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Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore
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We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model
couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte
within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time
and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic
limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed
experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including
bubble nucleation kinetics, relaxation oscillation, and bubble dynamics.
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I. INTRODUCTION

This work treats the coupled electrical and thermal dynam-
ics connected with the Joule heating of an electrolytic solution
in a nanopore. This encompasses the related phenomena of
vapor bubble nucleation, growth, and decay resulting from
superheating of the solution above its boiling temperature at
atmospheric pressure. This study was stimulated by recent
experimental observations of superheating and homogeneous
single bubble nucleation in a solid-state nanopore [1]. Un-
derstanding these dynamics is central to the problem of
creating localized hot spots with high temperature gradients
in confined aqueous solutions. This problem is of great
importance to thermophoresis [2] and has proven challenging
due to water’s high thermal diffusivity [3]. Methods to generate
and model localized hot spots have included previous work on
Joule heating in micron sized holes [3], radiative heating of
nanopores [4], heating by magnetic induction in micro- and
nanoparticles [5,6], and heating by focused laser beams [7,8].

In the experiments presented in Ref. [1], an ionic current is
focused through a single nanopore in a thin insulating mem-
brane immersed in an electrolyte. Voltage biased electrodes
on either side of the membrane produce a current that flows
through the pore. On application of a step in the voltage bias,
the measured conductance is observed to increase with time
due to Joule heating of the electrolyte within the nanopore.
For sufficiently large applied bias, a vapor bubble ultimately
nucleates explosively at the center of the nanopore, and is
observed optically, as well as by a rapid blockage of the pore
current.

We have explored the complex physics involved by con-
structing a mathematical model of the interrelated electrical
and thermal phenomena. We identify and evaluate the required
material properties, and implement a numerical, finite element
calculation to obtain solutions to the nonlinear equations
governing the dynamics. Experimental determination of the
spatial extent and temporal evolution of the temperature distri-
bution within the pore are difficult. Therefore, we rely heavily
on these model calculations to obtain a full understanding
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of the related experimentally observed phenomena including
temperature-dependent electrical conductivity, induced charge
densities around the nanopore, bubble nucleation kinetics,
bubble relaxation oscillation time scales, and bubble growth
dynamics.

Related research concerning superheating and bubble nu-
cleation in liquids has involved different heating methods,
including pulse heating of a filament [9,10], pool boiling [11],
heating in a host liquid [12], microcapillary boiling [13,14],
and laser induced heating of nanoparticles [15]. Comparative
analysis is available in review articles [16–18] and texts
[19,20]. The Joule heating of an electrolyte in a nanopore is a
unique reproducible nanoscale platform with which to study
nonequilibrium superheating and bubble nucleation on rapid
time scales down to nanoseconds.

II. THE PHYSICS OF JOULE HEATING IN A NANOPORE

A. Governing equations

The temperature dynamics for Joule heating of an elec-
trolyte in a nanopore are governed by the heat equation with
inclusion of a Joule heating source term,

ρCp

∂

∂t
T (r,t) = ∇ · [κ∇T (r,t)] + J(r,t) · E(r,t). (1)

T is the temperature, J is the current density, and E(r,t) =
−∇V (r,t) is the electric field associated with an electrostatic
potential V (r,t) in the quasistatic approximation. The material
properties of density ρ, heat capacity Cp, and thermal conduc-
tivity κ are specific to each material of the nanopore system.
These properties are dependent on the temperature of the liquid
electrolyte, such that ρ = ρ[T (r,t)], Cp = Cp[T (r,t)], and
κ = κ[T (r,t)], and are approximated as constants for the solid
membrane material. The Joule heating source term J · E is
only nonzero in the conducting electrolyte. The heat equation
is coupled to the continuity equation,

∇ · J + ∂ρc

∂t
= 0, (2)

where ρc = ∇ · (ε E) is the charge density of ions in solution
and ε is the electric permittivity of the electrolyte, also a
function of temperature, ε = ε[T (r,t)]. The current density
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FIG. 1. Schematic of the nanopore system. A two-dimensional
axisymmetric model of the system was developed. The axis of
symmetry is shown down the center of the model, with boundary
conditions indicated on the edges of the computational domain with
T0 = 273.15 K. For clarity, the system is reflected across the axis of
symmetry, and an inset shows the dimension of the nanopore to scale.

is related to the electric field by Ohm’s law,

J = σ E, (3)

where σ = σ [T (r,t)] is the temperature-dependent electrical
conductivity of the electrolyte. Current due to diffusion of
ions is not included, and is discussed later in the text. Taken
together, Eqs. (1) and (2) form a complete system of coupled
differential equations for which the two scalar fields, T (r,t)
and V (r,t), can be solved. The electric field, current density,
and spatial dependence of material properties can all be
subsequently calculated from these scalar fields.

