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Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis
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Recent experiments [P. Brunet, J. Eggers, and R. D. Deegan, Phys. Rev. Lett. 99, 144501 (2007)] have shown
that a liquid droplet on an inclined plane can be made to move uphill by sufficiently strong, vertical oscillations.
In order to investigate this counterintuitive phenomenon we use a model in which liquid inertia and viscosity
are assumed negligible so that the motion of the droplet is dominated by the applied acceleration due to the
oscillation of the plate, gravity, and surface tension. We explain how the leading order motion of the droplet can
be separated into a spreading mode and a swaying mode. For a linear contact line law, the maximum rise velocity
occurs when these modes are in phase. We show that, both with and without contact angle hysteresis, the droplet
can climb uphill and also that, for certain contact line laws, the motion of the droplet can produce footprints
similar to experimental results. We show that if the two modes are out of phase when there is no contact angle
hysteresis, the inclusion of hysteresis can force them into phase. This in turn increases the rise velocity of the
droplet and can, in some cases, cause a sliding droplet to climb.
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I. INTRODUCTION

In Ref. [1], Brunet, Eggers, and Deegan showed that if a
fluid droplet is placed on an inclined plane, which is then
strongly, sinusoidally oscillated in the vertical direction, the
droplet can travel uphill. In a related experiment, Noblin,
Kofman, and Celestini [2] placed a droplet on a horizontal
surface and applied horizontal and vertical oscillations of
different amplitudes and with a phase difference. They
discovered that by changing the amplitudes and phase they
could change the speed and direction of motion of the droplet.
By choosing the phase appropriately, they could directly relate
their experiments to those of Brunet et al. [1].

The literature on modeling the unsteady motion of contact
lines is less extensive than that on steady contact line motion.
Papers on experiments and theory for steady moving contact
lines, for example Refs. [3–6], suggest that, at least for steady
flow, it is reasonable to assume that the contact line velocity
is a single-valued function of contact angle. This includes the
case of rough surfaces [7], for which contact angle hysteresis
may exist, so that for a finite range of contact angles bounded
by the static advancing and receding contact angles (θA and
θR), the contact line is pinned. Various authors have used this
assumption to model the unsteady motion of contact lines,
for example Refs. [8] and [9], although the work of Ting and
Perlin [10], and indeed Brunet et al. [1], casts some doubt on
the validity of this approach since the contact line velocity
may not actually be a single valued function of the apparent
contact angle. Setting this aside for the moment, in this paper
we investigate the effect of various contact line laws on the
rise velocity of thin, three-dimensional droplets for which
both viscous forces and inertia are negligible. This builds on
the work of Benilov [11], who studied this situation when
the amplitude of the driving oscillation is small. In this case
the droplet can either climb up or slide down the substrate.
Benilov also compared the difference between two- and
three-dimensional models of the droplet. By using a boundary

*pmxjb3@nottingham.ac.uk

integral method we are able to solve the three-dimensional
problem for arbitrary amplitudes of oscillation. This allows us
extend the results of Ref. [11] to larger amplitude oscillations
as well as study the effects of alternate contact line laws and
hysteresis.

A related model was studied by Benilov and Billingham
[12], who used the two-dimensional shallow water equations to
examine the effect of inertia, and by John and Thiele [13], who
considered the Stokes flow limit. Although our understanding
of the possible mechanisms by which the velocity of oscillating
droplets is determined has grown, in all of this work, a
quantitative comparison with the experiments presented in
Ref. [1] has yet to be made.

In this paper, we model the droplet using the quasistatic
approximation [14], assuming that the inertial and viscous
forces are weak in comparison to surface tension and the
acceleration due to gravity and the oscillating plate. This
approach allows us to simplify the governing equations and
solve for the height of the free surface alone. The benefits
of this model are that it is three-dimensional and allows us
to include contact angle hysteresis and examine how this
causes a change in the droplet’s motion as well as attempt to
make qualitative comparisons to Ref. [1]. In Sec. II we derive
the governing equations and describe our numerical solution
method. In Sec. III A we compare our results to the asymptotic
solutions for small amplitude oscillations derived by Benilov
[11]. In Sec. III B we include contact angle hysteresis, while in
Sec. III C we look at an alternative contact line law. Finally, in
Sec. III D we study the shape of the footprint of the droplet for
both a stationary and an oscillating substrate and the surface
of the droplet as the substrate oscillates, and we conclude in
Sec. IV.

