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Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids
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In this paper, a generalization of the Cahn-Hilliard theory of binary liquids is presented for multicomponent
incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion-type dynamics is
derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard
free-energy functional is presented for an arbitrary number of components, offering the utilization of independent
pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize
the functional, and we demonstrate that the energy penalization for multicomponent states increases strictly
monotonously as a function of the number of components being present. We validate the model via equilibrium
contact angle calculations in ternary and quaternary (four-component) systems. Simulations addressing liquid-
flow-assisted spinodal decomposition in these systems are also presented.
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I. INTRODUCTION

Multicomponent liquid mixtures are of continuously in-
creasing scientific and industrial importance. For instance, it
has recently been discovered that controlled pattern formation
in ternary colloidal emulsions and polymer mixtures could
be used in producing advanced pharmaceutics, biochemical
assays, or templating microporous materials [1,2]. Multicom-
ponent emulsions might also play an important role in devel-
oping a new, efficient, and environmentally sound enhanced
crude oil recovery technique [3–6]. Although numerous
theoretical studies addressing binary liquid flows are available,
significantly less is known about ternary flows, and much less
is known about systems with four or more components. The
continuum description of binary systems undergoing phase
separation originates from Cahn and Hilliard [7], and it was
further improved by Cook [8] and Langer [9,10]. The binary
theory was successfully extended also for ternary systems by
de Fontaine [11,12], Morral and Cahn [13], Hoyt [14,15],
and Maier-Paape et al. [16]. Coupling liquid flow to the
Cahn-Hilliard theory is also possible on the basis of the
Korteweg stress tensor [17,18] (also interpreted as the least
action principle in statistical physics [19]), and it has been
done for binary systems by several authors [20–22], thus
resulting in a reasonable picture of binary liquids [23], while a
liquid-flow coupled generalization of the Cahn-Hilliard model
for an arbitrary number of components was developed by
Kim and Lowengrub [24], and later by Kim [25]. The Kim-
Lowengrub model was tested mainly for the ternary case, while
quite limited calculations are available for four-component
systems. Furthermore, as will be demonstrated in this paper,
the construction of neither the free-energy functional nor the
diffusion equations used by Kim and Lowengrub satisfies
all conditions of physical and mathematical consistency, or
if so, the constraints on the model parameters strongly limit
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the applicability of the theory. Therefore, the problem needs
further investigation.

The main difficulty in describing many-component flows
is finding appropriate extensions of both the thermodynamic
functions and the dynamic properties for high-order multiple
junctions. This is far from being trivial, mostly due to the
lack of microscopic data. Nevertheless, one can extrapolate
from the binary interfaces while maintaining physical and
mathematical consistency. In the case of spinodal decom-
position, for example, physical consistency means that the
multicomponent states of the material should be energeti-
cally less and less favorable with an increasing number of
components. Consequently, the system should converge to
equilibrium configurations showing a single-component—
binary interface—trijunction topology. The conditions of
mathematical consistency can be summarized as the condition
of formal reducibility, i.e., writing up the model for N

components and then setting the N th component to zero should
result in the N − 1 component model on the level of both the
free-energy functional and the dynamic equations.

In this work, we formulate such a consistent generalization
of the binary Cahn-Hilliard theory for an arbitrary number
of components, for which (i) the bulk states are absolute
minima of the free-energy functional, (ii) the two-component
equilibrium interfaces represent stable equilibrium, and (iii)
the energy of multiple junctions increases as a function of the
number of components. In addition, the free-energy density
landscape has no multicomponent local minima, therefore the
system cannot get trapped into a multicomponent homoge-
neous state during spinodal decomposition. Furthermore, a
convection-diffusion dynamics is also developed, which (i)
does not label the variables in principle, and (ii) extends
(reduces) naturally, when a component is added to (removed
from) the model.

The paper is structured as follows. In Sec. II, we define first
the relevant variables describing a multicomponent liquid flow,
together with introducing a general free-energy functional
formalism. Next, we study equilibrium via the Euler-Lagrange
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equations, and we construct a general convection-diffusion
dynamics. The application of the general framework for
multicomponent spinodal decomposition follows then in
Sec. III. We construct a consistent extension of the binary
Cahn-Hilliard free-energy functional for an arbitrary number
of components, and we demonstrate both the physical and
mathematical consistency of our approach. After presenting
the numerical methods in Sec. IV, the validation of the
model follows in Sec. V, including equilibrium contact
angle measurements and modeling spinodal decomposition
in both ternary and quaternary systems. The conclusions are
summarized in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Energy functional formalism

Consider a system of N incompressible liquids of unique
mass density ρ. In a mixture of the liquids, the mass fraction
of component i reads ci = mi/m, where mi is the mass of
component i and m = ∑N

i=1 mi is the total mass in a control
volume V . The mass fractions then sum up to 1 by definition,
i.e.,

∑N
i=1 ck = 1. Taking the limit V → 0, all quantities

become local, therefore the (local and temporal) conserved
composition fields ci → ci(r,t) characterizing an inhomoge-
neous system can be introduced. The relation

∑N
i=1 ci = 1

transforms then into the following local constraint:

N∑
i=1

ci(r,t) = 1. (1)

We assume that the Helmholtz free energy of the inhomoge-
neous nonequilibrium system can be expressed as a functional
of the fields:

F =
∫

dV {f [ci(r,t),∇ci(r,t)]}, (2)

where the integrand is a function of the fields and their
gradients. This type of energy functional is called square
gradient theory. In the literature, the local constraint is often
handled by eliminating one of the components already at
the level of the free-energy functional, thus resulting in an
unconditional system. In contrast, Eq. (1) is taken into account
here by using a Lagrange multiplier as

F̃ := F −
∫

dV

{
�(r,t)

[
N∑

i=1

ci(r,t) − 1

]}
, (3)

where F̃ is the conditional free-energy functional and �(r,t)
is the Lagrange multiplier. In our derivations, we will use this
general formalism to derive consistent dynamic equations for
the system.

