisotropic growth of polarized tissues is
studied [47]. The authors of Ref. [47] have obtained circular
and oval-like exact shape solutions in a friction-dominated
regime and have checked numerically that these solutions
are generically stable to small perturbations. Nevertheless, an
investigation about the possibility of obtaining stable exact
stationary shape solutions in the physical context of a viscous
fluid fingering problem is still lacking.

In this work we consider a physical system in which
the combined action of surface tension and centrifugal and
magnetic forces result in the uprising of exact stable stationary
shape solutions for the two-fluid interface. More specifically,
we examine the interfacial pattern formation process that
occurs in a rotating Hele-Shaw cell containing an initially
circular ferrofluid droplet, which is surrounded by a more
dense nonmagnetic fluid (see Fig. 1). The cell rotates around
the z axis with constant angular velocity �. An externally
applied radial magnetic field is produced by two Helmholtz
coils carrying electric currents that flow in opposite direc-
tions. Under such circumstances, the magnetic force tends
to destabilize the interface separating the two fluids, while
surface tension and centrifugal forces act to stabilize it.
The interplay of these competing physical effects will allow
the appearance of stable interface shape solutions. It should
be emphasized that the special physical system we study in
this work, which leads to stable stationary solutions, was not
treated in Refs. [4,24,27,28,39–46].

The rest of this paper is outlined as follows. In Sec. II
the moving boundary problem is described in detailed. We
employ a fully nonlinear vortex-sheet formalism to gain
analytical and numerical insight into the establishment of these
innovative, stationary ferrofluid patterns. Section III presents
the analytical determination of the exact stationary shapes.

Linear and weakly nonlinear stability analyses are then utilized
in Sec. IV to investigate the stable nature of such magnetic fluid
structures. Finally, in Sec. V we present our chief conclusions
and final remarks.

II. DESCRIPTION OF THE MOVING
BOUNDARY PROBLEM

Figure 1 illustrates an incompressible ferrofluid droplet of
unperturbed radius R, viscosity η1, and density ρ1 located
between two narrowly spaced flat plates of a Hele-Shaw cell
of thickness b. The outer, surrounding fluid is nonmagnetic
and has viscosity η2 and density ρ2. The surface tension at
the immiscible fluid-fluid interface is nonzero and denoted by
γ . We consider that the ferrofluid droplet is subjected to an
applied in-plane radial magnetic field

H = H0

L
r êr , (1)

where r is the radial distance from the origin of the coordinate
system located at the center of the droplet, H0 is a constant, L

is a characteristic length, and êr is a unit vector in the radial
direction. It is worth pointing out that this specific magnetic
field configuration can be realistically generated by a pair of
identical Helmholtz coils whose currents are equal and flow in
opposite directions, in an anti-Helmholtz arrangement [43,48].
A magnetic body force F ∼ ∇H , where H = |H| is the local
magnetic field intensity, acts on the magnetic fluid pointing in
the outward radial direction [6,45]. Since the applied magnetic
field presents a natural nonzero gradient, we take it as the main
local field contribution to the magnetic body force, therefore
neglecting minor demagnetizing effects. Moreover, the cell
is rotated with constant angular velocity � about the z axis
located at the origin, being perpendicular to the plane of the
flow. In contrast to previous works on the rotating Hele-Shaw
cell [24,27,28,44], here we consider that ρ2 > ρ1 such that
centrifugal force points radially inward and tends to stabilize
the circular droplet, acting in opposition to the magnetic body
force.

Following the standard approach in Hele-Shaw problems,
one starts by neglecting inertial contributions in the three-
dimensional (3D) Navier-Stokes equation and by imposing a
no-slip boundary condition at the cell plates. Then, by taking
a parabolic velocity profile, an effectively 2D flow is obtained
by averaging the 3D Navier-Stokes equation over the cell gap
direction. By considering the contribution of centrifugal [3]
and magnetic [43] forces, one can write a modified Darcy law
for the gap-averaged velocity v of the confined fluids

vj = − b2

12ηj

∇
[
�j + ρj�

2r2

2

]
, (2)

where j = 1 (j = 2) labels the inner (outer) fluid. The gap-
averaged generalized pressure � is defined as [10]

� = 1

b

∫ +b/2

−b/2
[P − �]dz, (3)

where P is the 3D pressure,

� = μ0

∫ H

0
MdH = μ0χH 2

2
(4)
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represents a magnetic pressure [6,43], and μ0 denotes the mag-
netic permeability of free space. In Eq. (4) we used the linear
relationship M = χH, with M = |M| being the magnetization
of the ferrofluid and χ its magnetic susceptibility. For the
nonmagnetic fluid χ = 0 and � = 0.

