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Continuation and stability of convective modulated rotating waves in spherical shells
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Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves that arise at the onset of
convection of a fluid contained in a rotating spherical shell, and their stability, are studied. For this purpose,
Newton-Krylov continuation techniques are applied. Nonslip boundary conditions, an Ekman number E = 10−4,
and a low Prandtl number fluid Pr = 0.1 in a moderately thick shell of radius ratio η = 0.35, differentially heated,
are considered. The MRW are obtained as periodic orbits by rewriting the equations of motion in the rotating
frame of reference where the rotating waves become steady states. Newton-Krylov continuation allows us to
obtain unstable MRW that cannot be found by using only time integrations, and identify regions of multistability.
For instance, unstable MRW without any azimuthal symmetry have been computed. It is shown how they become
stable in a small Rayleigh-number interval, in which two branches of traveling waves are also stable. The study
of the stability of the MRW helps to locate and classify the large sequence of bifurcations, which takes place
in the range analyzed. In particular, tertiary Hopf bifurcations giving rise to three-frequency stable solutions are
accurately determined.
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I. INTRODUCTION

The study of thermal convection in rotating spherical
geometries is important for understanding the dynamics of
astrophysical and geophysical phenomena such as the transport
of energy in the interior of planets and stars or the differential
rotation observed in the atmospheres of the major planets.
In addition, magnetic fields of cosmic bodies are generated by
convection of electrically conducting fluids in their interiors. In
recent decades, many experimental, theoretical, and numerical
studies (see, for instance, Refs. [1–6]) devoted to improving
the understanding of the basic mechanisms that govern the
convection and dynamo action in spherical geometry have
appeared. Good reviews can be found in the literature; see, for
instance, Refs. [7] and [8].

Most of the setups of laboratory experiments are not well
suited for measurements of flows near the onset of convection
at small Ekman number, E, and Prandtl number, Pr, so it
is difficult to find a description of periodic flows, observed
experimentally, in this range of parameters. From the analytical
point of view the nonlinear nature of the equations and the
spherical geometry of the domain lead to mathematical issues
of very difficult treatment. For this reason, the development
and improvement of the numerical techniques is basic to go
deeply into the study of weakly supercritical nonlinear flows.

In problems having SO(2) symmetry, convection takes the
form of waves traveling in the azimuthal direction (thermal
Rossby waves for Pr = 0.1), i.e., of rotating waves (RW),
when the axisymmetry of the basic conduction state is broken.
A secondary Hopf bifurcation gives rise to MRW, which
may have different types of spatiotemporal symmetries [9,10].
In Ref. [10] several examples in which rotating waves can
exist, such as the Taylor-Couette system or the meandering
spiral waves in the Belousov-Zhabotinsky reaction, among
others, are described. In the case of rotating spheres, RW and
MRW were studied mainly with the help of direct numerical
simulations (see Refs. [11–16], among many others). When
the azimuthal symmetry of the equations is constrained, time
integrations allow us to obtain some unstable MRW and their

bifurcation diagrams [17]. However, the only use of time
integrations is not sufficient to provide a complete picture of
the dynamics. Specifically, time integration methods are
unable to obtain unstable oscillatory solutions when all the
symmetries of the flow are broken. These solutions might
be relevant in organizing the global dynamics [18]. To find
them and provide a deeper description of the phase space,
continuation methods [19–22] must be used.

In the fluid dynamics context numerical bifurcation analysis
has been successfully applied in recent years to a great variety
of problems [18,23–26]. Computations based on continuation
of periodic orbits of nontrivial time dependence [27] and even
tori [28,29] or other invariant objects [30] have provided useful
information to clarify the dynamics. In the case of rotating
spherical geometries the bifurcation diagrams and the stability
of the RW in the slowly rotating regime, for Pr = 1, were
studied in Ref. [31] with nonslip boundary conditions by means
of Newton’s method. At lower E and Pr, and for a radius
ratio η = 0.35 corresponding to the estimated Earth’s outer
core, Newton-Krylov continuation techniques and Arnoldi
methods were applied successfully in Ref. [32] to explain the
coexistence of stable RW due to the presence of a double-Hopf
bifurcation, and to understand the existence of amplitude and
shape MRW from the symmetry breaking of the eigenfunctions
at the secondary bifurcations.

