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Self-similar propagation of Hermite-Gauss water-wave pulses
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We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave
pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m
wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The
measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and
linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order
Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential
and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second
harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank.
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I. INTRODUCTION

Self-similar wave propagation refers to a propagating wave
that preserves its shape up to a scale factor during propagation,
i.e., its temporal or its spatial profile remains similar to the
initial form [1], across the entire propagation space. There
are many interesting types of wave packets that exhibit such
a property in both the linear and the nonlinear regimes.
As examples, in the linear approximation, nonspreading (or
nondiffracting) wave packets not only preserve their wave
profiles but also maintain the exact original scale during
evolution, keeping their size unchanged. Perhaps the best
known case for a nonspreading wave is the optical Bessel
beam, an exact solution to the Helmholtz equation [2,3]. In
the framework of quantum mechanics, Berry and Balazs also
suggested an exact solution to the Schrödinger equation—the
Airy wave packet that exhibits shape preservation while
propagating along a parabolic trajectory [4]. Recently, the
Airy wave packet was realized experimentally in optics [5],
electron microscopy [6], acoustics [7], and hydrodynamics
[8,9]. In the nonlinear regime, solitary wave solutions to
the nonlinear equations were explored in many areas of
physics [1], manifesting the balance between the linear
dispersion and the nonlinear self-focusing effects [10]. In
addition to solitons, self-similar parabolic wave pulses that are
asymptotic solutions for the nonlinear Schrödinger equation
were found in the scope of optical pulses propagating in
fibers with normal dispersion [11,12]. These parabolic pulses
evolve self-similarly, preserving their parabolic shapes, hence
avoiding wave breaking even at the high-intensity nonlinear
regime [12,13].

In optics, the Gaussian beam has long been understood to
be part of a complete and orthogonal set of solutions to the
Helmholtz equation in Cartesian coordinates, where higher-
order solutions were named Hermite-Gauss (HG) beams
[14,15]. These optical beams possess several characteristic fea-
tures: first, it was shown that HG beams evolve self-similarly
in space, maintaining their initial profiles; second, for the same

*ady@eng.tau.ac.il

Gaussian width, the higher-order beam width (defined by the
square root of the second-order moment) is M times larger
than the width of the respective fundamental beam, where M is
related to the order of Hermite functions; third, since they form
a complete and orthogonal set of solutions, any scalar wave
in Cartesian coordinates can be decomposed to a combination
of Hermite-Gauss components [15]. Due to these intriguing
properties, so far HG beams have been extensively studied in
optical vortex generation [16], mode conversion [17], beam
shaping [18,19], harmonic generation [20], etc. Surprisingly,
although the HG functions have been extensively applied in
optics, to our knowledge, their application in hydrodynamics
has not been reported up till now, except for studies of
the fundamental Gaussian mode. We note that the evolution
of an irrotational narrow-banded water-wave field is often
described by models like the nonlinear Schrödinger (NLS), or
the modified nonlinear Schrödinger (MNLS) equations [21].
In the linear approximation, however, this wave equation is
formally equivalent to the paraxial Helmholtz wave equation.
In this article, we study theoretically and experimentally for
the first time the self-similar propagation dynamics of surface
water wave, having Hermite-Gauss envelopes in both the linear
and the nonlinear regimes.

Unlike optical measurements which owing to the high
carrier frequency usually concentrate on the wave’s inten-
sity [8], disregarding the phase, water waves feature both
measurable envelope and phase information, allowing us to
directly study the carrier-envelope phase evolution of these
self-similar Hermite-Gauss wave pulses. As is known, any
converging wave acquires an additional axial phase shift,
i.e., the Gouy phase anomaly, which was first discovered in
optical waves using the interferometric measurement in 1891
[22], later in single-cycle terahertz wave pulses [23], acoustic
few-cycle wave pulse [24], and recently electron matter waves
[25,26]. Here, the Gouy phase anomaly in a focusing surface
water wave is directly measured for the first time in water
wave. We also note that, up till now, most of the Gouy phase
measurements, e.g., in optical wave packets, were limited to the
fundamental Gaussian wave. In this paper, the measurement
of Gouy phase of higher-order Hermite-Gauss pulses is also
presented.
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II. FORMULATION