B. Nanopore geometry with boundary and initial conditions

The experimental nanopore system being modeled consists
of an insulating membrane of amorphous silicon nitride sus-
pended on a silicon dioxide–silicon frame, separating between
two reservoirs of aqueous, 3M NaCl solution. Electrical
contact between the two reservoirs is maintained by the
presence of a single pore present in the membrane.

Finite element modeling allows for inclusion of the detailed
geometric features of the nanopore system with dimensions
taken from the experiments. Figure 1 depicts a cross section of
the model geometry. The nanopore is slightly conical in shape
due to the process of fabrication using ion beam sculpting
[21]. The computational domain is half the size of the image
in Fig. 1, taking advantage of the axial symmetry of the
nanopore as labeled in the figure. All dimensions are given in
Table I.

The initial condition for temperature is assumed everywhere
to be equal to the ambient temperature measured at the time
of the experiment, 293.15 K. This temperature is imposed on
the boundary of the domain, far from the nanopore. As shown
in Fig. 1, the voltage V is set to the experimental value on the
lower boundary of the computational domain, and zero on the
upper boundary, corresponding to electrodes. The boundary
condition on the vertical boundary is zero normal current
density Jn, as depicted in Fig. 1.

TABLE I. Dimension of the nanopore system.

Thickness Radial distance from r = 0

Si3N4 membrane 71 nm 53.5 nma

SiO2 layer 1.6 µm 2.4 µm
Si frame 54.74° b 53.12 µm

aThis is the radius of the nanopore.
bThis is the angle the silicon makes with the layer of silicon dioxide,
labeled as θ in Fig. 1, from wet etching in KOH [22].

C. Material properties

The values used for the properties of the membrane
materials are reported in Table II. Using constant values
is a reasonable approximation since the temperature of the
membrane changes only slightly. In contrast, the material
properties of the electrolyte must include their temperature
dependence in order to accurately account for the effects of
heating. However, material data for metastable superheated
aqueous 3M NaCl solution at atmospheric pressure are not
available for the extremely high temperature regime that is
reached experimentally. Therefore, we use the values for ρ,
Cp, and κ available from the IAPWS-95 formulation for the
equation of state of water, shown in Fig. 2 [23–25]. Also shown
is the temperature dependence of the dielectric, εr = ε/ε0,
of water [26]. Experimental data for the solution’s electrical
conductivity at such high temperatures under atmospheric
pressure are also not available. We address this by fitting
the electrical conductivity to the experimentally measured
conductance curves as discussed in the results.

D. Numerical implementation

The system of governing equations was solved using the
commercial finite element software COMSOL 5.0 (Comsol,
Inc.), with the geometry and materials of the nanopore system.
The model geometry, depicted in Fig. 1, was chosen to be
two dimensional, and axisymmetric along the axis through the
pore center. This drastically reduces the computational domain
of the problem from that of a fully three dimensional model.
The modeled domain extends 100 µm from the nanopore. This
distance is sufficiently large such that the room temperature
boundary condition does not impact the solution anywhere in
the domain.

Mesh resolution and time stepping were adjusted such that
no variation in the solution occurred with changing of the
spatial and time discretization parameters. A fine triangular
mesh was required in the neighborhood of the nanopore due to
its small dimension. Mesh elements in and around the nanopore
had a width on the order of a nanometer. The mesh element
size was scaled up for regions of the domain far away from the
pore, reflecting the small variation of the fields being solved
and the coarser geometrical features in those regions. An initial
time step of 10−5 ns was used to initiate the time-dependent
calculation, with a maximum time step of 102 ns.