Aside from the use of nonslip boundary conditions and
low Pr = 0.1 and E = 10−4 values, the main novelty of this
study is to obtain branches of MRW bifurcated from the RW
previously studied in Ref. [32], using continuation techniques
and to perform a stability analysis of these waves to study
bifurcations to more complex flows such as three-frequency
waves. The MRW are obtained as periodic orbits by rewriting
the equations of motion in the rotating frame of reference in
which the RW are steady solutions.

The paper is organized as follows. In Sec. II we introduce
the formulation of the problem and briefly describe the
numerical method used to obtain and integrate the discretized
equations. In Sec. III preceding results concerning the calcu-
lation of the RW are summarized. In Sec. IV the equations for
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the MRW and the continuation and stability analysis methods
are explained. The bifurcation diagrams as a function of the
Rayleigh number, Ra, and the patterns of convection are shown
in Sec. V, focusing mainly on the results that cannot be studied
with just time integrations. Finally, in Sec. VI the paper ends
with a brief summary of the results obtained.

II. THE MODEL AND THE EQUATIONS

We consider the thermal convection of a fluid filling the gap
between two concentric spheres differentially heated, rotating
about an axis of symmetry with constant angular velocity
� = �k, and subject to radial gravity g = −γ r, where γ is
constant and r the position vector. The mass, momentum, and
energy equations are written in the rotating frame of reference.
The units are d = ro − ri for the distance, ν2/γ αd4 for the
temperature, and d2/ν for the time. In the previous definitions
ri and ro are the inner and outer radii, respectively, ν the
kinematic viscosity, and α the thermal expansion coefficient.

We use the Boussinesq approximation, and the solenoidal
velocity field is expressed in terms of toroidal, �, and poloidal,
�, potentials:

v = ∇ × (�r) + ∇ × ∇ × (�r). (1)

Consequently, the equations for both potentials, and the tem-
perature perturbation, 	 = T − Tc, from the conduction state
v = 0, T = Tc(r), with r = |r| and Tc(r) = T0 + Ra η/Pr(1 −
η)2r , are

[
(∂t − ∇2)L2 − 2E−1 ∂ϕ

]
� = −2E−1Q�

− r · ∇ × (ω × v), (2)

[
(∂t − ∇2)L2 − 2E−1 ∂ϕ

]∇2� + L2	 = 2E−1Q�

+ r · ∇ × ∇ × (ω × v), (3)

(
Pr∂t − ∇2

)
	 − Ra η (1 − η)−2r−3L2� = −Pr(v · ∇)	,

(4)

where ω = ∇ × v is the vorticity.
The parameters of the problem are the Rayleigh number Ra,

the Prandtl number Pr, the Ekman number E, and the radius
ratio η. They are defined by

Ra = γα�T d4

κν
, E = ν

�d2
, Pr = ν

κ
, η = ri

ro

, (5)

where κ is the thermal diffusivity, and �T > 0 the difference
in temperature between the inner and outer boundaries.

The operators L2 and Q are defined by L2 ≡
−r2∇2 + ∂r (r2∂r ),Q ≡ r cos θ∇2 − (L2 + r∂r )(cos θ∂r −
r−1 sin θ∂θ ), (r,θ,ϕ) being the spherical coordinates, with θ

measuring the colatitude, and ϕ the longitude. Nonslip perfect
thermally conducting boundaries are used:

� = ∂r� = � = 	 = 0 at r = ri,ro. (6)

The equations are discretized and integrated as described
in Ref. [33] and references therein. The potentials and the
temperature perturbation are expanded in spherical harmonics
in the angular coordinates, truncated at degree Lmax. In the
radial direction a collocation method on a Gauss-Lobatto

mesh of nr + 1 points is used. The code is parallelized in
the spectral and physical spaces by using OpenMP directives
(see Ref. [34]). We use optimized libraries (FFTW3 [35]) for
the FFTs in ϕ and matrix-matrix products (DGEMM GOTO
[36]) for the Legendre transforms in θ when computing the
nonlinear terms.