We first examine theoretically the linear solution of
Hermite-Gauss wave pulse on the surface of deep water.
Propagation dynamics of surface gravity water wave can be
modeled using the modified nonlinear Schrödinger equation,
suggested by Dysthe [21]. Following Refs. [27–29], and
neglecting the nonlinear effects for sufficiently low wave
steepness, the spatial version of this linearized wave equation
in its normalized form is given by

∂A

∂ξ
+ i

∂2A

∂τ 2
= 0, (1)

where A is the pulse envelope, ξ the propagation distance,
and τ the elapsed time. The scaled dimensionless variables
are related to the physical units according to ξ = ε2k0x,τ =
εω0(x/cg − t) and A = a/a0, where k0 = 2π/λ0 is the water
wave number with λ0 being the carrier wavelength. The
carrier angular frequency ω0 satisfies the normally deep-water
dispersion relation ω2

0 = gk0, with g being the gravitational
acceleration. Accordingly, the linear group velocity can be
expressed as cg = dω/dk = ω0/(2k0). a0 is the maximum
amplitude of the envelope and ε = k0a0 is the characteristic
wave steepness. Equation (1) (linear Schrödinger equation) is
formally identical to the paraxial Helmholtz wave equation
[5] except that the time coordinate in Eq. (1) (describing
the temporal dispersion) is replaced by the space coordinate
(describing the spatial diffraction). Taking advantage of such
an analogy, we extend the concept of optical Hermite-Gauss
beams to hydrodynamics. To look for the Hermite-Gauss
solutions of Eq. (1), we assume that the water-wave envelopes
at x = 0 have the following forms:

A(x = 0,t) = Hm

(√
2t

t0

)
exp

[
− (1 + iC)t2

t2
0

]
, (2)

where Hm represents the Hermite polynomial of order m, t0
is the characteristic envelope duration, and C is used to
quadratically modulate the phase of the incident pulses, so
that the envelope A becomes linearly frequency chirped. The
quadratic phase term exp(−iCt2/t2

0 ) in Eq. (2), similar to the
optical lens transfer function which can focus or defocus a
light beam in free space [30], can make the pulses converging
or diverging in time during propagation. For instance, when
C < 0, i.e., the pulse is linearly negative chirped, the front part
of the pulse propagates at a group velocity smaller than that
of the latter part, leading to pulse focusing in time. Another
explanation for pulse focusing is that the induced anomalous
dispersion from the negative chirped pulse compensates the
normal dispersion through propagation.

Integrating Eq. (1) with the initial condition Eq. (2) yields

A(ξ,τ ) = A0(ξ )Hm(ξ,τ ) exp

[
− μ0τ

2

T 2(ξ )

]
exp[iψ(ξ,τ )], (3)

where

A0 = [T (ξ )]−(2m+1)/2,

ψ = 2m + 1

2
arctan

(
4μ0ξ

1 + 4μ1ξ

)
−

(
4μ2

0ξ+μ1+4μ2
1ξ

)
τ 2

T 2(ξ )
,

(4)

is the variation of envelope amplitude and phase, respectively.

Here T (ξ ) =
√

(1 + 4μ1ξ )2 + 16μ2
0ξ

2, μ0 = 1/(εω0t0)2 is

constant, and μ1 = C/(εω0t0)2 is related to the chirp coef-
ficient. Equation (4) clearly shows the slowly decreasing pulse
amplitude with the location; while the carrier-envelope phase
ψ(ξ,τ ) demonstrates a quadratic dependence on time, indicat-
ing that the pulse becomes rapidly chirped during evolution.
Hm(ξ,τ ) represents the propagated Hermite polynomial and
can be expressed analytically as

H0(ξ,τ ) = 1,

H1(ξ,τ ) = −2
√

2μ
1
2
0 τ,

H2(ξ,τ ) = 8μ0τ
2 − 2[T 2(ξ )],

H3(ξ,τ ) = −16
√

2μ
3
2
0 τ 3 + 12

√
2μ

1
2
0 τ [T 2(ξ )].