A time-dependent study modeled the dynamics of heating.
The calculation is started just after a voltage pulse is turned on
at t = 0. The electrical potential, V (r,0), everywhere in the
domain was calculated using COMSOL’S Electric Currents (ec)
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TABLE II. Material properties of the membrane.a

ρ (kg/m3) Cp [J/(kg K)] κ [W/(m K)] σ (S/m) εr

Si3N4 membrane 3100 700 3.2b 0 9.7
SiO2 layer 2200 730 1.4c 0 4.2
Si frame 2329 700 130 10 11.7

aData from COMSOL material library, unless otherwise indicated.
bThermal conductivity is for Low Pressure Chemical Vapor Deposition (LPCVD) silicon nitride films [27,28].
cThermal conductivity of silicon dioxide thin films [29].

module. This module solves the steady-state form of Eq. (2),
along with Eq. (3), by implementing an affine invariant form of
the damped Newton method [30]. The result of this calculation
was then used as the initial condition in the time-dependent
study of the Joule Heating (jh) module. This module solves the
coupled system of equations, Eqs. (1)–(3) using variable-order,
variable-step-size backward differentiation formulas [31].

III. RESULTS AND DISCUSSION

A. Conductivity of the superheated electrolyte

Calculating the dynamics of nanopore heating requires
ascertaining the temperature dependence of the electrical
conductivity σ (T ) of the aqueous 3M NaCl solution at
atmospheric pressure. The temperature distribution (r,t) in
the nanopore there leads to a spatially varying electrical
conductivity σ [T (r,t)]. In Fig. 3(a), we show conductivity data
taken of a bulk sample of 3M NaCl solution for T < 373 K at
atmospheric pressure. Above this temperature and pressure,
the bulk sample boils, rendering further data acquisition
difficult. However, we are able to determine an appropriate
form σ (T ) by fitting the experimentally measured nanopore
conductance curves for the case in which the solution does
superheat. These data were obtained by applying voltage
pulses ranging from 4 to 8.22 V across a 53.5-nm-radius,
71-nm-thick nanopore [1]. σ (T ) is assumed to take the form

σ (T ) = mT − b − (T − T0)α

β
, (4)
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FIG. 2. Temperature dependence of the material properties of
water. The density ρ, thermal conductivity κ , and heat capacity Cp

are calculated from the IAPWS equation of state for superheated water
at 1 atm [23–25]. The electrical permittivity εr = ε/ε0 is saturation
curve data for water [26].

with T0 = 293.15 K. The linear trend for T< 373 K is
expressed by the first two terms on the right-hand side.
The constants m and b were determined by fitting the bulk
solution conductivity data of Fig. 3(a), and are equal to
0.391 ± 0.002 S/(m K) and 96.9 ± 0.06 S/m, respectively.
The third term on the right-hand side is a corrective factor
accounting for the high temperature behavior of σ (T ) beyond
the boiling point. The parameters α and β were treated
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FIG. 3. (a) The temperature-dependent behavior of the conduc-
tivity of aqueous 3M NaCl solution. We calculated our fit for σ (T )
at 1 atm using our own data for bulk conductivity measured below
373 K, and by comparing to conductivity measurements taken at
much higher pressures by Bannard [32]. (b) Data for the measured
nanopore conductance traces taken for different applied voltages are
shown with the calculated conductance curves [1]. The predicted peak
temperature obtained within the nanopore is reported for each curve.
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FIG. 4. Contour plots showing the calculated temperature distri-
bution in the nanopore after application of a 4-, 5-, 6-, 7-, and 8.22-V
pulse for 10.4 µs.

as free parameters in calculations to fit the shape of the
measured time-dependent nanopore conductance G(t) plotted
in Fig. 3(b). The conductance is the result of the surface integral

G(t) =
∫

σ [T (r,t)]d2r, (5)

over the cross sectional area of the nanopore. Fitted values
of α = 2.7 ± 0.01 and β = 5.6 × 104 ± 0.1 × 104 resulted in
the computed pore conductance curves shown in Fig. 3(b). A
plot of σ (T ) with these parameter values is shown in Fig. 3(a)
in comparison with our measured conductivity as well as data
collected by Bannard at higher pressures [32]. It is evident
that in the superheated temperature regime, the electrical
conductivity of aqueous NaCl solution ultimately starts to
decrease with increasing temperature. This is an expected
consequence of decreasing density and dielectric constant of
water with increasing temperature [32,33].