B. Equilibrium

Equilibrium solutions represent extrema (minimum, maxi-
mum, or saddle) of the free-energy functional, therefore they
can be determined by solving the following Euler-Lagrange
equations:

δF̃

δci

= δF

δci

− λ(r) = μ̃0
i , (4)

where δF/δci is the functional derivative of F with respect
to ci(r) (i = 1, . . . ,N ), whereas μ̃0

i = [(δF/δci) − �(r)]c0 is
a diffusion potential belonging to a homogeneous reference
state c0 = (c0

1,c
0
2, . . . ,c

0
N ). Since the variables are conserved,

the Lagrange multiplier cannot be expressed directly from
Eq. (4). Nevertheless, one can take the gradient of Eq. (4)
to eliminate the constant μ′

i [also containing the background
value of λ(r)], yielding

∇ δF

δci

= ∇λ(r), (5)

or, equivalently,

∇
(

δF

δci

− δF

δcj

)
= 0 (6)

for any (i,j ) pairs. In general, ∇λ(r) can be eliminated from
Eq. (5) as follows. Multiplying the equations by arbitrary
weights Ai �= 0 and then summing them for i = 1, . . . ,N

results in

∇λ(r) =
N∑

i=1

ai∇ δF

δci

, (7)

where ai = Ai/
∑N

k=1 Ak �= 0 is a normalized coefficient,
i.e.,

∑N
i=1 ai = 1. Substituting Eq. (7) into Eq. (5) and then

rewriting the equations in matrix form results in

(I − e ⊗ a) · ∇ δF

δc
= 0, (8)

where I is the N × N identity matrix, e = (1,1, . . . ,1)T

is a column, while a = (a1,a2, . . . ,aN ) is a row vector, ⊗
denotes the dyadic (tensor or direct) product, and δF/δc =
(δF/δc1,δF/δc2, . . . ,δF/δcN )T is the column vector of the
functional derivatives. Note that the matrix A = I − e ⊗ a has
a single eigenvalue s = 0 with eigenvector e, thus prescribing
equal functional derivative gradients in equilibrium, indepen-
dent from the weights a. (In other words, e is the algebraic
representation of equilibrium.) Consequently, the solution of
Eq. (5) coincides with the solution of Eq. (6) for arbitrary
positive {Ai} weights.

C. Dynamic equations

1. Diffusion equations

Incompressible multicomponent flow is governed by
convection-diffusion-type dynamics. We start the derivation
of the kinetic equations following Kim and Lowengrub [24].
The diffusion equations follow from the mass balance for the
individual components, thus resulting in [24]

ρ ċi = ∇ · Ji , (9)

where ċi = ∂ci/∂t + v · ∇ci is the material derivative and v =∑N
i=1 civi is the mixture velocity, where vi is the individual

velocity field of the ith component. Furthermore,
∑

i Ji = 0
applies for the diffusion fluxes Ji = ciρ(v − vi), ensuring thus∑N

i=1 ċi(r,t) = 0. The diffusion fluxes can then be constructed
as

Ji := νi∇μ̃i (10)
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(for example), where νi > 0 is the diffusion mobility of
component i, and μ̃i = δF̃ /δci = δF/δci − �(r,t) is the
generalized nonequilibrium chemical potential. Note that
in equilibrium μ̃i → μ̃0

i (constant), thus indicating Ji = 0
and (consequently) ċi = 0. The Lagrange multiplier can
be expressed as ∇�(r,t) = ∑N

i=1 ν̃i∇(δF/δci), where ν̃i =
νi/

∑N
j=1 νj > 0. Using this in Eq. (9), and introducing νi :=

κi	 (where 	 = ∑N
k=1 κk), results in

Ji =
N∑

j=1

κij∇
(

δF

δci

− δF

δcj

)
, (11)

where κij = κiκj . Comparing Eqs. (11) and (6), however,
indicates Ji = 0 in equilibrium for arbitrary κij ’s. The only
condition for the mobilities emerges from the symmetry
argument that the variables should not be labeled, where
labeling means that the time evolution of the system is not
invariant under relabeling the variables. The condition of no
labeling yields [26]

κij = κji, (12)

in agreement with Onsager’s approach of multicomponent
diffusion [27]. In the Appendix of our recent study [26], we
pointed out that elimination of one of the variables by setting
up Ji ∝ (δF/δci) − (δF/δcN ) for i = 1, . . . ,N − 1 labels the
variables in principle, and contradicts Onsager’s reciprocal
relations. Note that Eqs. (11) and (12) offer a more general
form for the constitutive equation than Eq. (10). In the latter, we
have only N independent parameters, �κ = (κ1,κ2, . . . ,κN ), and
the mobility matrix L in the general form ρ ċ = ∇ · (L · ∇ �μ)
emerges from these as L = �κ ⊗ �κ , where ⊗ denotes the tensor
product. In contrast, according to Eqs. (11) and (12), we
may choose N (N − 1)/2 free parameters {κij } in general,
and the elements of the mobility matrix are calculated as
Lii = ∑

j �=i κij and Lij = −κij for i �= j . Although Eqs. (10)
and (11) coincide in equilibrium, the general construction
becomes significant for N � 4, where the number of pairs
is greater than N .

The remaining issue that has to be considered is the
condition of “formal reducibility” for the dynamic equations.
An elegant solution of the problem introducing mobility
matrices on a geometric basis was published by Bollada,
Jimack, and Mullis [28]. They proposed symmetric mobility
matrices reducing formally. For example, in the case of
κij (ci,cj ) = [ci/(1 − ci)][cj/(1 − cj )], the kth row and col-
umn of the mobility matrix vanish, and the mobility matrix
of an (N − 1)-component system is recovered. Note, however,
that such a mobility matrix can be “dangerous” with respect to
the free-energy functional, meaning that nonequilibrium states
may become stationary since the Eq. (6) is not a necessary con-
dition for a stationary solution. Speaking mathematically more
precisely, the eigenvalue s = 0 (representing the stationary
solution) of the mobility matrix L has multiplicity greater than
1 in the case of at least one vanishing field. The components
of the corresponding eigenvectors are equal at the positions of
nonvanishing fields, otherwise they are arbitrary. Therefore, a
stationary state of the dynamics does not necessarily represent
an equilibrium solution. Nevertheless, as discussed in our
recent paper [26], if one can prove that the (n + m)-component

natural extensions of all equilibrium solutions emerging from
the n-component model also represent equilibrium in the
(n + m)-component model for any n,m � 1, then the Bollada-
Jimack-Mullis matrix is not dangerous with respect to the
free-energy functional. Having such a functional, although
necessary, is not satisfactory since the dynamics must satisfy
also the second law of thermodynamics, i.e., the entropy
production rate must be non-negative. This requirement can
be addressed by considering the Kim-Lowengrub model in the
constant density limit. The condition for the contribution of the
diffusion equations to the entropy production rate reads [24]

N∑
i=1

∇μ̂i · Ji � 0. (13)

Here μ̂i = (δF/δci) + p, where p is the nonequilibrium
thermodynamic pressure. According to Eq. (11), Ji =∑N

j=1 Lij∇(δF/δcj ), where
∑N

j=1 Lij = 0, therefore Eq. (13)
results in ∑

i,j

Lij

(
∇ δF

δci

· ∇ δF

δcj

)
� 0, (14)

thus indicating that the mobility matrix L must be positive-
semidefinite. Therefore, the original Bollada-Jimack-Mullis
matrix is modified as

κij (ci,cj ) := κ0
ij

∣∣∣∣ ci

1 − ci

∣∣∣∣
∣∣∣∣ cj

1 − cj

∣∣∣∣, (15)

where κ0
ij > 0’s are arbitrary constants. The absolute value

is necessary for a simple reason: The solution may slightly
leave the physical regime (0 � ci � 1 for i = 1, . . . ,N) in
the simulations because of numerical reasons. Nevertheless,
small perturbations around stable equilibrium solutions relax
naturally for a positive-semidefinite mobility matrix without
any further artificial modifications, such as overwriting the
solution. This should be true for at least the bulk components
and the binary equilibrium interfaces. The positive semidefi-
niteness of this matrix has been verified numerically case by
case for the particular matrices we used in our calculations and
simulations.