(5)

Note that the derivations above were represented in a system
traveling at the group velocity cg . Here the Hermite functions
of order m (m = 0 − 3) are considered. Clearly, Hm(ξ,τ ) are
real functions, maintaining their Hermite polynomial forms
along the propagation distance. Therefore, it is suggested
from Eq. (3) that for both the chirped and nonchirped wave
pulses, their canonical Hermite-Gauss shapes are preserved,
exhibiting self-similar propagation along the wave tank.

Interestingly, in addition to the self-similar propagation
property, these HG pulses also experience a phase anomaly,
i.e., the Gouy phase [22], given by

ψG(ξ ) = 2m + 1

2
arctan

(
4μ0ξ

1 + 4μ1ξ

)
. (6)

It shows that in order to observe a significant Gouy phase shift,
an initially negative chirp needs to be imposed to such HG
wave pulses. In this case, μ1 < 0, and the value of 4μ0ξ/(1 +
4μ1ξ ) varies from −∞ → ∞ for ξ = 0 → ∞, giving rise to
the Gouy phase shift of (m + 1

2 )π . The fundamental mode,
i.e., the HG0 pulse, experiences a Gouy phase shift of π

2 ,
while the higher-order modes, HG1, HG2, and HG3 waves,
undergo Gouy phase shifts of 3π

2 , 5π
2 , and 7π

2 , respectively. The
Gouy phase anomaly becomes less significant for a nonchirped
(μ1 = 0) or positively chirped (μ1 > 0) pulse. This is because
the value of 4μ0ξ/(1 + 4μ1ξ ) only varies from 0 to +∞ for
ξ = 0 → ∞. Thus, the phase shift of ψG is (2m + 1)π/4, half
of the phase shift from the chirped pulses. In both cases, the
higher-order HG pulses accumulate Gouy phase 2m + 1 times
as quickly as the fundamental mode; see Eq. (6).

III. RESULTS

A. Linear propagation dynamics

Our experiments were performed in an 18-m-long and
1.2-m-wide laboratory wave flume with a constant water
depth h = 0.6 m. Surface gravity Hermite-Gauss waves were
generated by means of a computer controlled paddle-type wave
maker installed at one end of the wave flume. To avoid wave
reflections, an absorbing beach of 3 m long was installed at the
opposite end; see detailed information of experimental setup in
Ref. [31]. The beach reduces considerably the amplitude of the
reflected waves. Therefore, our measurement was limited up
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FIG. 1. The envelope evolutions of the nonchirped and linearly chirped Hermite-Gauss wave pulses, with parameters of a0=6 mm, t0 = 2.5 s,
and C = 0 (a, b), C = −2.19 (c, d) for different order of m (see the top). In the experiments, the pulse envelopes were obtained using Hilbert
transform of the measured elevations, in a frame of reference moving at speed cg . The color bar units of the envelope are millimeters. (a, c)
The experimental measurements and (b, d) the theoretical results based on Eq. (3).

to a distance of 14 m from the wave maker. The instantaneous
surface elevation at any fixed location along the tank was
measured by four wave gauges with a sampling frequency of
400 Hz. These wave gauges were mounted on a bar parallel to
the propagation direction. The bar with the gauges is fixed to
an instrument carriage that can be shifted along the tank and
is controlled by the computer. The temporal surface elevation
wave groups generated by the wave maker takes the following
form:

η(x = 0,t) = a0A(x = 0,t) cos(ω0t). (7)

Here the maximum value of A(x = 0,t) is normalized to unity
so that a0 is the maximum amplitude of the envelope. In the
experiment, the carrier wavelength was selected as λ0 = 0.76
m, so that the dimensionless depth k0h = 4.96 > π satisfied the
deep-water condition [32]. In this case, the wave dissipation
can be neglected.