For the time integration high-order implicit-explicit back-
ward differentiation formulas (IMEX–BDF) [33] are used. In
the IMEX method we treat the nonlinear terms explicitly in
order to avoid solving nonlinear equations at each time step.
The Coriolis term is treated fully implicitly to allow larger time
steps. The use of matrix-free Krylov methods (GMRES in our
case) for the linear systems facilitates the implementation of a
suitable order and time step-size control.

III. COMPUTATION AND STABILITY OF
THE ROTATING WAVES

In this section some background necessary to follow easily
Secs. IV and V is included.

The discretization of Eqs. (2)–(4) leads to a system of n =
(3L2

max + 6Lmax + 1)(nr − 1) ordinary differential equations
(ODE) of the form

L0∂tu = Lu + B(u,u), (7)

where u = (�m
l (ri),�m

l (ri),	m
l (ri)) is the vector containing

the values of the spherical harmonic coefficients at the
inner radial collocation points, and L0 and L are linear
operators which include the boundary conditions. The former
is invertible. It is the identity acting on �m

l and 	m
l , and the

operator Dl acting on �m
l (see Ref. [32] for details). The

operator L includes all the linear terms and depends on
the parameters of the problem, in particular on the Rayleigh
number Ra, which will be the control parameter of this study.
The rest of parameters are fixed to η = 0.35, E = 10−4, and
Pr = 0.1. Therefore, p = Ra and L = L(p). The bilinear
operator B only contains the nonlinear (quadratic) terms.

The system is SO(2) × Z2-equivariant, SO(2) generated
by azimuthal rotations, and Z2 by reflections with respect to
the equatorial plane. According to bifurcation theory, the first
bifurcation, which breaks the axisymmetry of the conductive
state, is a Hopf bifurcation giving rise to RW. In the linear
stability analysis of Refs. [37] and [32], critical values p = p1,
at which there are vectors vc and precession frequencies ωc

satisfying iωcL0vc = Lvc, were obtained as a function of E

and η, respectively. With Pr = 0.1, η = 0.35, and E = 10−4

the preferred eigenfuctions are symmetric with respect to the
equator. The precession frequencies ωc are negative, namely
the drifting velocities c = −ωc/m are positive, thus the waves
travel in the prograde direction. Moreover, they consist in
quasigeostrophic convective columns attached to the inner
sphere of mean radius rc � d.

Rotating waves, u(r,θ,ϕ − ωt) = ũ(r,θ,ϕ̃), with ϕ̃ = ϕ −
ωt , were obtained in Ref. [32] by Newton-Krylov continuation
methods as steady solutions of the system (omitting the tildes),

F (u,ω,p) ≡ L(p)u + B(u,u) + ωL0∂ϕu = 0, (8)

by using a suitable preconditioner to accelerate the con-
vergence of the linear solver. Their stability was studied
by considering a perturbation v(t,r,θ,ϕ̃) of u(r,θ,ϕ̃) and
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FIG. 1. Bifurcation diagram (taken from Ref. [32]) showing (a) the L2-norm of the RW and (b) the drifting frequency, ω, both versus Ra.
The order of the branches is m = 6, 5, 7, 8, 4, 3, 2, 1.

linearizing Eq. (8). The leading eigenvalues of the matrix
L−1

0 DuF (u) were computed using the ARPACK package [38],
based on Arnoldi algorithms, and shift-invert strategies [39].

The bifurcation diagrams were calculated for the values of
the parameters above mentioned, i.e., for E = 10−4, Pr = 0.1,
control parameter p = Ra, and different values of the radius
ratio η, around the vicinity of a double-Hopf bifurcation.