Since the velocity field is irrotational in the bulk, it
is convenient to state our moving boundary problem in
terms of velocity potentials φj , where vj = −∇φj . From the
incompressibility condition ∇ · vj = 0 it can be seen that
the velocity potential is indeed Laplacian for both fluids,
so we have that ∇2φj = 0. Further specification about the
velocity potential is provided by the augmented pressure jump
boundary condition at the interface

p1 − p2 = γ κ − 1
2μ0(M · n̂)2, (5)

where p = [
∫ +b/2
−b/2 Pdz]/b is the gap-averaged pressure and n̂

denotes the unit normal vector at the interface. The first term
on the right-hand side of Eq. (5) expresses the conventional
contribution related to surface tension and interfacial curvature
κ . The second term on the right-hand side of (5) is related to
the magnetic nature of the problem: It is commonly known as
the magnetic normal traction term [6,7,44] and incorporates
the influence of the discontinuous normal component of
the magnetization at the interface. This particular magnetic
contribution plays a central role in determining the shape of
the emergent ferrofluid interfacial patterns. It is worthwhile
to note that the magnetic normal traction term acts like the
anisotropic force term appearing in Eq. (3) of Ref. [47], which
is due to the active stresses acting on the edge of a biological
tissue sample.

The remaining boundary condition (commonly known as
the kinematic boundary condition [2]) connects the velocity of
the ferrofluid with the motion of the two-fluid interface itself
and expresses the fact that the normal components of the fluids
velocities are continuous across the interface v1 · n̂ = v2 · n̂.
Therefore, the definition of the moving boundary problem is
specified by the equations

∇2φ1,2 = 0, (6)

∂φ1

∂n
= ∂φ2

∂n
, (7)

∂φ1

∂s
− ∂φ2

∂s
= �, (8)

where ∂/∂s = ∂s (∂/∂n = ∂n) is the derivative along the tan-
gent (normal) direction to the interface. Equation (7) describes
the continuity of the normal velocity at the interface and Eq. (8)
expresses the tangential velocity jump of magnitude �. This
jump originates in a nonzero vorticity region restricted to the
interface separating the fluids [49,50]. With the help of the
generalized Darcy law (2) and the pressure jump (5), an explicit
expression for the vortex-sheet strength can be derived in its
dimensionless form

� = 2∂s{κ − NBr2χ [1 + χ (n̂ · r̂)2] + N�r2}

−A

(
∂φ1

∂s
+ ∂φ2

∂s

)
, (9)

where lengths and time are rescaled by r0 and [12(η1 +
η2)r3

0 ]/γ b2, respectively, and r0 is a typical length being on
the order of the unperturbed droplet radius R. The system is
characterized by the dimensionless parameters

NB = μ0H
2
0 r3

0

2γL2
, N� = ρ�2r3

0

2γ
,

where ρ = ρ2 − ρ1 > 0, as well as by the viscous contrast
A = (η1 − η2)/(η1 + η2). The parameter NB represents the
magnetic Bond number and measures the ratio of magnetic
to capillary forces. On the other hand, the interplay between
centrifugal and surface tension effects is described by a
rotational Bond number N�.

Now, with the proper moving boundary problem specified,
we are able to analyze all the relevant physical effects that
determine the interface evolution by taking a closer look at
Eq. (9). The first terms at the right-hand side of Eq. (9), which
are the tangential derivatives between curly brackets, are the
local part of the vortex sheet, while the potential-dependent
terms between large parentheses express the nonlocal character
of the time-evolving interface. As a matter of fact, the local
terms contain the specific physics of our problem: The term
proportional to the curvature κ originates from capillary
effects; the term NBr2χ accounts for the magnetic body force
arising from the natural gradient of the radial magnetic field in
the ferrofluid; the contribution of NBr2χ2(n̂ · r̂)2 comes from
the discontinuity of the magnetization at the interface, that is,
it represents the magnetic normal traction effect in the pressure
jump condition (5); and, finally, we have the term proportional
to N� that quantifies the centrifugal force difference between
both fluids. We point out that, in the particular setup considered
in this paper, the magnetic body force and the centrifugal force
terms possess the same spatial dependence, therefore they can
be arranged into a common contribution to the vortex sheet,
namely, 2∂s[(N� − NBχ )r2].