To experimentally visualize these HG wave pulses, the
characteristic envelope duration was set to t0 = 2.5 s, and the
amplitude a0 = 6 mm (ε = 0.05). In this case, the nonlinear
effects could be neglected. Figure 1 illustrates the experimental
[see Figs. 1(a) and 1(c)] and theoretical [see Figs. 1(b) and 1(d)]
envelope evolutions of the nonchirped (C = 0) and linearly
chirped (C = −2.19) pulses along the water flume, with
different orders (m = 0–3). In the experiments, the pulse
envelopes were obtained by Hilbert transforming the recorded
wave elevations, represented in a comoving system with a
group velocity of cg . In both cases (the chirped and nonchirped
pulses), it was observed that these HG pulses propagate
self-similarly along the wave flume, preserving their initial

HG shapes. Our experimental measurements are supported
by the theory based on Eq. (3). For the nonchirped pulses,
see Figs. 1(a) and 1(b), due to large dispersion length x0 =
gt2

0 /4 � 15 m, the HG0 pulse exhibits only a weak dispersion
while traveling throughout the tank, keeping its temporal
width almost unchanged. However, relative spreading of
higher-order pulses was observed. The higher-order HG pulses
broaden more significantly than the fundamental Gaussian
pulse. For the chirped pulses, see Figs. 1(c) and 1(d), owing to
the introduced negative chirp that compensates the normally
inherent dispersion, these pulses converge to a minimum
temporal size at the location of x ∼ 6 m and then diverge
significantly after passing the focus.

We note that, for the chirped pulses, the elevation wave
groups remain negatively chirped before the focus, thereby
converging the pulses during propagation. At the focal spot,
these waves can be considered as nonchirped pulses; while
after the focus, they become positively chirped and start
diverging. This evolution pattern is similar to that observed
for focused wave groups in Ref. [32]. The phenomenon was
observed directly by measuring pulses’ temporal elevations at
three typical locations in the tank; see Fig. 2. It demonstrates
clearly the transition from negatively chirped pulses (see the
elevations at x = 1 m) to positively chirped pulses (see the
elevations at x = 11 m) for three higher-order HG pulses.
We also point out that few cycle water-wave pulses were
generated near the focal location of the tank (see the elevations
at x = 6 m), suggesting that these linearly chirped pulses were
efficiently compressed. We constructed the pulse envelopes
using the Hilbert transform (see the blue curves in Fig. 2),
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FIG. 2. The temporal profiles of the measured elevation wave
groups at x = 1 m (before the focus), 6 m (nearly the focus), and
11 m (after the focus), with different orders: (a) m = 1, (b) m = 2,
and (c) m = 3. The parameters are set as a0 = 6 mm, t0 = 2.5 s, and
C = −2.19. Red curves are the measured elevations while the blue
curves denote the constructed envelopes by Hilbert transform.

showing excellent Hermite-Gauss profiles. The envelopes at
x = 1 m and x = 11 m remain almost the same, owing to the
symmetry of these two locations with respect to the focal point
(x � 6 m).

In order to describe HG pulses’ propagation quality, their
square root of the second-order moment along the tank was
measured using the expressions [8]

σm(x) =
[

4
∫ ∞
−∞(t − t̄)2|η|2dt∫ ∞

−∞ |η|2dt

] 1
2

, t̄ =
∫ ∞
−∞ t |η|2dt∫ ∞
−∞ |η|2dt

, (8)

where σm(x) denotes the square root of the second moment
of HG pulses with order m (m = 0 − 3) at location of x.
Figures 3(a) and 3(b) show the outcomes for the nonchirped
[see Fig. 3(a)] and chirped [see Fig. 3(b)] pulses, respectively.
The solid lines correspond to the theoretical results while
the scattered dots represent the experimental outcomes with
error bars 5% of the data. For the nonchirped HG pulses
we can observe the mild increase of σm with increasing
x, and higher-order HG pulses broaden slightly faster than
lower-order pulses, in accordance with the envelope evolutions

FIG. 3. (a, b) The measured square roots of second-order mo-
ments of HG wave pulses, as a function of locations. The parameters
used here are a0 = 6 mm, t0 = 2.5 s, and C = 0 (a), C = −2.19 (b).
(c, d) The calculated M factor as a function of locations, with C = 0
(c), C = −2.19 (d). In all these figures, the lines denote the theoretical
results; while the scattered dots represent the experimental outcomes.

illustrated in Fig. 1(a). For the chirped pulses [see Fig. 3(b)],
these curves for σm exhibit a parabolic-symmetric shape, with
their minimum value located at x ∼ 6 m. Slight difference
between the experiment and theory was observed, due to small
deviation of the elevation generated by the wave maker, as
compared with the theory.