II. THE MODEL

Consider a droplet of liquid of density ρ, kinematic
viscosity ν, and surface tension σ on a plane, solid substrate
that is inclined at an angle α to the horizontal and oscillating
sinusoidally and vertically. We fix the frame of reference so
that the substrate lies in the plane z = 0 and the positive x
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FIG. 1. A droplet and the coordinate system.

axis is uphill. This means that gravity and the acceleration
due to the substrate can be combined to make an effective
gravity acting at an angle π/2 − α to the x axis, given
by a(t) = g + a0 sin ωt , where g is the acceleration due to
gravity and a0 and ω are the acceleration and frequency of the
oscillations of the substrate. The domain of solution for this
problem is the droplet, 0 � z � h(x,y,t), where h is the height
of the free surface above the plane z = 0 and x and y lie in the
footprint of the droplet, R(t). The contact line is at z = 0 and
x,y ∈ ∂R(t) as shown in Fig. 1. By writing the body forces
per unit volume as the potential of the effective gravity, we can
write the Navier-Stokes equations as

ρ
du
dt

= −∇p + ρν∇2u − ρa∇(x sin α + z cos α), (1)

∇ · u = 0. (2)

The traction boundary condition at the free surface is

Sn = σκn, on z = h(x,y,t),

where S is the stress tensor, n is the outward unit normal, σ is
the surface tension, and κ is the curvature of the surface. The
stress tensor is S = −pI + 2ρνe, where I is the unit tensor and
the components of e are eij = 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
). By expressing the

curvature as minus the divergence of the normal, the traction
boundary condition perpendicular to the surface becomes

p − 2ρνn · (en) = σ∇ · n, on z = h(x,y,t). (3)

We also have

h(x,t) = 0, for x,y ∈ ∂R(t). (4)

A final constraint is the conservation of mass,

ρ

∫∫
R(t)

h(x,y,t)dxdy = M, (5)

where M is the initial mass of the droplet. We will assume
that the velocity of the contact line is a function of the contact
angle,

n · dx
dt

= v(θ ), for x,y ∈ ∂R(t), (6)

where the normal along the contact line points away from
the droplet and v(θ ) is a known function, which is positive for
θ > θA, negative for θ < θR , and zero for θR � θ � θA, where
θA and θR are the advancing and receding contact angles. When
the model includes hysteresis these angles are different with

θA > θR , but when it does not they both equal the equilibrium
contact angle θA = θR ≡ θ0. In Benilov’s small amplitude
forcing solutions, [11], the forcing from the substrate is small
enough to cause only a small change from the equilibrium
contact angle, in which case the contact line velocity can be
written as a Taylor expansion about θ0,

v(θ ) = V ′(θ − θ0) + 1
2V ′′(θ − θ0)2 + · · · , (7)

where V ′,V ′′ are the first and second derivatives of the contact
line law at equilibrium. In order to simplify Eqs. (1)–(7) we
will write the equations in dimensionless form, using scaled
variables [11],

x = R0x̂, y = R0ŷ, z = R0θ0ẑ, u = Uû, v = Uv̂,

w = Uθ0ŵ, θ = θ0θ̂ , a = a0â, t = T t̂,

p = σθ0

R0
p̂, ω = 1

T
ω̂.

Here a0 is the maximum acceleration of the oscillating plate,
U = R0/T and T = √

R0/g. We have scaled the pressure
using the capillary pressure scale and also, in order to make it
easier compare our solution to Benilov’s, we define R0 such
that 2πρθ0R

3
0 = M . Applying these scalings and rearranging

gives rise to the dimensionless parameters,

ε = ρa0R
2
0 sin α

σθ0
, γ = θ0

tan α
,

which characterize the strength of the effective gravitational
force relative to surface tension and the ratio of the slope of
the droplet’s surface to the slope of the substrate. The other
dimensionless parameters are

δ1 = ρR2
0g

σθ0
, δ2 = ρν

√
R0g

σθ3
0

,

and represent the balance between the inertial and viscous
forces and the droplet’s surface tension, respectively. Our
approach will be to simplify Eqs. (1)–(7) by taking only the
leading order terms when δ1,δ2,θ0 � 1. In order to evaluate
how accurate these assumptions are we will use typical values
of each parameter from Ref. [1] (see Table I) to estimate the
sizes of the dimensionless parameters. To make some progress,
we have assumed that θ0 � 1 so that we can use the small slope
approximation. Although this Table I shows that θ0 is not small
in the experiments, we can still expect to draw some sensible
conclusions about the mechanisms that are relevant to this
problem, and note that shallow water and thin film models,

TABLE I. Typical values for the parameters taken from Ref. [1].