2. Navier-Stokes equation

The velocity field is governed by the following Navier-
Stokes equation (emerging from the momentum balance for
the components) [24]:

ρ v̇ = ∇ · (R + D), (16)

where R and D are the reversible and irreversible stresses, re-
spectively. The viscous stress of a multicomponent Newtonian
liquid can be approximated as

D = η[(∇ ⊗ v) + (∇ ⊗ v)T ], (17)

where η = ∑N
i=1 ciηi is the local shear viscosity, calculated

from the viscosities of the bulk components, ηi . Furthermore,
the reversible stress has the general Korteweg form [17,18]

R = −p̃ I + A, (18)
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where p̃ is a nonequilibrium generalization of the equilibrium
thermodynamic pressure:

− p̃ = f̃ −
N∑

i=1

ci

δF̃

δci

= −p + �(r,t), (19)

where f̃ is the integrand of F̃ defined by Eq. (3), and
−p = f − ∑N

x=1 ci(δF/δci). Furthermore, A is a general
nondiagonal tensor, which can be determined from the
condition of mechanical equilibrium, often formulated as a
generalized Gibbs-Duhem relation [19–21]

∇ · R = −
N∑

i=1

ci∇ δF̃

δci

. (20)

Using Eq. (18) in (20) then yields

A = −
N∑

i=1

(
∇ci ⊗ ∂f

∂∇ci

)
, (21)

showing that the flow operator does not contain the La-
grange multiplier. This result is in agreement with previous
results [24]. Furthermore, since the liquid mixture is incom-
pressible and all the components have the same density, we
also have the condition

∇ · v = 0. (22)

Although this condition results in a degeneracy in the velocity
field, it is resolved by the Lagrange multiplier �(r,t) in
Eq. (19).

III. MULTICOMPONENT CAHN-HILLIARD LIQUID

A. Free-energy functional

The free-energy functional of a general, multicomponent
Cahn-Hilliard liquid is formulated as [26]

F =
∫

dV

{
f (c) + ε2(c)

2

N∑
i=1

(∇ci)
2

}
, (23)

where the multiwell free-energy landscape f (c) is constructed
as [26]

f (c) := w(c) g(c) + A3f3(c), (24)

where

g(c) = 1

12
+

N∑
i=1

(
c4
i

4
− c3

i

3

)
+ 1

2

∑
i<j

c2
i c

2
j . (25)

In Eq. (25), the double sum stands for a summation for all
pairs, i.e.,

∑
i<j = ∑N−1

i=1

∑N
j=i+1. Following Kazaryan [29],

the coefficients w(c) and ε2(c) interpolating between the
component pairs read

w(c) =
∑

i<j wij c
2
i c

2
j∑

i<j c2
i c

2
j

and ε2(c) =
∑

i<j ε2
ij c

2
i c

2
j∑

i<j c2
i c

2
j

. (26)

Furthermore, the “triplet” term is defined as

f3(c) :=
∑

i<j<k

|ci | |cj | |ck|, (27)

FIG. 1. Gibbs simplex and free-energy landscapes f (c) in ternary
systems. (a) Gibbs simplex in a ternary system. The compositions in
the red dot are measured perpendicular to the edges of the triangle. If
all the edges measure 1 unit, c1 + c2 + c3 = 1. The vertices (denoted
by bold numbers) correspond to bulk components, i.e., ci = 1 at
vertex i, where i = 1,2,3. (b) Free-energy density in the symmetric
system without a triplet term (i.e., A3 = 0). (c) and (d) Free-energy
landscapes in an asymmetric ternary system (w12 = 1.5 w0, w13 =
1.0 w0, and w23 = 0.5 w0) in the case of A3 = 0 (c) and A3 = 1.0 w0

(d). The minima of the free-energy landscapes correspond to the
vertices of the Gibbs simplex displayed in panel (a).

where the sum is for all different (i,j,k) triplets, i.e., i �= j , i �=
k, and j �= k, i,j,k = 1, . . . ,N . The usual (Gibbs-simplex)
representation of the free-energy landscape is shown in
Figs. 1(a)–1(d) for symmetric and asymmetric ternary systems
in the case of A3 = 0 and A3 �= 0, respectively. We note that
similar terms are used by some authors [30,31] to control the
presence of the third component at binary interfaces, however
our approach is quite different from theirs, as will be shown.

B. Interfaces, energy hierarchy, and stability

When exactly two components are present, i.e., ci + cj = 1
for i �= j and ck = 0 for all k �= i,j , Eq. (23) reduces to the
usual binary Cahn-Hilliard free-energy functional:

Fij =
∫

dV
{
wij [c(1 − c)]2 + ε2

ij (∇c)2
}
, (28)

therefore ε2
ij ’s and wij ’s can be related to the interfacial tension

(σij ) and interface thickness (δij ) as

wij = 3(σij /δij ) and ε2
ij = 3(σij δij ), (29)

where the interface thickness is defined by the binary equilib-
rium interface solution

cij (x) = {1 + tanh[x/(2 δij )]}/2, (30)

while the interfacial tension reads

σij =
∫ +∞

−∞
dx{wij [cij (x)]2[1 − cij (x)]2 + ε2

ij [∂xcij (x)]2}.

(31)
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The general functional defined by Eq. (23) has two practical
features:

(i) F , together with δF/δci , reduces formally, i.e., writing
up F (and δF/δci) for N fields and then applying cN ≡ 0
results in the expressions derived directly in the (N − 1)-
component model. This, together with Eq. (15), results in the
formal reducibility of the dynamic equations, too.

(ii) All two-component equilibrium interfaces ckl(x) =
{1 + tanh[x/(2δkl)]}/2 represent equilibrium in the complete,
N -component model. In other words, the binary planar
interfaces represent equilibrium in the N -component system
(see Appendix A for details).

We mention that the latter does not apply for almost
any of the previous multiphase and multicomponent descrip-
tions [26]. Nevertheless, it is an essential feature because of the
following: Eq. (30) represents only a conditional extremum,
since it is calculated in the ci + cj = 1 binary subspace.
Therefore, there is no guarantee that it is also a solution of the
complete variational problem defined by Eq. (6). In the case
of several existing multiphase descriptions, the situation is
indeed as follows: the equilibrium two-component interfaces
do not represent equilibrium of the general, N -component
model, due to the inconsistent generalization of the free-energy
functional. The problem is resolved in various ways, including
the introduction of a nonvariational dynamics, degenerate
mobility matrix, or penalizing free-energy terms for ternary
states, as also discussed in detail in our recent work [26]. In
contrast, our description is free of these artificial modifications.