In the following sections we pursue the goal of finding
and characterizing stationary stable solutions of our system by
focusing on the vortex-sheet local terms in Eq. (9) arising
from the pressure jump condition (5). In order to achieve
this, in the rest of this work we give special attention to the
specific case where the stabilizing effect of the centrifugal
forces exactly balances the destabilizing effect of the magnetic
body force. This is possible by setting N� = χNB , which in
practice means that we carefully tune rotation to cancel out
the radial magnetic field body force. By doing so, we consider
only the influence of capillary versus the magnetic normal
traction effects on the interface shape and dynamics. This is
the key feature displayed by the setup explored in this work,
in opposition to usual previous viscous fingering models that
explore bulk forces contributions [4,27,28,39–46]. This is also
what allows our system to display stable stationary shapes,
similar to those obtained in the biological system examined
in Ref. [47]. It should be noticed that the case in which
N� �= χNB (which leads to unstable solutions) also has not
been treated in the literature.

III. EXACT STATIONARY SHAPE SOLUTIONS

As in Refs. [42–46], we use the vortex-sheet formalism
to obtain the exact stationary shapes of our viscous fingering
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problem, which consists in a rotating ferrofluid droplet sub-
jected to a radial magnetic field, obeying the special condition
N� = χNB . As discussed in detail in Refs. [24,27], this type
of elasticalike stationary solution with nonzero surface tension
can be found by imposing a condition of zero vorticity (� = 0)
plus considering a stationary state (∂φ1,2/∂s = 0) in Eq. (9).
We emphasize that, in our setup, this is equivalent to imposing a
static equilibrium between the capillary and magnetic normal
traction forces at the interface between the inner and outer
fluids.

Under such circumstances [� = 0 and ∂φ1,2/∂s = 0 in
Eq. (9)], we find that the curvature of the droplet interface
satisfies a nonlinear differential equation

∂s{κ − NBr2χ [1 + χ (n̂ · r̂)2] + N�r2} = 0, (10)

which can be readily integrated yielding

κ = κ(r,r sin ψ) = a + c(r sin ψ)2, (11)

where a is a constant of integration. Notice that Eq. (11) does
not depend on the viscosity contrast A. For brevity we define
c = NBχ2. In Eq. (11) we have used the fact that n̂ · êr =
± sin ψ , where ψ is the angle between the radius vector êr and
the tangent vector ŝ at the interface. Note that c is non-negative,
so in order to allow nontrivial solutions κ must change its sign
along the curve and we require that a < 0.

We wish to study the family of planar curves whose
curvature has the general form given by Eq. (11). These
curves are the exact stationary solutions we are seeking,
which equilibrate the competing magnetic and surface tension
forces at the interface. In order to find such solutions we
begin by expressing the curvature of the interface in terms
of polar coordinates r and ϕ. By choosing r as a parameter, a
differential equation for the curvature of the interface can be
written as [42]

rϕ′′ + ϕ′(2 + r2ϕ′2) = κ(r,r sin ψ)(1 + r2ϕ′2)3/2 (12)

for r > 0, where the prime indicates differentiation with
respect to r . By performing a convenient change of variables
rϕ′ = tan ψ , after some simplifications we find that Eq. (12)
assumes the simpler form

(r sin ψ)′ = rκ(r,r sin ψ). (13)

Remarkably, if we set w = r sin ψ and use Eq. (11), we deduce
at once from Eq. (13) the differential equation

w′ = r(a + cw2), (14)

whose general solution is given by

w(r) =
√

a

c
tan

[√
ac

2
r2 + C

]
, (15)

where C is an arbitrary constant. By employing this geometric
approach, the problem of determining the shape of the interface
is solved once we compute

ϕ(r) = ϕ0 +
∫ r

r0

1

τ
tan ψ(τ )dτ, (16)

where tan ψ = w(r)/
√

r2 − w2(r). Moreover, ϕ0 and r0 are
initial plot values for the coordinates and they can be set to
ϕ0 = 0 and r0 = 1 without loss of generality. Equations (15)

and (16) analytically determine the complete set of stationary
solutions of our problem, except for the arbitrary integration
constants a and C, which are related to the values of κ and
ψ at (r0,ϕ0), respectively. Although we have obtained all
the possible stationary solutions of our problem analytically
[Eqs. (15) and (16)], the closed plane curves that represent
relevant stationary shape solutions of our problem can be
conveniently plotted by just solving Eq. (11) numerically.