We have already mentioned earlier an important property
of a higher-order Hermite-Gauss wave that has a width M

(M=√
2m + 1) times larger than the width of a fundamental

Gaussian wave for the same Gaussian envelope [14]. We
confirmed this property by calculating their M factor defined
as M=σm/σ0. The results are plotted in Figs. 3(c) and 3(d)
for the nonchirped and chirped pulses, respectively. The data
points with an accuracy of 5% show the experimental results
and the dashed lines are the expected value for the M factor. It is
clearly seen that for both the cases, their square roots of second
moments approximately satisfy the relationship σm = Mσ0.

B. Phase measurement

The phase of a wave function is usually inaccessible in
optical experiments, owing to the high carrier frequency
(∼1014 Hz). However, in our experiments, the measured wave
elevations with low carrier frequency allows us to demodulate
the envelope phase of these Hermite-Gauss pulses. As recently
reported in Ref. [8], the envelope phase of these pulses can be
determined by extracting the local maximum and minimum
values of the elevations. In the experiments, the envelope phase
ψ is modulated by a carrier wave contained in the elevation:
η(x,t)=Re[a0A(x,t) exp(ik0x − iω0t)]. Therefore, the phase
of the elevations is described by

ϕ(x,t) = ψ(x,t) + ψm(x,t) + k0x − ω0t, (9)

where ψm(x,t) is the phase of Hermite functions of order m

[see Eq. (5)]. At those particular points, we have the rela-
tionship cos(ϕ) = ±1 [for the maximum (minimum) points, it
equals 1 (−1)]. The induced envelope phase at a fixed location
is thus expressed as ψ + ψm = arccos(±1) + ω0t − k0x.

Using this technique, the envelope phase of HG pulses
was determined; see Fig. 4 in the case of nonchirped pulses.
Figure 4(a) illustrates theoretically the envelope phase vari-
ation with t and x for different orders of HG waves. For
clear observation, temporal envelope phase variation at two
typical locations of x = 1 m and x = 11 m were plotted
[see Figs. 4(b) and 4(c), respectively], corresponding to the
white dashed lines in Fig. 4(a). To avoid phase ambiguity,
these results were demonstrated in a form of cosine function,
i.e., cos(ψ + ψm). As mentioned before, the envelope phase
is a quadratic function of time with Gouy phase offset; see
Eq. (4). In this case, owing to the small quadratic chirp
coefficient, we observe that for HG0 pulse (see the figures
at m = 0), the envelope phase varies slowly with t and x.
However, for the higher-order HG pulses, which accumulate
Gouy phase 2m + 1 times faster than the HG0 pulse, their
envelope phase changes significantly. Moreover, the direct
phase measurements enable us to observe the π -phase jump of
the higher-order pulses, as a consequence of the modulation of
Hermite functions. For the HG1 pulse (see figures at m = 1), a
single phase jump occurs at t = 0; whereas the HG2 and HG3

pulses undergo two and three phase jumps, respectively.
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FIG. 4. The carrier-envelope phase of the nonchirped HG pulses demodulated from the measured elevations, with a0 = 6 mm, t0 = 2.5 s,
and C = 0. The obtained envelope phase was illustrated as a cosine function of time. (a) Two-dimensional phase map calculated from Eq. (3)
for different order of m. (b, c) The envelope phase profiles at x = 1 m (b) and x = 11 m (c). The blue curves in (b) and (c) correspond to the
theory, while the red scattered dots denote the experiments.

We further measured the envelope phase of the chirped HG
pulses; see Fig. 5. In this case, the introduction of negative
chirp strongly affects the pulse propagation, leading to rapid
phase variation with t and x, as compared with the nonchirped
cases. Figure 5 also plots their theoretical phase variation [see
Fig. 5(a)], as well as the temporal phase profiles at x = 1 m
(before the focus) and x = 11 m (after the focus) in Figs. 5(b)
and 5(c), respectively. We observed that, in addition to the
π -phase jump, for the HG0 and HG2 pulses, their envelope
phase profiles at x = 1 m and x = 11 m remain similar; while
for the HG1 and HG3 pulses, the envelope phase profiles are
almost time reversed. This phenomenon is attributed to the
phase similarity before and after the focal point.