In a symmetric system (ε2
ij ≡ ε2

0 and wij ≡ w0) without a
triplet energy contribution (A3 = 0), Eq. (24) is a finite-degree
polynomial penalizing the multicomponent states as follows:

f (cn) = 1

12

(
1 − 1

n2

)
, (32)

where cn = P[{1/n,1/n, . . . ,1/n,0,0, . . . ,0}]. Here, P[·]
stands for an arbitrary permutation of the components of
the vector argument {c1,c2, . . . ,cN }, where n elements have
the value 1/n and all the others are 0, while n = 1, . . . ,N .
Equation (24) then penalizes equally the n-component states,
and the energy increases strictly monotonously as a function
of the number of components being present. This feature also
applies for arbitrary A3 � 0 in the symmetric system for
the triplet term defined by Eq. (27) (see Appendix B for the
derivation).

Interestingly, the strictly monotonous tendency of the
subspace extrema seems to be valid even for asymmetric
systems, however both f (cn) and cn now have degeneracy,
since both the location and the value of the subspace maxima
can be different. This is illustrated in Fig. 2, which shows
the degenerate hierarchy of the subspace extrema in the case
of asymmetry for N = 4. Since the n = 2- and 3-component
subspace maxima of the Gibbs simplex can now be different,
one can define a “path” on the Gibbs simplex as follows:
A path starts in a vertex (representing a bulk component)
and then jumps to the location of the maximum of one of
the connecting edges [denoted by n = 1 and 2 in Fig. 2(a)].
From here, we jump to the location of the maximum of one
of the connecting planes (n = 3), while the final point is
the location of the global maximum inside the tetrahedron.

FIG. 2. Degeneracy of the subspace extrema in an asymmet-
ric quaternary system (w12 = 1.25 w0, w13 = 1.5 w0, w23 = 0.5 w0,
w14 = 1.25 w0, w24 = 1.0 w0, and w34 = 0.75 w0), for A3 = 1.0 w0.
(a) A possible path starts in a vertex (n = 1) representing the absolute
minimum of the free-energy density, then passes the location of a
binary (n = 2) and a ternary (n = 3) maximum, and finally arrives
at the location of the single quaternary (n = 4) maximum, which is
the absolute maximum of the free-energy density. (b) Sequences of
subspace extrema along all possible paths illustrated in panel (a).

Figure 2(b) shows the energy density in the subspace maxima
(symbols) along all possible bulk → binary → ternary →
quaternary paths (denoted by the connecting lines). It seems
that all the 24 possible paths prescribe a strictly monotonously
increasing energy sequence. If the free-energy landscape does
not have any other extrema, and all the extrema except the
vertices represent maxima, then this behavior, together with
the fact that the free-energy functional penalizes any spatial
variation of the fields, suggests that an N -component system
undergoes spinodal decomposition, and without becoming
trapped into a high-order state, i.e., the system never prefers
high-order multiple junctions, independent from the number
of components.

Although we constructed a free-energy functional, which
is expected to result in spinodal decomposition for an energy-
minimizing dynamics, and for which the binary planar inter-
faces together with the bulk states are equilibrium solutions,
the interfaces may become unstable in the case of asymmetry
for A3 = 0. The reason is that the A3 = 0 free-energy
landscape is “weak” for the multicomponent states, meaning
that the energy increases too slowly as a function of n: the
energy difference between f (1,0, . . . ) and f (1/2,1/2,0, . . . )
is much more significant than that between f (1/2,1/2,0, . . . )
and f (1/3,1/3,1/3,0, . . . ) [and so on; see Fig. 1(b) and
Eq. (32)]. This means that in the case of asymmetry [see
Fig. 1(c)], the shift in the location of the three-component
maximum can be significant, and therefore it can destabilize
the binary planar interface on the closest edge (or, as a matter
of fact, on any other edges, except the one with the lowest
interfacial tension). To stabilize the (otherwise equilibrium)
binary planar interfaces, we apply the triplet term described
by Eq. (27). Choosing a sufficiently large amplitude A3 shifts
the location and increases the value of the ternary maximum
of the free-energy landscape [see Fig. 1(d)], thus resulting
in the restabilization of the interfaces. The phenomenon is
also illustrated in Fig. 3. The figure shows the numerical
solution of the one-dimensional Euler-Lagrange problem in
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FIG. 3. Two-component equilibrium interfaces in an asymmetric
ternary system (w12 = 1.5 w0, w13 = 1.0 w0, and w23 = 0.5 w0) in
the case of (a) A3 = 0 and (b) A3 = 1.0 w0. Note that in the case of
A3 = 0, c3 (thick red) and c2 (normal blue) appear on the (1,2) and
(1,3) interfaces, respectively, while c1 (thin black) does not appear
on the (2,3) interface, which has the lowest energy. Applying the
triplet term then prevents the appearance of the third component at
any two-component interfaces.

an asymmetric ternary system for A3 = 0 [panel (a)] and
A3 �= 0 [panel (b)]. We used the finite-difference method with
explicit time stepping to solve the Euler-Lagrange problem
∇(δF/δci) = ∇(δF/δcj ), together with periodic boundary
conditions. As one can see, the third component appears at
both the (1,2) and (1,3) interfaces in the case of A3 = 0 [see
panel (a)], showing that the free-energy landscape is weak with
respect to the gradient term, and the binary planar interfaces,
although representing equilibrium, are not stable. The only
stable interface is the (2,3) interface, which has the lowest
energy. Nevertheless, choosing A3 = 1 solves the problem
[see panel (b)], since as the three-component maximum of
the free-energy landscape increases, the interfaces become
stable.

Summarizing, Eq. (23) prescribes a multicomponent free-
energy functional, which results in stable bulk states and binary
interfaces in equilibrium even for asymmetric systems, while
high-order multiple states are penalized increasingly as a func-
tion of the number of the components. This behavior results in
spinodal decomposition in a system of an arbitrary number of
components. Therefore, Eq. (23) is a suitable generalization
of the binary Cahn-Hilliard free-energy functional. The triplet
term f3(c) has no effect on the bulk (n = 1) and binary states
(n = 2), and on the structure and hierarchy of the subspace
extrema of the free-energy landscape, but it controls the energy
of multicomponent (ternary and up) states. Therefore, it is

an ideal tool to control the stability of the binary planar
interfaces.