B. Extreme superheating within the nanopore

The calculated temperature attained at the pore center
after 10 µs for each applied voltage is indicated for each
conductance trace in Fig. 3(b). Figure 4 shows the contour
plots of the temperature field within the nanopore at 10.4 µs
for 4, 5, 6, 7, and 8.22 V applied. In the case of 8.22 V,
extreme superheating is calculated to occur, strongly localized
at the pore center. A maximum of 603 K is obtained at the
center of the pore, dropping by 130 K to the edge of the
pore, 53.5 nm from the center. The maximum temperature is
about 5% greater than the theoretical limit of pure water [16].
The high concentration of NaCl in solution may contribute to
this increase in a manner similar to boiling point elevation in
electrolyte solutions [34].

It is evident from the temperature contour that the region
of superheated liquid extends to 230 nm from the pore
center. The amount of stored thermal energy available for
bubble formation and expansion in this superheated region
is approximately 5 pJ. This is determined by integrating

Ethermal =
∫

Cp[T (r)]ρL[T (r)][T (r) − Tb]d3r, (6)

where T (r) is the temperature distribution at 10.4 µs, and
Tb is the boiling temperature at atmospheric pressure. The
integration domain is defined by the region for which T (r) >

Tb. The upper limit for the radius of a spherical bubble
corresponding to this energy is 620 nm, accounting for latent
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FIG. 5. The calculated free charge density ρc, and polarization
charge density ρpol plotted along the central axis of the nanopore. The
total charge density ρc + ρpol is also plotted and is nonzero in the
region of the nanopore. The gray band indicates the location of the
nanopore.

heat of vaporization and assuming no thermal losses due to
thermal diffusion.

C. Induced charge densities near the nanopore

The sharply peaked temperature distribution in the region
of the nanopore results in a spatially dependent electrical
conductivity σ , and electrical permittivity ε. The nonzero
gradients of these material properties result in induced charge
densities consistent with ∇ · J = 0. This is evident upon
inserting Eq. (3), giving

∇ · J = ∇σ · E + σ∇ · E = 0. (7)

This shows that divergence of the electric field in the
neighborhood of the nanopore is not zero due to the nonzero
gradient in the electrical conductivity. We can further solve for
the free charge density, ρc,

ε0∇ · E = ρc + ρpol, (8)

where ρpol is the polarization charge density. Using Eq. (3), and
ρpol = −∇ · (ε0χe E) we can solve for the free charge density
in terms of the current density,

ρc = ε

σ

(∇ε

ε
− ∇σ

σ

)
· J, (9)

where the electrical susceptibility χe has been written in terms
of the ε, by the relation ε = ε0(1 + χe). The variation of the
conductivity of the material, expressed in the second term on
the right-hand side, allows for charging of the spatially varying
dielectric in the first term, such that a net free charge density
results. Figure 5 shows the calculated free charge density and
polarization charge density plotted along the central axis of
the nanopore. The polarization charge density is seen to only
be partially screened by the free charge, leading to a total,
nonzero charge density near the pore.

It is important to note that this treatment is approximate
since it does not include the diffusive current resulting from the
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FIG. 6. (a) A continuation of the conductance trace of Fig. 3(b) for the 8.22-V pulse [1]. An initial, single bubble nucleation event occurs
at 10.4 µs, evidenced by the rapid drop in conductance. Quasiperiodic bubble nucleation events occur subsequently. (b) Plot of the maximum
temperature in the pore as a function of time for the different applied voltage pulses. (c) Plot of the calculated nucleation rate as a function of
distance from the center of the pore for 8.22 V applied after times 8, 9, 10, and 10.4 µs. This last time is just before nucleation occurs. The
spatial dependence of J was calculated using the temperature distribution at these times. The inset shows the temperature dependence of the
surface tension of the liquid-vapor interface of water along the saturation curve [38]. (d) Plot of maximum nucleation rate as a function of
time for 8.22 V calculated using the maximum temperature of (b). The inset shows the exquisite sensitivity of the nucleation rate to the
temperature [18].

gradient in density of the free charge carriers. This diffusive
current will act to reduce the buildup of charge reported in
Fig. 5. However, since this density is very small, with a
maximum concentration corresponding to 4 × 10−4 M , the
inclusion of the diffusive term would be a correction to what
is already a minor effect.