Another interesting phenomenon of HG water-wave pulses,
mentioned above, is the Gouy phase behavior that had been
studied extensively in various types of waves such as optical
waves [22,23], acoustic waves [24], and matter waves [25,26].
In this work, the Gouy phase measurement of HG water-
wave pulses is presented for the first time. Theoretically, the
envelope phase ψ has a quadratic dependence of time with
the Gouy phase offset, as can be seen from Eq. (4). In the

experiments, the demodulated envelope phase can be written
as ψ = ψG + γ t2, where γ (in the unit of radian/s2) is a
quadratic coefficient. Both the value of ψG and γ can be
obtained directly by fitting the envelope phase with the method
of least square. Figure 6 shows the obtained results for both
the nonchirped and chirped wave pulses. For the nonchirped
pulses [see Fig. 6(a)], it is observed that in all these cases
(m = 0 − 3) the Gouy phase is increasing slowly with the
increase of x. Note that the Gouy phase of HG0 mode is rather
small. For the chirped pulses [see Fig. 6(b)], the value of Gouy
phase increases significantly, compared with the nonchirped
pulses. Furthermore, the variation of the Gouy phase from
x = 0 to x = 13 m exhibits similar “S” shapes for chirped HG
pulses. In both cases, the Gouy phase of higher-order modes is
2m + 1 times larger than the case of HG0 mode. As expected, a
converging HG0 wave experiences π/2 Gouy phase shift when
it propagates from x = 0 → +∞. However, in the experiment,
due to the limited length of the wave tank, the total phase shift
for the HG0 is less than π/2.

The quadratic coefficient γ describing the pulse chirping
was also studied for these pulses; see Figs. 6(c) and 6(d).

FIG. 5. The same as described in the caption of Fig. 4, but in the case of chirped pulses, i.e., C = −2.19.
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FIG. 6. The obtained Gouy phase ψG (a, b) and quadratic
coefficient γ (c, d) by fitting the envelope phase with the method
of least square. The parameters are set as a0 = 6 mm, t0 = 2.5 s, and
C = 0 (a, c); C = −2.19 (b, d). The scattered data points correspond
to the experimental outcomes, while the solid lines represent the
theoretical results.

Although no chirping was initially added to the pulses, i.e., γ =
0 at x = 0 [see Fig. 6(c)], these pulses still accumulate positive
chirp (owing to the normal dispersion) while propagating along
the tank, as can be deduced from the negative value of γ at
x �= 0. Owing to the slow increase of γ as a function x, its
value remains relatively small throughout the tank, indicating
that these pulses exhibit weak spreading during propagation.
However, for the negatively chirped pulses, γ > 0 at x = 0;
see Fig. 6(d). The value of γ remains positive when x < ∼ 6 m
and becomes negative at x > ∼ 6 m, experiencing a transition
at the location at x ∼ 6 m. That means these pulses remain
negatively chirped before the focus and become positively
chirped after passing the focus, in accordance with the results
shown in Fig. 2. Owing to the initial chirp at x = 0, the
value of γ becomes relatively larger, having an inverse “S”
shape. We note that γ is independent of the order of HG
functions, as shown in Eq. (4). Thus, the obtained γ in all these
cases approximately overlap together; see Figs. 6(c) and 6(d),
respectively.