C. Parameters and scaling

To anchor the mobilities κ0
ij in Eq. (15) to measurable

quantities, we first take Eq. (9) in the binary limit ci = u,
cj = 1 − u, and ck = 0 for i �= j and k �= i,j . In the case of
v = 0, it yields

ρ
∂u

∂t
= κ0

ij∇
δF

δu
(33)

and ∂ck/∂t = 0 for k �= i,j . The functional derivative reads
δF/δu = 2{wij [u(1 − u)(1 − 2u)] − ε2

ij∇2u}. For u = δu →
0, Eq. (33) becomes ρ(∂t δu) = 2κ0

ijwij (∇2δu), yielding thus
the diffusion constant Dij = (2κ0

ijwij )/ρ of the ith component
in the bulk j th component. The mobility is then related to the
diffusion constant via

2wijκ
0
ij

Dij

= 2wijκ
0
ij

Dji

= ρ, (34)

where the second equation emerges from the symmetry of
κ0

ij . Therefore, the diffusion constant of the j th component in
the ith one is the same as that of the ith component in the
j th one in our approach. Scaling the length as r := λr̂, and
introducing Dij := D0D̂ij , yields the time scale τ = λ2/D0 in
t := τ t̂ , while using wij := w0ŵij and ε2

ij := ε2
0 ε̂

2
ij results in

the dimensionless diffusion equations

dci

dt̂
= ∇̂ · Ĵi . (35)

The dimensionless diffusion fluxes read

Ĵi =
N∑

j=1

κ̂0
ij h(ci,cj ) ∇̂

(
δF̂

δci

− δF̂

δcj

)
, (36)

δF̂

δci

= ∂(ŵ g + Â3 f3)

∂ci

+ δ2
0

λ2

[
∂ε̂2

∂ci

(∇̂c)2 − ε̂2∇̂2ci

]
, (37)

where δ2
0 = ε2

0/w0. Furthermore, h(ci,cj ) = |ci/(1 −
ci)||cj/(1 − cj )| and

2 κ̂0
ij = D̂ij /ŵij . (38)

The dimensionless coefficients read

ŵ =
∑

i<j ŵij c
2
i c

2
j∑

i<j c2
i c

2
j

and ε̂2 =
∑

i<j ε̂2
ij c

2
i c

2
j∑

i<j c2
i c

2
j

, (39)

while Â3 = A3/w0. Introducing the dimensionless interfacial
tensions σij := σ0σ̂ij and interface thicknesses δij := δ0δ̂ij ,
and considering ε2

ij = 3(σij δij ) and wij = 3(σij /δij ), yield the
scales

ε2
0 = 3(σ0δ0) and w0 = 3(σ0/δ0) (40)
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and

ε̂2
ij = σ̂ij δ̂ij and ŵij = σ̂ij /δ̂ij . (41)

Furthermore, ε2
0/w0 = δ2

0 in Eq. (37). The dimensionless
Navier-Stokes equation reads

dv̂
dt̂

= ∇̂ · P̂, (42)

where

P̂ = â Â(c) + η̂ D̂(v̂). (43)

Here the dimensionless flow-field generator Â(c) and the
viscous stress D̂(v̂) read

Â(c) = −ε̂2
N∑

i=1

(∇̂ci ⊗ ∇̂ci), (44)

D̂(v̂) = (∇̂ ⊗ v̂) + (∇̂ ⊗ v̂)T , (45)

respectively, whereas the dimensionless amplitudes are

â = 3σ0δ0

D2
0ρ

and η̂ = η

D0ρ
. (46)

Finally, the incompressibility condition simply becomes

∇̂ · v̂ = 0. (47)

IV. NUMERICAL METHOD

The system of dynamic equations described by (35), (42),
and (47) is solved numerically on a fully periodic two-
dimensional domain by using an operator-splitting-based qua-
sispectral semi-implicit time-stepping scheme [32] combined
with the spectral Chorin’s projection method as follows. The
dynamic equations can be rewritten in the form

∂y
∂t

= f(y,∇ · y), (48)

where y = (c1,c2, . . . ,cn,vx,vy), and f(y,∇ · y) is the (gener-
ally nonlinear) right-hand side. f (y,∇ · y) is calculated at time
point t , while ∂yi/∂t is discretized simply as

∂yi

∂t
≈ yt+�t

i − yt
i

�t
. (49)

Next, we add the general linear term ŝ[yi] =∑∞
i=1(−1)i si∇2iyi (where si � 0) to both sides of Eq. (48).

We consider this term at t + �t on the left-hand side, but at t

on the right-hand side of the equation. This concept, together
with Eq. (49), results in the following, explicit spectral
time-stepping scheme:

yt+�t
i (k) = yt

i (k) + �t

1 + si(k)�t
F{fi[yt (r),∇ · yt (r)]},

(50)

where si(k) = ∑∞
j=1 s

(i)
j (k2)j , and F{·} stands for the Fourier

transform. The splitting constants {s(i)
j } must be chosen so that

Eq. (50) is stable. Suitable splitting constants can be found
by expanding the right-hand side of the differential equations,
then identifying terms of the form (−1)n+1f (y)∇2 nyi (n =

1,2, . . .) in the equation for yi . max {0, max{f (y)}} then pro-
vides a theoretical splitting constant s̃(i)

n . Since the equations
are coupled and highly nonlinear, a unique experimental
multiplier s is applied, i.e., the splitting constants are chosen
as s(i)

n := s s̃(i)
n . In our case, we used s = 5.

Considering the Navier-Stokes equation, note that the new
velocity field vt+�t (r) does not satisfy Eq. (47) in general.
Introducing vt+�t := v∗ + δv, where v∗ is calculated from
Eq. (50), and the correction is given in the form δv := ∇s(r),
where s(r) is a scalar field, and using Eq. (47) yields the
spectral solution

δv(k) = −k ⊗ k
k2

v∗(k). (51)

Using Eqs. (50) and (51), the velocity field is then generated
by the following sequence:

v∗(k) = vt (k) + �t

1 + sv(k)�t
F{ft (r)}, (52)

vt+�t (k) = [I − P(k)] · v∗(k), (53)

where sv(k) is a splitting function emerging from the viscous
stress, ft (r) = ∇ · P̂, where P̂ is defined by Eq. (43), while
P(k) = (k ⊗ k)/k2 is the operator generating the divergent
part of a vector field. Indeed, in Eq. (53) I − P(k) eliminates
the divergence of v∗.

It is important to note that our numerical scheme is
unbounded, meaning that the spatial solution ci(r,t) might
become negative or greater than 1 because of numerical
errors. Nevertheless, the construction of the free-energy
functional and the modified Bollada-Jimack-Mullis mobility
matrix ensures that no artificial modification of the solution
is needed after a time step, as discussed before. Instead, the
system naturally finds the bulk states and the two-component
interfaces. Finally, we mention that the generalized Chorin’s
projection method presented here is compatible with equilib-
rium. In equilibrium, the diffusion fluxes vanish, i.e., Ji = 0 for
i = 1, . . . ,N , resulting in ċ = 0. Furthermore, ∇ · A becomes
the gradient of a scalar function in equilibrium, which is then
eliminated by Chorin’s projection method (i.e., no flow is
generated). Since the viscous terms vanish for a homogeneous
velocity field, v(r) = const is the general equilibrium solution.