Figures 1(a) and 1(b), taken from Ref. [32], show the
L2-norm of the RW and the drifting frequency, ω, respectively,
versus Ra for η = 0.35. The horizontal axis in Fig. 1(a) corre-
sponds to the basic conductive state ‖u‖2 = 0. In these figures,
solid and dashed lines indicate stable and unstable solutions,
respectively. The preferred mode at the onset of convection
(Rac = 1.856 × 105), has a sixfold rotational symmetry. At the
bifurcation point a branch of supercritical stable RW keeping
this symmetry emerges. Other branches bifurcated from the
conduction state at higher Ra, invariant under 2π/m rotations
(m = 5,7,8,4, · · · ), are unstable. However, that with the
fivefold symmetry stabilizes after a Hopf bifurcation at Ra =
2.043428 × 105, which breaks the fivefold symmetry. An
unstable branch of MRW without any azimuthal symmetry is
born at this point. This behavior was related with the existence
of a double-Hopf bifurcation at a slightly different value of
η (0.3308), involving the modes of azimuthal wave numbers
m = 5 and m = 6. The branches of five- or sixfold symmetric
RW lose their stability via new Hopf bifurcations at Ra =
2.584388 × 105 and Ra = 2.738518 × 105, giving rise to
branches of stable MRW, which keep the symmetry of the RW.

IV. COMPUTATION AND STABILITY OF THE
MODULATED ROTATING WAVES

As said before, the RW undergo secondary Hopf bifur-
cations at critical values p, giving rise to branches of MRW.
These are solutions for which there exist a minimal time τ > 0
and a rotating frequency ω, such that

u(τ + t,r,θ,ϕ) = u(t,r,θ,ϕ − ωτ ) ∀t. (9)

The time τ is the period of the modulation in the frame of
reference at which only the oscillations due to the modulation

are observed, and ω is the angular velocity of this frame of
reference (relative to the rotating spheres).

Let us define u(t,r,θ,ϕ) = ũ(t,r,θ,ϕ̃), with ϕ̃ = ϕ − ωt and
ω a rotating frequency. If ũ is a τ -periodic function, then u is
a MRW because

u(t + τ,r,θ,ϕ)
1= ũ(t + τ,r,θ,ϕ − ω(t + τ ))

2=
2= ũ(t,r,θ,ϕ − ωt − ωτ )

3= u(t,r,θ,ϕ − ωτ ).

Identities 1 and 3 are due to the definition of ũ, while equality
2 is because ũ is a τ periodic function.

Taking into account that ∂tu = ∂t ũ − ω∂ϕ̃ũ and Eq. (7), the
equations for ũ(t,r,θ,ϕ̃) are deduced. By omitting the tildes,
they are

∂tu = L−1
0 (L(p)u + B(u,u)) + ω∂ϕu. (10)

The periodic orbits of this system are MRW of Eq. (7), and its
fixed points correspond to RW of Eq. (7).

A. Continuation of the MRW

To study the dependence of the MRW on the pa-
rameter p = Ra, pseudoarclength continuation methods are
used. They allow to obtain the curve of solutions x(s) =
(u(s),τ (s),ω(s),p(s)) ∈ Rn+3, s being the arclength parame-
ter, by adding the pseudoarclength condition,

m(u,τ,ω,p) ≡ 〈w,x − x0〉 = 0, (11)

x0 = (u0,τ 0,ω0,p0) and w = (wu,wτ ,wω,wp) being the pre-
dicted point and the tangent to the curve of solutions,
respectively, obtained by extrapolation of the previous points
along the curve.