C. Second harmonic generation

Finally, we examine both experimentally and numerically
nonlinear propagation dynamics of the Hermite-Gauss wave
pulses with appreciable amplitude. In this case, the nonlinear-
ity becomes dominant and wave propagation is governed by
the modified nonlinear Schrödinger equation [27–29] written
in its normalized form,

∂A

∂ξ
+ i

∂2A

∂τ 2
+ i|A|2A + 8ε|A|2 ∂A

∂τ
+ 2εA2 ∂A∗

∂τ

+ 4iεA
∂�

∂τ

∣∣∣∣
Z=0

= 0, 4
∂2�

∂τ 2
+ ∂2�

∂Z2
= 0 (Z < 0),

(10)

where Z = εk0z is the scaled vertical coordinate and �

is the induced velocity potential, which satisfies ∂�/∂Z =
∂|A|2/∂τ (Z = 0) and ∂�/∂Z = 0 (Z = −∞). Here A

denotes the complex envelope of the first harmonic free waves,
while the second harmonic bound waves can be determined
using the expression B = 1

2εA2 [28]. Therefore, the nonlinear
elevation wave groups can be expressed as Aei(k0x−ω0t) +
Be2i(k0x−ω0t). Note that the third harmonic waves are not
considered here due to their negligible amplitude. To observe
nonlinear effects, we increase the amplitude to a0 = 21 mm
(ε = 0.17), keeping other parameters unchanged. Figure 7(a)
illustrates experimentally the envelope evolution of nonlinear
HG pulses in the case of nonchirped pulses. These HG
envelopes consist of the first harmonic free waves and the
second harmonic bound waves. It clearly shows that these
nonlinear waves still maintain their self-similar propagation
despite the strong nonlinearity, approximately preserving their
HG shapes. We observed that HG0 pulse was seriously
compressed, suggesting the induced strong nonlinearity. The
higher-order pulses were less compressed, due to the smaller
width of their lobes as compared with the Gaussian duration.
This indicates that higher-order HG pulses are more resilient
to nonlinear perturbations. Owing to the nonlinear effects,
the propagating group velocity was slightly modified. Con-
sequently, these pulses propagate slightly faster than cg; see
Fig. 7(a).

FIG. 7. Experimental results for: (a) nonlinear propagation dynamics of HG pulses and (b) the generated second harmonic bound waves
with a0 = 21 mm (ε = 0.17), t0 = 2.5 s, and C = 0. Both (a) and (b) represent the envelope in a moving system. The color bar units are
millimeters.
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FIG. 8. The spectra of the nonchirped HG wave pulses calculated at the location of x = 7.39 m, with t0 = 2.5 s and C = 0. (a) The
measured linear spectra with a0=6 mm (ε = 0.05); (b) the measured nonlinear spectra with a0 = 21 mm (ε = 0.17). Blue curves correspond
to simulations based on Eq. (10); while the red curves denote the experiments.

To further study the nonlinear effects, we presented here
the spectra of nonlinear HG pulses, shown in Fig. 8(b). In
comparison, the spectra of linear pulses were also considered;
see Fig. 8(a). These spectra in both cases were obtained at a
fixed location of x = 7.39 m. We compared our experimental
pulse spectra with simulations based on Eq. (10), preformed by
the split-step Fourier method [27]; see the blue curves, showing
a good correspondence. In the linear case [see Fig. 8(a)], in
all the cases (m = 0 − 3), these spectra are symmetric, also
having HG shapes. The center of the fundamental harmonic
is located at f0 = ω0/(2π ). In the nonlinear regime [see
Fig. 8(b)], owing to the contribution of second harmonic
bound waves [the observation of the second order higher
frequency indicates a second harmonic generation (SHG)],
these spectra exhibit asymmetry and become wider, which
is similar to Refs. [32,33]. Despite the nonlinearity, their
general HG shapes could still be recognized in the dominant
frequency components. This can explain that in the nonlinear
regime, the HG shapes can be approximately preserved during
propagation.

In order to obtain an image of the excited second harmonic
bound waves along the tank, we extracted the second harmonic
spectra in a range of 2f0 ± 0.5 Hz and neglected all other
spectra components. The results are shown in Fig. 7(b),
illustrating their excited pulse envelopes along the tank. It
shows that these generated second-harmonic bound waves
at any location of the tank also have similar Hermite-Gauss
shapes. In addition, the second-harmonic free waves were also
observed, propagating at a smaller velocity of cg/4, as judged
from the waves emitted at an angle to the straight vertical
line; see the arrow in Fig. 7(b). Due to gradual separation
between the bound and the free second harmonic waves along
the distance, these second harmonic free waves mix together
and therefore their HG shapes are not observed clearly (one
technique to avoid this phenomenon is based on the chirp
pulses with lower incident amplitude, demonstrated in Fig. 9).
From the color bars in Figs. 7(a) and 7(b), we estimated that
the SHG efficiency is around 11% (3.3/30 = 0.11). We should
mention that, contrary to the nonchirped pulses, generating
second harmonics of initially negative chirped Hermite-Gauss
waves along the water tank is not straightforward. This is