Parameter Symbol Typical Value Units

Volume Vo 5 × 10−9 m3

Contact angle θ0 1.08 rad
Density ρ 1190 kg m−3

Viscosity ν 3.1 × 10−5 m2 s−1

Surface tension σ 0.066 kg s−2

Acceleration a0 174 m s−2

Frequency f 50.77 s−1

Slope α π/4 rad
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which are also based on a small slope approximation, often
produce reasonable results, even when this assumption is not
strictly satisfied in the underlying physical problem. Two other
important dimensionless parameters are

δ1 ≈ 0.13, δ2 ≈ 0.042,

which shows that inertia is more important than viscous forces,
and that we can reasonably neglect them both at leading order
compared to surface tension and the applied acceleration.
Finally,

ε ≈ 1.63, γ ≈ 1.08, ω ≈ 3.06, ā ≈ 0.056,

which shows that the small ε asymptotic solution is not likely
to be a good approximation for the actual experiment. A
similar comparison is carried out in Sec. V of Ref. [15],
which agrees that the quasistatic approximation will hold for
some of the experiments. Now that we have covered how
physically realistic our model is, the next step is to apply the
assumptions we are using and obtain the governing equations.
If we nondimensionalize Eq. (1) and keep only the leading
order terms for δ1,δ2 � 1 (neglecting both the inertial term
and viscous term, respectively) we are left with

p(x,t) = −εa(t)(x + γ z) − F (t), (8)

where the gradient operator has been integrated out producing
an arbitrary function, F (t). The dimensionless effective gravity
is now given by a(t) = ā + sin(ωt) with ā = g/a0. Now if we
also nondimensionalize Eq. (3) and keep only the leading order
terms for θ0 � 1 we are left with

p = −∇̃2h, on z = h(x,y,t), (9)

where ∇̃2 = ∂2

∂x2 + ∂2

∂y2 . By combining Eqs. (8) and (9) on
the free surface, z = h(x,y,t), we can reduce this three-
dimensional problem to a two-dimensional one where the
height of the droplet is an unknown variable. The new equation
(with˜above the ∇ omitted) is

[∇2 − εγ a(t)]h(x,y,t) = εa(t)x + F (t), (10)

while the boundary condition for the height of the droplet
along the contact line remains

h(x,t) = 0 for x,y ∈ ∂R(t). (11)

Equation (5) becomes∫∫
R(t)

h(x,y,t)dxdy = 2π, (12)

and Eq. (6) becomes

n · ∂X
∂t

= θ − 1 + 1

2
v′′(θ − 1)2 + O(θ − 1)3, (13)

where U = V ′θ,v′′ = V ′′θ2
0 /U and X = (x,y) ∈ ∂R(t). We

will modify Eq. (13) in later sections so that we can study
different contact line laws, including hysteresis. Note that a(t)
changes sign as a function of time, so that the homogeneous
form of Eq. (10) is either Helmholtz equation, a modified
Helmholtz equation, or Laplace’s equation as t varies.

In order to solve Eqs. (10)–(13) we first redefine the height,
h(x,y,t), in order to absorb the right-hand side of Eq. (10)
leaving the remaining equation homogeneous. The redefined

height is then a known function on the boundary, and we can
use a boundary integral formulation [16] to find the normal
derivative of the height on the boundary (i.e., the contact
angle) for a given contact line, ∂R(t). Note that, depending on
whether a is greater than, less than, or equal to zero, the Green’s
function is either a modified Bessel function, a Bessel function,
or a logarithm, respectively. We use this boundary integral
approach to evolve the boundary (i.e., the contact line), which
we discretize using linear elements, with Crank-Nicolson time
stepping. This method is second-order accurate in both space
and time, confirmed by standard convergence tests.