D. Nucleation of a vapor bubble

The magnitude of the localized temperature maximum
calculated within the pore drastically increases the probability
that a vapor bubble will nucleate homogeneously there.
Experimentally, this nucleation event is observed optically,
as well as in the rapid drop in the pore current as the
nucleated bubble grows to block the ionic current through
the pore [1]. Figure 6(a) shows a continuation of the 8.22 V
conductance data plotted in Fig. 3(b) with an initial nucleation
event occurring at 10.4 µs. Subsequent nucleation events occur
quasiperiodically thereafter. The nucleation of a vapor bubble
at a given time and location within the nanopore requires
extremely high temperatures to be attained. In Fig. 6(b), we

plot the maximum calculated temperature as a function of
time for each of the applied voltages. In order to quantify the
likelihood of an initial nucleation event occurring at the pore
center for 8.22 V applied, we calculate the nucleation rate J ,
as a function of distance from the center of the nanopore. From
classical nucleation theory [18], the nucleation rate gives the
number of nucleation events that occur per unit volume per
unit time,

J (T ) = ρL

m

√
3γ

πm
exp

[
− 16πγ 3

3kBT (Pe − P∞)2δ2

]
, (10)

where γ is the surface tension of the liquid-vapor interface, Pe

is the equilibrium vapor pressure, P∞ is the ambient pressure
of 1 atm, and m is the mass of a single water molecule. Both γ

and Pe are temperature dependent. The factor δ is a correction
factor required for using the equilibrium vapor pressure rather
than the vapor pressure inside the bubble. This can be shown
to be [18]

δ = 1 − ρV

ρL

+ 1

2

(
ρV

ρL

)1/2

, (11)
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where ρV is the temperature-dependent density of the vapor in
the bubble.

Using the computed temperature distribution T (r) in
Eq. (10) we plot the nucleation rate as a function of the distance
from the center of the nanopore shown in Fig. 6(c), for times 8,
9, 10, and 10.4 µs. The nucleation rate proves to be exquisitely
sensitive to the temperature of the solution due to the strong
temperature dependence of the exponential factor in Eq. (10).
This dependence results from the decrease of γ with increasing
temperature, shown in the inset of Fig. 6(c), as well as the in-
crease of Pe with increasing temperature. Together, these cause
the exponential of Eq. (10) to grow as temperature rises. At
temperatures approaching the limit of superheat, J increases
by as much as two orders of magnitude per degree kelvin
increase. This results in extreme focusing of the nucleation
rate at the center of the pore where the solution is hottest,
and occurs rapidly over only a few microseconds. Figure 6(d)
shows this explicitly by plotting the maximum nucleation rate
as a function of time for 8.22 V, calculated from the curve in
Fig. 6(b). The inset of Fig. 6(d) shows the dependence J (T )
from Eq. (9) indicating that the nucleation rate is negligible
for the cases with applied voltage smaller than 8.22 V. The
nucleation rate is only non-negligible after 8µs and is localized
to within 10 nm of the pore center, verifying the experimental
observation that homogeneous nucleation occurs there [1].

E. Dynamics of heating and relaxation oscillation

The conductance trace in Fig. 6(a) shows that nucle-
ation events occur quasiperiodically after the initial bubble
nucleates. This behavior is that of a relaxation oscillator
whose periodicity can be understood from the finite element
calculation of the heating dynamics. A plot of the maximum
temperature as a function of time is shown in Fig. 7(a). For
this calculation, an applied voltage of 8.22 V is turned on at
t = 0, shut off for 16 ns at t = 10.4 μs, and then switched
back on at t = 10.416 μs. The 16 ns over which the voltage is
switched off approximates the 16-ns lifetime of the bubble
measured experimentally. During this time, the maximum
temperature drops by 180 K, plotted in Fig. 7(a). This rapid
fall can be understood by the extreme temperature gradient
driving thermal diffusion cooling. Figure 7(b) shows a plot
of the temperature distribution at different times along the
cut line of the arrow shown in the inset. At 10.4 µs the
temperature is extremely peaked, and is seen to drop rapidly
for each increment of 4 ns. At 10.416 µs, the temperature at
the pore center is still largely superheated, but the strong peak
has dissipated. The amount of thermal energy that remains at
10.416 µs explains why reheating can occur so rapidly. As seen
in Fig. 7(a), once the voltage is turned back on, the maximum
temperature is largely recovered within approximately 100 ns.
The total blockage time and reheating time correspond well
to the experimentally measured time to the second bubble of
117 ns labeled in Fig. 6(a).