because, the chirped pulses broaden seriously after passing
the focus, reducing their amplitude and hence the SHG
efficiency. Also, due to the focus effect, the spectra width
varies rapidly with the locations, which hinders the extraction
of the second harmonic components. A practical conclusion is
that adding a chirp to the Gaussian pulse enables us to suppress
nonlinear distortions. This concept is often used in optical fiber
communication and can become useful in hydrodynamics as
well.

Moreover, using the technique of chirp pulses, the second
harmonic response can be observed only at chosen regions,
i.e., nearly the focal regions in the tank. As a realization,
we increase the chirp to C = −4.11, and reduce incident
amplitude to a0 = 8 mm, setting t0 = 3.3 s. The results
are demonstrated both experimentally and numerically, with
orders m = 0, 1; see Fig. 9. Since the input amplitude is
low, the second-harmonic bound waves are negligible before
and after the focal regions, see the corresponding spectra at
x = 1.0 m [see Figs. 9(a) and 9(d)], and at x = 12.0 m [see
Figs. 9(c) and 9(f)]. However, owing to the strong negative

FIG. 9. The spectra of the chirped HG pulses with order (a)–(c)
m = 0 and (d)–(f) m = 1, calculated at three different locations:
(a, d) x = 1.0 m (before the focus), (b, e) x = 6.5 m (near the focus)
and (c, f) x = 12.0 m (after the focus). The parameters are set as
a0 = 8 mm, t0 = 3.3 s, and C = −4.11. Blue curves correspond
to simulations based on Eq. (10); while the red curves denote the
experiments.
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chirp, when these pulses propagate to the focal region, they
are seriously compressed, increasing their amplitude and
hence inducing harmonic bound waves, as seen from the
second harmonic components in Figs. 9(b) and 9(e). Our
measurements are supported by the numerical outcomes. We
also point out that, the introduction of strong chirp gives
rise to waves oscillating at faster frequencies, and hence
weak dissipation of waves occurs during propagation. Wave
dissipation become more pronounced in the higher-order HG
wave pulses, as evident from Fig. 9(f).

IV. CONCLUSION

We observed self-similar propagation of Hermite-Gauss
water-wave pulses in both the linear and the nonlinear regimes.
In the linear regime, we discussed their properties of shape
preservation, width variation, and envelope phase evolution
along an 18-m water flume. Although the importance of Gouy
phase has been demonstrated in various areas of optics [34,35],
most of the measurements of Gouy phase are still limited to
the Gaussian wave packet; see Refs. [23,24,26], among others.
In this work, we performed the Gouy phase measurement
of their higher-order counterparts. In the nonlinear regime,
we studied nonlinear propagation dynamics of HG wave
pulses with appreciable nonlinearity, as well as their generated
second-harmonic bound waves along the wave tank. We found
that both the first harmonic free waves and the generated

second harmonic bound waves exhibit self-similar property.
Our experimental results match well with the simulations
based on the MNLS equation. The observed asymmetry with
respect to the central frequency of the measured spectra as
shown in Fig. 8 stems from the two nonlinear terms that are
proportional to the square of the amplitude; see Eq. (10).
However, our simulations demonstrate that as long as the
asymmetry of wave train envelope and of the spectra is not
too strong (e.g., in the case of a chirped pulse shown in Fig. 9),
the nonlinear Schrödinger equation still could be utilized to
simulate nonlinear evolution of surface gravity water waves.
We note that although there has been a number of studies
demonstrating the applications of HG waves in optics [16–20],
to our knowledge, this is the first time that this family of
solutions is demonstrated in water waves. We anticipate that
many new phenomena still can be explored both in water waves
and optical waves, owing to the analogy between their wave
equations [8,36,37].
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