V. RESULTS

The numerical simulations were performed on a two-
dimensional, uniform rectangular grid with spatial resolution
h = 0.5 and different time steps. The physical parameters were
chosen to model realistic binary, ternary, and quaternary (four-
component) systems mimicking the oil-water-CO2 interfaces.
The scales then read ρ = 1000 kg/m3, D0 = 5 × 10−10 m2/s,
σ0 = 50 mJ/m2, δ0 = 1.25 Å, and

η(c) := η0

N∑
i=1

cixi, (54)

where xi = ηi/η0, and the viscosity scale reads η0 = 1 mPa s.
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FIG. 4. Contact angle measurement in a ternary system: (a) Initial
condition, and (b) converged (equilibrium) solution in a symmetric
system in the area indicated by the black square in panel (a). In both
panels,

∑3
i=1 ci(r)[(i − 0.5)/3] is shown. (c) Contour lines [ci(r) =

0.5 for i = 1, . . . ,3] of the fields at a trijunction in the area indicated
by the black square in panel (b), and (d) the same as (c) in the case
of an asymmetric system.

A. Contact angles

The validation of the model started with equilibrium contact
angle measurements in both symmetric (σ̂ij = δ̂ij = 1) and
asymmetric systems. As discussed in Sec. III, the function
h(ci,cj ) = |ci/(1 − ci)||cj/(1 − cj )| in Eq. (36) might gen-
erate “dangerous” solutions (i.e., stationary solutions that do
not represent equilibrium), therefore the dynamic equations
were solved by applying h(ci,cj ) ≡ 1 (and κ̂ij = 1/2) in this
case. Since we are interested exclusively in equilibrium, but
not the time evolution of the system, this step does not
influence the results. The initial condition for the velocity
field was v(r,0) = 0, while the initial distribution of the
components is shown in Fig. 4(a). For better visualization,
h3(r,t) := ∑3

i=1 ci(r,t)[(i − 0.5)/3] is shown, thus indicating
bulk components at h = 1/6, 1/2, and 5/6 for i = 1, 2,
and 3, respectively. The calculations were performed on a
1024 × 1024 grid with time step �t = 0.001. After 106 time
steps, the flow field vanished, and the system practically
reached equilibrium [the convergence criterion for equilib-

rium was v̄ := 1/(NxNy)
∑

i,j

√
v2

i,j < 10−4 for the average

velocity, which corresponds to 1 pixel shift in the solution
in 106 time steps]. The amplitude of the triplet term was
A3 = 0 and 1/2 in the symmetric and asymmetric system,
respectively.

To measure the contact angles at a trijunction, we plotted the
ci(r) = 1/2 contours for i = 1, 2, and 3, as shown in Fig. 4(c),
and then we fitted straight lines (dashed in the figure) for
the unperturbed binary interfaces (“far” from the trijunction).
The crossing point of these lines defines the trijunction point.
As expected, the contact angle α1 = α2 = α3 = 120◦ was
detected in the symmetric system. In contrast, asymmetric
systems establish different contact angles. For instance, for

FIG. 5. Spatial distribution of the individual components (a)–(c)
in the vicinity of the equilibrium trijunction in an asymmetric
ternary system, and (d) error of the local sum of the variables,
e := 1014[

∑3
i=1 ci(r) − 1]. Note that the third component is not

present at the binary interfaces, while the error of the local sum
is negligible.

the interface tensions σ̂12 = 1.2, σ̂13 = 1.0, and σ̂23 = 0.8 (the
corresponding interface thicknesses were δ̂12 = 1.1, δ̂13 = 0.9,
and δ̂23 = 1.0, respectively), the theoretical contact angles can
be determined from the condition of mechanical equilibrium,
yielding

α0
1 = π − cos−1

(
σ̂ 2

12 + σ̂ 2
13 − σ̂ 2

23

2σ̂12σ̂13

)
= 138.6◦, (55)

α0
2 = π − cos−1

(
σ̂ 2

12 + σ̂ 2
23 − σ̂ 2

13

2σ̂12σ̂23

)
= 124.23◦, (56)

α0
3 = π − cos−1

(
σ̂ 2

13 + σ̂ 2
23 − σ̂ 2

12

2σ̂13σ̂23

)
= 97.181◦. (57)

From the simulation, the contact angles α1 = 137.3◦, α2 =
126.37◦, and α3 = 96.33◦ have been measured [see Fig. 4(d)],
showing then 1.7% maximal relative error compared to the
theoretical values, which can be attributed to the uncertainty
of the measurement.

Figure 5 shows the individual compositions [panels (a)–(c)]
and the sum of the fields [panel (d)] in the neighborhood of
the trijunction displayed in Fig. 4(d). The spatial distribution
of the individual fields demonstrates the effect of the triplet
term. In accordance with Figs. 3(b) and 4(d), all of the
two-component interfaces are practically free of the third
component. Furthermore, Fig. 5(d) shows that the error of
the local sum of the variables is in the range of the truncation
error of double-precision floating point numbers.

The calculations were repeated in an asymmetric four-
component (quaternary) system as well (see Fig. 6), with
σ̂12 = 1.0, σ̂13 = 1.1, σ̂14 = 0.75, σ̂23 = 0.9, σ̂24 = 1.25, and
σ̂34 = 1.0. The interface thicknesses were equal, i.e., δ̂ij = 1.0
was used, while the amplitude of the triplet term was A3 = 1.
The contact angle measurements resulted in less than 1.5%
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FIG. 6. Contact angles in an asymmetric quaternary system (for
parameters, see the main text): (a) initial condition, (b) equilibrium
state, and (c) and (d) contour lines for the fields in the vicinity of the
four different trijunctions from panel (b), analogously to Fig. 4. In
panels (a) and (b), h4(r,t) = ∑4

i=1[(i − 1/2)/4]ci(r,t) is shown.

relative error again compared to the theoretical values for
all four different trijunctions [illustrated in Figs. 6(c)–6(f)].
According to our experience, the unperturbed binary planar
interfaces contain no additional components, similarly to the
ternary case.

B. Spinodal decomposition

Since we are now interested in the time evolution of the
system, the modified Bollada-Jimack-Mullis matrix defined
by Eq. (15) is used henceforth.

1. Binary system

Spinodal decomposition was studied first in the binary limit.
Technically, we performed calculations in a ternary system,
where the third component was set to 0 initially, i.e., c3(r,0) =
0 was used. In this case, the dynamic equations, together with
the Navier-Stokes equation, naturally reduce to the dynamic
equations of a traditional, one order parameter flow-assisted
Cahn-Hilliard system. Therefore, the reference calculation was
based on the surfactant-assisted liquid phase separation model
of Tóth and Kvamme for incompressible liquid flow in the

surfactant-free case. The dynamic equations read

φ̇ = ∇2[(φ3 − φ) − 2∇2φ], (58)

v̇ = ∇ · (A + D), (59)

A = −2 w̃ (∇φ ⊗ ∇φ), (60)

D = μ̃[(∇ ⊗ v) + (∇ ⊗ v)T ], (61)

0 = ∇ · v. (62)

The transformation of the fields read c1 = (1 + φ)/2 and
c2 = (1 − φ)/2, yielding κ̂0