We proceed by imposing a commensurability condition
on the stationary solutions through the theorem of turning
tangent [33] ∫

κds = 2πm, (17)

where m is an integer, named the rotation index of the curve,
which measures how many times the curve turns with respect
to a fixed direction. For our physical drops the interface
must be a simple closed curve (without self-crossings), thus
m = 1. In order to find all physical shapes for a given set
of physical parameters (χ , NB , and N� = χNB), we plot
several solutions to Eq. (11) by fixing c, choosing the initial
plot condition ψ(r0 = 1,ϕ0 = 0) = π/2, and varying the
numerical parameter a. Moreover, we introduce the auxiliary
commensurability parameter

δ =
∫

κds − 2π (18)

such that when δ = 0 for a given set of parameters, it means
that these parameters produce a closed interface.

By following this procedure, in Fig. 2 we plot δ as a function
of a for a fixed value of the physical dimensionless parameter
c = 30. The dots indicate the solutions of Eq. (11) and the
lines are simple linear interpolations of neighboring points.
We observe that the curve crosses the axis δ = 0 fourteen
times, indicating the values of a associated with possible

FIG. 2. Plot of the commensurability parameter δ as a function
of the integrating constant a for c = χ 2NB = 30. The values of a

for which δ = 0 (there are 14 of them) determine commensurable
stationary shapes.
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FIG. 3. Commensurable solutions found by using the data presented in Fig. 2. Each shape corresponds to values of a for which δ = 0.
From left to right we have a = −0.3288,−3.8877,−8.7297,−13.0185,−16.4536,−19.1599,−21.3043 for the top row and a = −23.0462,

−24.4995,−25.7647,−26.9147,−28.0621,−28.9931,−29.8200 for the bottom row.

simple closed curves. Figure 3 illustrates the resulting shapes
corresponding to the values of a for which δ = 0. It should be
noted that these shapes represent a series of separate stationary
patterns and not a time-evolving sequence of events. As one
can readily notice by inspecting Fig. 3, there are still some
shapes that display interface overlapping (starting to count on
the top row, from left to right they correspond to the even
numbered structures), which represent nonphysical solutions
and therefore should be excluded from our physical analysis.
The remaining physical interfacial curves depict polygonlike
shapes with sharp tip fingers and fairly straight edges. As the
magnitude of a is increased we find that the number of fingers
also increases in the structures. In addition, the fingers get
smaller in amplitude and become more rounded at the tips, up
to the point where the 13th solution is almost circular.

FIG. 4. Typical nonperturbative, stationary shape solutions for
a magnetic fluid droplet subjected to rotation and radial magnetic
field, considering three values of c = 10,20,30. For each value of
c the different N -fold patterns (N = 2,3,4) are obtained by taking
increasingly larger absolute values of the constant of integration a (in
a given panel the magnitude of a increases from left to right).

To explore the influence of the parameter c on the morphol-
ogy of the exact stationary solutions, in Fig. 4 we illustrate
the physical N -fold shapes with N = 2, 3, and 4, for three
different values of c = 10, 20, and 30. As explained previously,
c = NBχ2 quantifies the ratio between the magnetic normal
traction contribution and capillary forces and it is related to the
tendency of ferrofluid interfacial instabilities to present sharp
fingers. As a matter of fact, in Fig. 4 we verify that as c is
increased the fingers become increasingly sharper. Although
it cannot be seen in this figure, we have also verified that as c

increases, the number of stationary solutions also increases.