III. RESULTS

A. Comparison of numerical and asymptotic solutions

We will begin by comparing our numerical solution of
Eqs. (10)–(13) to Benilov’s asymptotic solution for ε � 1
[11]. The main results that Benilov obtained was the rise
velocity of the droplet,

V (B)
r = ε2

[
γ [3 + 4ω2(1 − v′′)]

12(9 + 4ω2)
− ā

ε

]
. (14)

We can deduce from this that V (B)
r is monotone increasing

with ω for v′′ < 2/3, monotone decreasing for v′′ > 2/3, and
independent of ω for v′′ = 2/3. Although Benilov included
the quadratic term in the Taylor expansion of the contact line
law in Ref. [11], for larger values of ε, for which the range of
contact angles that are driven by the oscillation, is larger, this
leads to an unphysical model, since the contact line velocity
may be a decreasing function of contact angle. We therefore
focus on the case v = 0 for our fully nonlinear simulations, as
well as an alternative, cubic law, in Sec. III C. We also know
that when ā = O(ε), V (B)

r is proportional to ε2. Rearranging
Eq. (14) also gives us the condition for zero rise velocity,

ε = ā
12(9 + 4ω2)

γ [3 + 4(1 − v′′)ω2]
. (15)

These are the two results with which we will compare our
solutions. We first fix ε and γ and examine the rise velocity,
Vr and V (B)

r , as ω varies. Figure 2 shows a comparison between
our results and the asymptotic solution for a linear contact line
law and a quadratic one with v′′ = 0.4, which shows good
accuracy for small ε. The other comparison, a curve showing
zero rise velocity, is the left graph given in Fig. 7, which is
discussed in the next section. Our next goal will be to include
contact angle hysteresis in the model and to examine how and
why this affects the rise velocity. Before we do this we take
Eqs. (33) and (35) from Ref. [11] and write the first-order
correction for the radius of the droplet as a function of polar
angle φ, in a stationary frame of reference as

R(1)(φ,t) = ε

[
γ

12

3 sin ωt − 2ω cos ωt

9 + 4ω2
+ 1

ω
cos ωt cos φ

]
,

where φ = 0 is the positive x axis. This is the leading-order
motion of the droplet and it consists of a term with φ

dependance—the swaying mode—and a term without—the
spreading mode. Although these two modes are independent
of each other at leading order and individually give no net
motion, the nonlinear interaction between the two causes the
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FIG. 2. Comparison between numerical and asymptotic solutions for the rise velocity of a droplet on an inclined plane against the frequency
with ε = 0.04,γ = 25, and v′′ = 0 (a), 0.4 (b).

droplet to climb or slide, [11,12]. If we write this in terms of
a phase shift we obtain

R(1)(φ,t) = ε

{
γ

3

cos[ωt − tan−1(2ω/3) − π/2]√
9 + 4ω2

+ cos ωt

ω
cos φ

}
, (16)

and we can see that the phase difference between the two
modes varies monotonically with ω from π/2 out of phase
when ω = 0 to fully in phase as ω → ∞. What we can
conclude from Ref. [11] is that for a linear contact line law
(v′′ = 0) the largest rise velocity occurs when the spreading
and swaying modes are in phase, in qualitative agreement with
Ref. [12]. We will use this result to help understand how the
addition of contact angle hysteresis to the model changes the
rise velocity.

B. The effect of hysteresis

Now that we have some confidence in our numerical
solution method, we include contact angle hysteresis in the
model, so that θA > θR . When ε is sufficiently small, this pins
the whole contact line, so that the droplet cannot move. We will
begin by considering the case ε = 0.04, γ = 25, and v′′ = 0,
which we studied in the previous section. With the inclusion
of hysteresis in the problem we can no longer define θ0 as the
angle at which the contact line is stationary and so we redefine

it as

θ0 = h0

R0
, (17)

where h0 is the height of the unperturbed droplet. We scale
both θA and θR using this redefined θ0. The hysteresis interval
is defined to be the difference between these scaled advancing
and receding angles. Figure 3 shows the rise velocity of the
droplet for increasing hysteresis intervals with ε = 0.04, γ =
5 and a linear contact line law. A small hysteresis interval has
little effect on the overall motion of the droplet. However, with
a large enough hysteresis interval, for ω = O(1), the droplet
climbs uphill instead of sliding down and the rise velocity is
not as large for sufficiently large values of ω. We can also
see that for sufficiently large hysteresis intervals the droplet
oscillates, but the contact line is fully pinned.