12 = 1, η̂ = η̂0(c1 x1 + c2 x2) cor-
responding to μ̃ = μ̃0[x1(1 + φ)/2 + x2(1 − φ)/2] with η̂0 =
μ̃0, and â = 4w̃. We used μ̃0 = 2857.0, x1 = 1.0, and x2 =
1633.0/μ̃0 in Eq. (54), and w̃ = 1.73 × 104. The initial
condition was φ(r,0) = AR[−1, + 1] [and c1(r,0) = 0.5 +
(A/2)R[−1, + 1], correspondingly], where R[−1,1] is a
uniformly distributed random number on [−1,1], and |A| � 1.
Since the homogeneous state φ = 0 (and c1 = 0.5) represents
unstable equilibrium, the system undergoes phase separation
for A �= 0. Since the implementation of the equations in
solving the different models is different, we do not expect
exactly the same result from the same initial condition.
Nevertheless, we are interested only in the characteristic
behavior of the system. Therefore, we used different random
numbers (but the same amplitude A) in setting up the initial
conditions for φ and c1. In this case, �t = 0.0025 was chosen.
Snapshots of the simulations are presented in Fig. 7. It is
quite clear that the patterns roughen similarly as a function of
time in both cases, indicating that the dynamic equations of
the present model reduce naturally to the conventional binary
model. In addition, no appearance of the third component
was detected in our model during the simulation, due to the
Bollada-Jimack-Mullis-type mobility matrix.

2. Asymmetric ternary and quaternary flows

In our first multicomponent simulation, an asymmetric
ternary system was considered with dimensionless interfa-
cial tensions σ̂12 = 1.2, σ̂13 = 1.0, and σ̂23 = 0.8, and di-
mensionless interface thicknesses δ̂12 = 1.1, δ̂13 = 0.9, and
δ̂23 = 1.0. The amplitude of the triplet term was A3 = 1/2,
which was enough to stabilize the binary planar interfaces.
The pairwise diffusion constants were also asymmetric. We
used D̂12 = 1.0, D̂13 = 2.0, and D̂23 = 0.5, whereas the
dimensionless viscosities in Eq. (54) were x1 = 0.5, x2 =
1.0, and x3 = 2.0, respectively. The initial condition reads
c1(r,0) = 0.2 + AR[−1,1], c2(r,0) = 0.3 + AR[−1,1], and
c3(r,0) = 1 − [c1(r,0) + c2(r,0)], where A = 0.01 was cho-
sen. The simulation has been performed on a 1024 × 1024
computational grid with h = 0.5 and �t = 0.005. Snapshots
of the simulation are shown in Figs. 8(a)–8(d) at different
dimensionless times. As one can see, the system is unstable
in its initial state, and it undergoes spinodal decomposition.
Although the system is still far from equilibrium at t =
3125, the individual fields of the components [see panels
(e)–(g)] suggest that the third component vanishes at the
evolving binary interfaces. It is nevertheless important to
mention that pure binary interfaces exist only in equilibrium,
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FIG. 7. Pattern coarsening during liquid-flow-assisted spinodal
decomposition of a binary liquid, as predicted by the Ginzburg-
Landau theory of surfactant-assisted liquid phase separation of Tóth
and Kvamme (left column) and the present model (right column).
The snapshots of the simulations were taken at t = 62.5, 125, and
250, respectively (from top to bottom).

while nonequilibrium curved interfaces may contain the third
component. This effect is not prevented by applying a mobility
matrix of the Bollada-Jimack-Mullis type, which is responsible
only for preventing the appearance of a component when it
is not present in a calculation at all [26]. Nevertheless, the
third component tends to vanish at even nonequilibrium curved
interfaces, showing the robustness of the construction of the
free-energy functional.

The simulations were repeated in a quaternary system as
well (see Fig. 9), where the dimensionless interfacial tensions
were σ̂12 = 1.0, σ̂13 = 1.1, σ̂14 = 0.75, σ̂23 = 0.9, σ̂24 = 1.25,
and σ̂34 = 1.0, while all interface thicknesses and diffusion
constants were chosen to be equal, i.e., δ̂ij = D̂ij = 1.0.
Furthermore, we chose A3 = 1.0 to stabilize all the binary
planar interfaces. The dimensionless viscosities were x1 =
x3 = 1.0, x2 = 0.5, and x4 = 2.0, respectively. Our experience
was quite the same as in the ternary case: The system prepared
in a high-energy, strongly nonequilibrium, homogeneous
multicomponent state undergoes phase separation, which is
enhanced by the liquid flow. In the forming pattern, the
bulk—interface—trijunction topology dominates, as expected
from the free-energy functional and the energy minimizing
dynamics. Furthermore, the additional components vanish
at evolving interfaces and trijunctions in time. The forming

FIG. 8. Spinodal decomposition in an asymmetric ternary system.
Snapshots of the simulation at t = 312.5, 1250, 3125, and 6250 [from
panels (a) to (d)], respectively. Coloring is the same as in Fig. 6. Panels
(e)–(g) show the individual mass fractions c1(r,t), c2(r,t), and c3(r,t),
respectively, in the area indicated by the black square in panel (c).
(Black corresponds to c = 0 and white to c = 1.) The time evolution
of the total concentrations is shown in panel (h), thus indicating global
conservation for all components.

patterns are also quite similar in the two cases, mostly doe
to the fact that we had a majority component (c3 and c4

in the ternary and quaternary system, respectively) in which
“bubbles” of the minority phases started to form. The final
(equilibrium) pattern, however, remains a question: the system
has to find a configuration containing the lowest possible
amount of interfaces and trijunctions, and representing the
minimum of the free-energy functional. Such a configuration,
nevertheless, can be a strong function of the volume fractions
of the components. For example, in a binary system with a
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FIG. 9. Spinodal decomposition in an asymmetric quaternary
(four-component) system. Snapshots at dimensionless times t =
312.5, 1250, 3125, and 6250, respectively. The individual fields
c1(r,t), c2(r,t), c3(r,t), and c4(r,t) are shown in panels (e) and (f)
in the black square indicated in panel (c).

volume fraction 1/2 : 1/2, two binary planar interfaces should
form, while in a system of volume fraction 1/10 : 9/10, for
example, it is not energetically preferred to create such long
interfaces. Instead, a bubble of the minority component forms,
thus representing lower energy. In multicomponent systems,
the solution of the Euler-Lagrange equations can even be
degenerate, i.e., it might have multiple solutions representing
local minima in which the system can be trapped.

Comparing Figs. 8 and 9 sheds light on an another important
detail. At t = 312.5 [panel (a) in both figures], the ternary
system is still almost homogeneous, at least compared to
the quaternary system, which shows a much more developed
pattern. Although both systems had similar initial conditions,
A = 1/2 and 1 were used in the ternary and quaternary case,
respectively. This, together with Figs. 1(c) and 1(d), give a

good impression of how the triplet term works: increasing
A3 means increasing penalization for multicomponent states
(ternary and above, as discussed in Sec. III B), which forces the
system to get rid of the multicomponent states faster and faster.
Indeed, A3 = 1 (Fig. 9) means a stronger penalization than
A3 = 1/2 (Fig. 8), therefore the quaternary system eliminates
the high-order states.