IV. STABILITY OF THE STEADY SHAPES

In order to analyze the stability of our stationary solutions,
we make use of a perturbative mode-coupling approach [44].
In this way, the stationary approximate interface obtained with
a weakly nonlinear (WNL) analysis can be compared with the
fully nonlinear exact steady shapes, as long as the lengths of
the fingers are not too long. We verify that a few perturbative
orders can account for the entire exact solution and hence a
certain truncation in the number of Fourier modes involved
can be regarded as a good representation of the exact shapes.
We examine the purely linear (early time) stage of the flow, as
well as the weakly nonlinear regime, during which important
nonlinear effects (e.g., finger tip sharpening) start to become
relevant and stationary amplitudes are achieved.

Within the scope of our second-order mode-coupling
theory [51], the perturbed shape of the interface can be
written as R(ϕ,t) = R + ζ (ϕ,t), where R is the radius
of the initially circular two-fluid interface. Here ζ (ϕ,t) =∑+∞

n=−∞ ζn(t) exp(inϕ) represents the net interface perturba-
tion with complex Fourier amplitudes ζn(t) and discrete az-
imuthal wave numbers n. We define Fourier expansions for the
velocity potential and use the boundary conditions (5) and (7)
presented in Sec. II to express φ in terms of ζn in order to obtain
dimensionless mode-coupling differential equations for the
system accurate to second order in the perturbation amplitudes.
After performing such a weakly nonlinear calculation, the
evolution of the perturbation amplitudes is given as

ζ̇n = λ(n)ζn +
∑
n′ �=0

[F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′ ], (19)
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FIG. 5. Comparison between exact (solid curves) and WNL
(dashed curves) solutions for the steady interface shape for c = 10
and a number of fingers N = 3,4.

where the overdot represents a total time derivative with
respect to time and

λ(n) = |n|
[

2NBχ2 − 1

R3
(n2 − 1)

]
(20)

is the linear growth rate. The second-order mode-coupling
terms are represented as

F (n,n′) = |n|
R

{
NBχ2(1 + n′(n − n′))

− 1

R3

[
1 − n′

2
(3n′ + n)

]}
, (21)

G(n,n′) = 1

R
{A|n|[sgn(nn′) − 1] − 1}, (22)

where the sgn function equals ±1 according to the sign of its
argument.

By examining Eq. (20) for the linear growth rate, it is
evident that the term proportional to χ2 coming from the
normal magnetic traction contribution is destabilizing (induces
a positive growth rate). On the other hand, the remaining
term is related to capillary forces and tends to stabilize the
fluid-fluid interface. The terms appearing in the expression
for the function F (n,n′) in Eq. (21) arise from the magnetic
applied field and surface tension, respectively. In contrast, the
function G(n,n′) defined in Eq. (22) presents no dependence on
magnetic effects. As we will see below, already at second order,
by using just a few modes, we are able to obtain stationary
solutions of small perturbation amplitudes.

Figure 5 illustrates a comparison between exact stationary
shapes and the WNL steady solutions obtained by setting
ζ̇n = 0 for all n in Eq. (19). The solid curves depict the
threefold and the fourfold exact stationary patterns presented
in the first row of Fig. 4, for which c = 10. On the other hand,
the dashed curves show the corresponding WNL stationary
solutions. Since the exact shapes are not very deformed, the
weakly nonlinear approach can be successfully applied to
approximate quite well the fully nonlinear results by using
only three Fourier modes (namely, n = N , 2N , and 3N , where
N is the number of fingers; therefore N = 3,4 for threefold
and fourfold solutions, respectively).

Now we turn to one last and important aspect related
to the stability of the stationary solutions. This is done by
setting a system of nonlinear differential equations for only
three harmonic modes N , 2N , and 3N , by using the mode-
coupling equation (19). We proceed by utilizing correspondent
cosine perturbation amplitudes aN , a2N , and a3N , where

FIG. 6. Time evolution of an initially circular droplet perturbed
by a small n = 4 Fourier mode, for c = 10 and 0 � t � 1.35, in equal
time intervals t = 0.15, where darker color curves mean larger
values of time. The interface profile for t > 1.35 is indistinguishable
from the one shown at t = 1.35.

an = ζn + ζ−n are real Fourier coefficients. Through a standard
linearization process close to the stationary solution, we
diagonalize the resulting system of equations, determining the
eigenvalues that dictate the stability of the fixed point [44,52].
By doing so, we have verified that the steady solutions shown
in Fig. 5 are stable. For these patterns we have three negative
eigenvalues, characterizing an attractor point. Additionally,
we have found that the unperturbed drop is unstable and
therefore if one perturbs an initially circular interface it will
evolve towards a nontrivial stationary solution. This situation
is illustrated in Fig. 6, which displays the time evolution of
a nearly circular droplet perturbed by a fourfold harmonic
mode, where c = 10. As time advances, the four-fingered
perturbation increases and reaches a stationary profile depicted
by the shape on the right-hand side of Fig. 5.