F. Initial growth of the bubble

The bubble blockage time of 16 ns can only be understood
by full hydrodynamic modeling of the bubble dynamics. This
treatment is beyond the scope of this paper. However, it is
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FIG. 7. (a) The maximum temperature calculated within the
nanopore as a function of time for an applied pulse of 8.22 V. At
t = 10.4 μs, the applied voltage is turned off resulting in a drop in
peak temperature. After 16 ns, representing the lifetime of the bubble,
the pulse is turned back on, and the maximum temperature is seen to
quickly return to its original value before the pulse was turned off.
(b) The spatial distribution of temperature is plotted along the central
axis for different times after the pulse is turned off.

possible to understand the conductance fall time of 1 ns
labeled in Fig. 6(a) from the Rayleigh-Plesset theory for the
growth of a spherical bubble in superheated liquid [35–37].
The equation describing the time-dependent, radial growth
R(t) of a spherical bubble with initial radius R0 and internal
pressure PV is

R(t)R̈(t) + 3

2
Ṙ(t)2 = PV − P∞

ρL

− 4ν
Ṙ(t)

R(t)
− 2γ

ρLR(t)
, (12)

where ν is the viscosity of the liquid and P∞ is again
1 atm. We assign constant values of PV = 1.3 × 107 Pa,
ρL = 640 kg/m3, ν = 1.2 × 10−7 m2/s, and γ = 0.008 N/m
corresponding to liquid-vapor saturation of water at 603 K
[38]. R0 is assumed to be slightly larger than the critical bubble
radius at 603 K. The critical radius, given by the Laplace
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FIG. 8. Bubble radius and velocity as a function of time,
calculated using Rayleigh-Plesset dynamics. The bubble is calculated
to reach the nanopore radius in 0.62 ns. This compares well with the
1-ns fall time seen in the experimental conductance data presented in
Fig. 6(a).

pressure,

Rc = 2γ

PV − P∞
, (13)

is the minimum possible radius required for a nucleated bubble
to grow equal to 1.2 nm at 603 K. Rc represents the mechanical
equilibrium of Eq. (12); therefore, we assume R0 = Rc + ε,
where ε is a small perturbation factor equal to 0.1 nm.

The resulting time dependence of R(t) is plotted in Fig. 8,
showing the bubble radius reaching the pore wall in 0.6 ns with
an average velocity over this time of 90 m/s. This corresponds
well with the measured 50 m/s bubble growth velocity reported
in our previous work [1].

It is important to note that the Rayleigh-Plesset growth
modeling does not include mass transfer at the boundary or
heat transport effects. At high temperature, the surface tension

is greatly diminished, decreasing its effect on early growth.
The effects of heat transport are only manifest in later stages
of bubble growth [35]. A comprehensive analysis of the bubble
dynamics over its lifetime requires the time evolution of heat
transport and pressure in the bubble with a moving boundary
condition.

IV. CONCLUSION

We have previously demonstrated that Joule heating in
nanopores is a unique experimental platform to investigate
extreme superheating and homogeneous vapor bubble nucle-
ation. In this work, we presented the theory and calculations
elucidating this phenomenon. Most importantly we report the
calculated spatial and temporal temperature distribution in the
electrolyte within the nanopore. The extreme, highly localized
temperature distribution explains the unique properties of
Joule heating in nanopores. These include the possibility of
nonzero local charge density, the kinetics of homogeneous
single-bubble nucleation, and the quasiperiodic nature of
nucleation events in the nanopore. A complete understanding
of controlled superheating and bubble nucleation in nanopores
opens the possibility for developing applications of this system
in chemistry and microfluidics.
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