We have seen how the leading order motion of a droplet
on an inclined plane with small amplitude oscillations can be
written as a combination of two independent modes; spreading
and swaying. We can also see from Eq. (16) that the spreading
mode scales linearly with γ and so we will examine how the
size of this parameter affects the interaction between the modes
under the influence of contact angle hysteresis. Since ε is not
necessarily small, we extract the nonlinear spreading mode by
plotting the rate of change of distance between the leading
and trailing edges of the droplet on the line of symmetry, and
the nonlinear swaying mode by plotting the velocity of the
midpoint of these edges (the center of the droplet).

FIG. 3. Rise velocity of a droplet against the frequency where ε = 0.04, γ = 25, a linear contact line law and a hysteresis interval of 0.02
(a), 0.2 (b), 0.4 (c). The dashed line represents the rise velocity of the droplet for the same parameter values but no contact angle hysteresis
present.
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FIG. 4. (a) The velocity of the center of the droplet (taken along the x axis) over one period of oscillation for increasing contact angle
hysteresis. (b) The rise velocity of the droplet for increasing contact angle hysteresis. (c, d) The velocity of of the swaying and spreading modes
over one period of oscillation for no hysteresis and a hysteresis interval of 0.2, respectively. Each of the markers on (b) coincide with the velocity
profiles on (a) with the white squares also matching the results shown in (c) and (d). The parameters are ε = 0.53, γ = 1, ω = 1.5, ā = 1/25,
and v′′ = 0.

When γ = 1, the amplitude of the spreading mode is
smaller than that of the swaying mode so we will focus on
the latter. We can see in Fig. 4(a) that increasing the size of
the hysteresis interval reduces the magnitude of the velocity
of the center of the droplet. In the absence of hysteresis, the
droplet spends more time sliding than it does climbing, and the
magnitude of the peak is slightly larger than that of the trough
[these features can be seen more clearly in Fig. 5(a)]. The area
under the climbing section of the graph is smaller than that
under the sliding section, so the net motion of the droplet is
down the substrate. When there is a nonzero hysteresis interval,
both the peak and the trough are reduced, and more sliding is
removed from the motion than climbing, so that, for a large
enough hysteresis interval, the net motion of the droplet is
climbing [Fig. 4(b)]. This continues up to a peak rise velocity
at a critical hysteresis interval such that for larger intervals
the droplet rise velocity decreases and becomes pinned for
sufficiently large hysteresis.

When γ = 25, the amplitude of the spreading mode is
comparable to that of the swaying mode [Fig. 5(c)], and there
is a phase difference between them that is controlled by ω.
When ω = 1.5 as shown in Fig. 5, the phase difference is
about π/4 and, in the absence of hysteresis, the droplet slides
down the substrate. However, when hysteresis is included,
the amplitudes of spreading and swaying modes are forced
to be zero at the same time, i.e., the leading and trailing
contact lines are both pinned [Fig. 5(d)]. This forces the two
modes into phase, and the droplet climbs. As before, for large
enough hysteresis intervals, the droplet becomes pinned. When

ω = 20, shown in Fig. 6, the modes are approximately in phase
in the absence of hysteresis. Because of this, the inclusion
of hysteresis does not cause a dramatic increase in the rise
velocity as it did in the previous two cases. The rise velocity
generally decreases as the hysteresis interval increases, but
not monotonically, and in a manner that reflects the strong
nonlinearity of the system. This example helps to explain why
the rise velocity of the droplet is smaller for large enough ω in
Fig. 3.

We conclude this section by considering how the sliding-
climbing phase diagram as a function of frequency and
amplitude is affected by hysteresis, as shown in Fig. 7. In
the absence of hysteresis, the phase diagram is very similar
to Fig. 4 in Ref. [11] (with differences coming from the fact
that ε ranges from 0.56to1.24). When hysteresis is included a
smaller value of ε is required to make the droplet climb and
also a static region (where the droplet is pinned) appears for
very small ε. There is no pinned region between the sliding
and climbing sections on the hysteresis phase diagram, unlike
the experimental phase diagram that appears in Ref. [1], which
indicates that is an effect of some of the physics neglected in
our simple model.