The long-time effect of A3 on the evolving pattern is,
however, expected to be negligible. As long as A3 is roughly in
the same order of magnitude as max[g(c)], small perturbations
around binary interfaces produce small variation in the energy
relative to the interfacial tension. The key is, again, that
the triplet term is used solely to stabilize the binary planar
interfaces, thus resulting in a strongly finite A3. In contrast, in
previous multiphase/multicomponent descriptions, the binary
interfaces are not equilibrium solutions, and the triplet term is
applied to suppress the third component, which is definitely
present at the binary planar interface. In these cases, the binary
planar interface solution is recovered for A3 → ∞, which
then may significantly affect the dynamics of the quasibinary
interfaces even if only a small amount of the third component
is present. Summarizing, the purpose of applying the triplet
term is essentially different in the two cases.

VI. CONCLUSIONS

In this work, we presented a generalization of the Cahn-
Hilliard theory of liquid phase separation for an arbitrary
number of components. It has been shown that the gener-
alization can be done in a systematic way. First, a general
physically and mathematically consistent entropy producing
advection-diffusion dynamics has been set up, which then has
been extended with the generalization of the Cahn-Hilliard
free-energy functional for many components. The extension
has been done on a phenomenological basis, resulting in
a model, that (i) reduces/extends naturally on the level
of both the free-energy functional and the dynamic equa-
tions when removing/adding a component, and (ii) recovers
the standard Cahn-Hilliard model for N = 2. Furthermore,
(iii) the bulk states and the two-component interfaces are stable
equilibrium solutions of the multicomponent model, (iv) the
free-energy functional penalizes the high-order multicompo-
nent states strictly monotonously as a function of the number
of components being present, and (v) the pairwise interfacial
properties (interfacial tension and interface thickness) can be
chosen independently.

We have shown that (i) a simple triplet energy term can
be used to stabilize the binary planar interfaces, and (ii)
the equilibrium contact angles are in perfect agreement with
theoretical values. Furthermore, we demonstrated that (iii)
the system undergoes spinodal decomposition when starting
from a high-energy nonequilibrium state, and it converges to
equilibrium by developing the bulk—interface—trijunction
topology in two dimensions in asymmetric ternary and
quaternary systems.

Our results might contribute significantly to the continuum
theory of multicomponent liquids, since controlled pattern
formation in these systems is of increasing importance
in several practical applications. For instance, surfactant
controlled nanoshell formation opened a new chapter in
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targeted drug delivery [33]. Another crucial field is energy,
namely a controlled emulsion→emulsion transition in the
CO2-water-heavy crude oil system, would result in an efficient
and environmentally sound combination of CO2 storage and
enhanced oil recovery [34,35].
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APPENDIX A: ENERGY HIERARCHY

In a symmetric system, the free-energy landscape reads

f (c)

w0
= g(c) + a f3(c), (A1)

where

g(c) = 1

12
+

N∑
i=1

(
c4
i

4
− c3

i

3

)
+ 1

2

∑
i<j

(cicj )2, (A2)

a = A3/w0 � 0, and

f3(c) =
N,N,N∑
i<j<k

|ci | |cj | |ck|. (A3)

For cn = P[(1/n,1/n, . . . ,1/n,0,0, . . . ,0)], Eq. (A1) reads

f (n) = 1

12

(
1 − 1

n2

)
+ a

[
n(n − 1)(n − 2)

6

(
1

n

)3]
, (A4)

which must be monotonously increasing as a function of n =
1,2,3, . . . . The increment for n → n + 1 components then
reads

f (n + 1) − f (n) = 1 + 2 n + 2 a (n − 1)(2 + 3 n)

12 n2(1 + n)2
� 0,

(A5)

which is trivially true for n � 1 and a � 0. We note, however,
that this tendency is not true for higher-order triplet terms,
such as (cicj ck)2, for example, when f (n) shows a maximum
for any positive A3.

APPENDIX B: EQUILIBRIUM SOLUTIONS

In the multicomponent system, thermodynamic equilibrium
is defined by the extrema of the free-energy functional.
The corresponding Euler-Lagrange equations of the complete
multicomponent problem read

∇ δF

δci

= ∇ δF

δcj

(B1)

for any i �= j pairs, i,j = 1, . . . ,N . The functional derivatives
read

δF

δci

= ∂f

∂ci

− ∇ ∂f

∂∇ci

, (B2)

where

f = w(c) g(c) + A3 f3(c) + ε2(c)

2

N∑
i=1

(∇ci)
2 (B3)

is the integrand of the free-energy functional defined by
Eq. (23). Using this in Eq. (B2) yields

δF

δci

= ∂w

∂ci

g(c) + ∂ε2

∂ci

[
1

2

N∑
i=1

(∇ci)
2

]

+w(c)
∂g

∂ci

+ A3
∂f3

∂ci

− ∇ · [ε2(c)∇ci], (B4)

where

∂ε2

∂ci

= 2 ci

∑
j �=i

[
ε2
ij − ε2(c)

]
c2
j∑

k<l c
2
kc

2
l

, (B5)

∂w

∂ci

= 2 ci

∑
j �=i[wij − w(c)]c2

j∑
k<l c

2
kc

2
l

, (B6)

∂g

∂ci

= ci(c2 − ci), (B7)

∂f3

∂ci

= sgn(ci)
∑

(j<k)�=i

|cj | |ck|. (B8)

Since Eq. (B4) vanish for ci(r) = 0, the functional derivative
vanishes for a vanishing field, i.e., (δF/δci)ci=0 = 0. There-
fore, in the binary limit cI (r) + cJ (r) = 1 and cK (r) = 0, the
functional derivatives read

δF

δcI

= wIJ

∂g

∂cI

− ε2
IJ ∇2cI , (B9)

δF

δcJ

= wIJ

∂g

∂cJ

− ε2
IJ ∇2cJ , (B10)

δF

δcK

= 0, (B11)

where ∂g/∂cI = −∂g/∂cJ = cI {[c2
I + (1 − cI )2] − cI } =

cI (1 − cI )(1 − 2cI ), i.e., ∂g

∂cI
|
cI +cJ =1

= { ∂
∂c

[c2(1 − c)2]}
c=cI

.
It is easy to see that the triplet term has no contribution to
the free energy at all, since only two components are present,
while sgn(0) = 0 ensures the vanishing derivative in the
equation for vanishing cK . In addition, the derivatives of the
Kazaryan polynomials also vanish for cI + cJ = 1, since
in this case the sums in the nominators vanish. Substituting
cI (x) = {1 + tanh[x/(2 δIJ )]}/2, cJ (x) = 1 − cI (x), and
cK (x) = 0 into Eqs. (B9) and (B10) then yields

δF/δci = 0 (B12)

for i = 1, . . . ,N , i.e., the binary planar interfaces are equilib-
rium solutions of the multicomponent problem.
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