Complementary information about the pattern-forming
phenomenon depicted in Fig. 6 is provided by Fig. 7, which
plots the time evolution of the cosine perturbation amplitudes
aN , a2N , and a3N . We point out that both Figs. 6 and 7
are obtained by numerically solving the following system
of nonlinear differential equations derived by considering the
coupling of only three cosine modes in Eq. (19):

ȧN = λ(N )aN + 1
2 {[F (N, −N ) + F (N,2N )]aNa2N

+ [F (N, −2N ) + F (N,3N )]a2Na3N

+G(N, −N )ȧNa2N + G(N,2N )ȧ2NaN

+G(N, −2N )ȧ2Na3N + G(N,3N )ȧ3Na2N }, (23)

ȧ2N = λ(2N )a2N + 1
2

{
F (2N,N )a2

N

+ [F (2N, − N ) + F (2N,3N )]aNa3N

+G(2N,N )ȧNaN + G(2N, −N )ȧNa3N

+G(2N,3N )ȧ3NaN

}
, (24)

ȧ3N = λ(3N )a3N + 1
2 {[F (3N,N ) + F (3N,2N )]aNa2N

+G(3N,N )ȧNa2N + G(3N,2N )ȧ2NaN }. (25)
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FIG. 7. Time evolution of the cosine perturbation amplitudes
aN (t), a2N (t), and a3N (t), where N = 4, for the evolving interface
depicted in Fig. 6. It is clear that all amplitudes eventually tend to
stationary values.

From Fig. 7 we clearly observe that the weakly nonlinear
coupling naturally dictates the enhanced growth of positive
harmonic modes, which is the phase that induces finger tip
sharpening [51]. It is also evident that after an initial period
of growth, all perturbation amplitudes saturate, so they remain
unchanged as time progresses. This validates the idea that the
system tends to a stationary-state configuration.

V. CONCLUSION

Although exact stationary solutions of the viscous fingering
problem are plentiful in the zero-surface-tension limit [14–22],
corresponding solutions for the finite-surface-tension case are
relatively rare. Recently, the vortex-sheet formalism was suc-
cessfully used to determine exact stationary shape solutions,

when surface tension effects are balanced by either viscous,
centrifugal, or magnetic forces [24,27,28,42–46]. However,
most of these shape solutions are not stable, indicating
that their relevance to actual experimental realizations is
unclear. Curiously, as far we can tell, the only stable, exact,
stationary shape solutions have been obtained in a biology-
motivated system dealing with anisotropic growth of polarized
tissues [47].

In this work we have been able to prepare a legitimate
viscous fingering, physically motivated setup in which the
resulting exact stationary shape solutions are indeed stable.
This has been accomplished by considering the situation in
which a more dense, ferrofluid droplet is surrounded by a
nonmagnetic fluid and subjected to a radial magnetic applied
field. The whole fluid dynamic system is confined in the
narrow passage that separates two parallel glass plates of
a rotating Hele-Shaw cell. In this framework, we employed
the vortex-sheet formalism and focused on the situation in
which destabilizing magnetic forces are counterbalanced by
stabilizing centrifugal effects in the bulk. By doing this, the net
effect on the ferrofluid droplet boundary results just from the
interplay between capillary and magnetic normal traction con-
tributions. This is our physical analog of the biology-motivated
system studied in Ref. [47]. The emergent stationary shape
solutions we found define N -fold polygonal-like structures
presenting increasingly sharper tips and straighter edges as
magnetic effects are intensified. Finally, a weakly nonlinear
mode-coupling theory was utilized to verify that such exact
stationary shape solutions are actually stable.

In closing, we point out that the vortex-sheet technique
we presented in this work arises as a useful alternative
to traditional variational methods utilized to determine the
stationary shape solutions for flexible, inextensible pressurized
wires in a plane (elasticalike problems) [29,30], cylindrical
fluid membranes [31], two-dimensional vesicles [32], and
softly constrained films [33].
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