C. Alternative contact line law

So far we have considered the contact line law to be a linear
function of the contact angle. However, other models have been
considered in the literature, one of which we study here to see
how much it affects the motion of the droplet. Specifically, we
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FIG. 5. (a) The velocity of the center of the droplet (taken along the x axis) over one period of oscillation for increasing contact angle
hysteresis. (b) The rise velocity of the droplet for increasing contact angle hysteresis. (c, d) The velocity of of the swaying and spreading modes
over one period of oscillation for no hysteresis and a hysteresis interval of 0.2, respectively. Each of the markers on (b) coincide with the velocity
profiles on (a) with the white squares also matching the results shown in (c) and (d). The parameters are ε = 0.125, γ = 25, ω = 1.5, ā = 1/5,
and v′′ = 0.

FIG. 6. (a) The velocity of the center of the droplet (taken along the x axis) over one period of oscillation for increasing contact angle
hysteresis. (b) The rise velocity of the droplet for increasing contact angle hysteresis. (c, d) The velocity of of the swaying and spreading modes
over one period of oscillation for no hysteresis and a hysteresis interval of 0.2, respectively. Each of the markers on (b) coincide with the velocity
profiles on (a) with the white squares also matching the results shown in (c) and (d). The parameters are ε = 0.125, γ = 25, ω = 20, ā = 1/5,
and v′′ = 0.
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FIG. 7. A slide-climb phase diagram for the droplet with no hysteresis (a), a hysteresis interval of 0.2 (b) for γ = 1 and a linear contact
line law.

consider the cubic contact line law given by

v̂(θ̂ ) =
⎧⎨
⎩

vA|θ̂ − θ̂A|3 for θ̂ � θ̂A,

0 for θ̂A > θ̂ > θ̂R,

−vR|θ̂ − θ̂R|3 for θ̂R � θ̂ ,

(18)

in dimensionless form where vA,R are dimensionless veloc-
ities. In the absence of hysteresis, this has been shown to
agree with experimental results for slow, steady flows [5]. For
simplicity we will take vA,R = 1.

For small ε, we would expect the variation in the contact
angle to scale with ε, so the cubic law leads to smaller contact
line velocities than the linear law for small forcing. In addition,
the nonlinearity of the cubic contact line law leads to the

spreading and swaying modes being in phase for small ω and
the inclusion of hysteresis leads to a smaller rise velocity, in
contrast to the results for a linear contact line law. The latter
can be seen more clearly in Fig. 8, which has parameter values
identical to the results shown in Fig. 5 for the linear contact
line law. When there is no hysteresis the shape of the swaying
mode is very similar for linear and cubic laws, with obvious
differences at small contact line velocities. However, for the
cubic law, when hysteresis is included, the rise velocity of
the droplet decreases as a function of hysteresis interval, since
the modes are already in phase, and the velocity profile changes
in a manner similar to that shown in Fig. 4 for the linear law.
This is consistent with our explanation that the increase in

FIG. 8. (a) The velocity of the center of the droplet (taken along the x axis) over one period of oscillation for increasing contact angle
hysteresis. (b) The rise velocity of the droplet for increasing contact angle hysteresis. (c, d) The velocity of of the swaying and spreading modes
over one period of oscillation for no hysteresis and a hysteresis interval of 0.2, respectively. Each of the markers on (b) coincide with the velocity
profiles on (a) with the white squares also matching the results shown in (c) and (d). The parameters are ε = 0.125, γ = 25, ω = 1.5, ā = 1/5,
and a cubic contact line law.
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FIG. 9. A slide-climb phase diagram for the droplet with no hysteresis (a) and a hysteresis interval of 0.2 (b) for γ = 1 and a cubic contact
line law.

rise velocity is due to the phase difference of the modes being
forced to zero.

Finally, consider the phase diagrams shown in Fig. 9. In
contrast to the phase diagrams for a linear contact line law,
shown in Fig. 7, hysteresis has little effect on the slide-climb
boundary because the swaying and spreading modes are in
phase when there is no hysteresis. In addition, the position of
the boundary is only a very weak function of ω as it has little
effect on the phase difference between the modes. Note that a
similar phase diagram can occur for the original contact line
law, Eq. (15), with v′′ = 2/3.

D. Droplet footprints

Finally, we will briefly study how the shape of the footprint
of the droplet changes as it moves across the substrate. We will
look at how it differs with or without hysteresis and also how
changing the contact line law affects it. As well as looking at
how the droplet evolves as the substrate oscillates we can first
examine the footprint for the simplified case of a stationary
substrate, where the droplet slides down the plane. If there
is no hysteresis, or if (θA + θR)/2 = 1, so that the hysteresis
interval is symmetric, the footprint remains close to circular
as it slides. The shape is more interesting for an asymmetric
hysteresis interval and a small receding contact angle. In this
case, the droplet deforms in three stages (shown in Fig. 10).
The first stage of the motion is for the lower half to slide down
the plane with the top half moving more slowly. The lower
half also thins in the lateral direction, whereas the upper half

FIG. 10. The four stages a sliding droplet undergoes on a
stationary substrate ranging from an unperturbed shape to its steady
state (from left to right, respectively) for ε = 0.4, γ = 5, ω = 0,
a linear contact line law, θA = 1.1 and θR = 0.4. Constant time
increments have been taken in between each stage.

spreads out slightly. We will see similar behavior when the
plane is oscillating (Fig. 11). However, unlike the unsteady
flow, the droplet continues to move in the same direction and
in the second stage of the initial motion the receding contact
line begins to catch up with the advancing contact line. The
lower part of the droplet is noticeably narrower than the upper
part. As the droplet continues to slide, the top of the droplet
also thins laterally, until a steady state is reached in which
the lateral thickness of the droplet has reached an equilibrium
value somewhat smaller than the initial width. It has been
shown [17] that, for a model with prescribed values for the
advancing and receding contact angles, the final shape given
in Fig. 10 is in fact the only shape that has no singularities.

When the plate is oscillating, for a linear contact line law
with no hysteresis, or if the hysteresis interval is symmetric,
as for the steady flow, the footprint remains circular. For
asymmetric hysteresis intervals, the footprint is almost
circular with the base of the droplet expanding slightly for
(θA + θR)/2 < 1 or contracting slightly for (θA + θR)/2 > 1.
Although these are not significant, changing the contact line
law can make a big difference.

Figure 11 shows what the footprint looks like for a cubic
contact line law with θR = 0.5 and θA = 1.1. The droplet
slides and the lower part of the contact line moves a lot

FIG. 11. Example footprint of a sliding droplet, for ε =
0.44, γ = 4.5, ω = 5, a cubic contact line law, θA = 1.1 and θR =
0.5.
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FIG. 12. 3D plots of the motion undergone by a droplet over the course of one time period for ε = 0.8, γ = 1, ω = 1, a linear contact line
law, θA = 1.1 and θR = 0.9. Constant time increments have been taken in between each stage.

more than the upper part. The droplet deforms mainly in
the downhill direction. This is the most interesting footprint
shape, as it resembles results shown in Fig. 4 of Ref. [1] very
closely. The final result we will show is a three-dimensional
plot of a droplet as it oscillates over one time period (Fig. 12).

IV. CONCLUSIONS

In this paper we considered the motion of surface tension
dominated, oscillating droplets, and neglected the effects of
inertia and viscosity. We also assumed that the slope of the
free surface is small. If the amplitude of the oscillation is
sufficiently small we found that the motion of the droplet can
be separated into two modes and the nonlinear interaction
between them causes the droplet to slide or climb. The droplet
can climb uphill for most parameter values as long as the
frequency of the oscillation is large enough with the rise

velocity reaching its maximum when the two modes are
in phase. Adding hysteresis can cause an otherwise sliding
droplet to climb by forcing the two modes into phase producing
a larger rise velocity. Although we could not compare this
model directly to the experimental results in Ref. [1] it is
possible to obtain footprints similar to those observed in the
actual experiment. We also looked at how a small receding
contact angle leads to noncircular contact lines. In spite of
the strong simplifications that we used, we have been able to
examine the effect of contact angle hysteresis on the rise or
fall of strongly driven droplets.
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