The system that determines a single solution, x =
(u,τ,ω,p), is

H (u,τ,ω,p) =

⎛
⎜⎝

u − φ(τ,u,ω,p)
g(u)
h(u)

m(u,τ,ω,p)

⎞
⎟⎠ = 0, (12)
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where φ(τ,u,ω,p) is solution of Eq. (10) at time t = τ with
initial condition u at t = 0, and for fixed ω and p. The
conditions g(u) = 0 and h(u) = 0 are selected to fix the two
undetermined phases of the MRW. We use g(u) = 〈u,∂ϕuc〉 =
0 and h(u) = 〈u,∂3

ϕuc〉 = 0, where uc is a reference solution
(the eigenvector, uc = vc, at p = p2, a previously computed
solution, or the extrapolated value of u at the first iteration).
The former is a necessary condition for ‖u − uc‖2

2 to be
minimal with respect to the phase (see Ref. [32]), and the
latter is selected to ensure h(uc) = 0. For the computation of
the inner products 〈·,·〉 between two functions expanded in
spherical harmonics we use the definitions of Ref. [32].

To solve the large nonlinear system defined by Eq. (12) we
use Newton-Krylov methods. They are matrix-free methods
that do not require the explicit computation of the jacobian
D(u,τ,ω,p)H (u,τ,ω,p), but only its action on a given vector. For
the linear systems we use GMRES [40]. Due to the particular
form of the spectrum of D(u,τ,ω,p)H (u,τ,ω,p) for dissipative
systems, GMRES does not need preconditioning (see Ref. [20]
for details).

The action of the Jacobian D(u,τ,ω,p)H (u,τ,ω,p) on δx =
(δu,δτ,δω,δp) ∈ Rn+3 is

⎛
⎜⎝

δu − v(τ ) − ż(τ )δτ
Dug(u)δu
Duh(u)δu
Dxm(x)δx

⎞
⎟⎠ ∈ Rn+3. (13)

Here z(τ ),v(τ ) ∈ Rn are the solutions, at time t = τ , of the
system

∂tz = L−1
0 (L(p)z + B(z,z)) + ω∂ϕz, (14)

∂tv =L−1
0 (L(p)v + B(z,v) + B(v,z))

+ ω∂ϕv + δω∂ϕz + δpL−1
0 L(2)z, (15)

with initial conditions z(0) = u and v(0) = δu, with fixed
ω and p. The dependence of L on p, of the form L(p) =
L(1) + pL(2) has been used. Each GMRES iteration will
require one evaluation of the Jacobian, therefore most of
the computational cost is consumed in the integration over
one tentative modulation period of a large ODE system of
dimension 2n. Thus, an efficient time integration is mandatory.

Notice that the RW can be obtained with the code written
to compute MRW by omitting the term ω∂ϕu in Eq. (10), and
the dependence of ω and the phase condition h(u) of Eq. (12).
In this case τ means the period of the RW. However, the
time integration can be reduced by a factor m due to their
m-fold spatial symmetries. Moreover, since the fixed points
of system Eq. (10) are RW of system Eq. (7), they can also
be computed with the same code by removing the dependence
on τ and one phase condition in Eq. (12). Now the flying
time τ appearing in the first component of Eq. (12) is no
longer an unknown but a fixed characteristic time. It should
be small to avoid long-time integrations but large enough to
have a fast convergence of the linear solver. We have used
these tricks to check the new code for the computation of
MRW by comparing with previous results. These calculations
are more demanding than those used in Ref. [32] because
they involve time integrations of 2n equations, but they are
easier to implement, if a time-stepper code is available, because

GMRES does not need preconditioning in contrast to what
happened in Ref. [32].

B. Stability of the MRW

Suppose a MRW (u,τ,ω,p) ∈ Rn+3 has been found.
To study the stability of this periodic solution, Flo-
quet theory is applied. Handling the full Jacobian matrix
Duφ(τ,u,ω,p), φ(τ,u,ω,p) being the solution of Eq. (10) at
time t = τ with initial condition u at t = 0 and for fixed ω

and p, would require a prohibitive amount of memory due the
high resolutions employed in the present study. It is enough
to compute the leading eigenvalues and eigenvectors of the
map δu −→ Duφ(τ,u,ω,p)δu = v(τ ),v(τ ) being the solution
of the first variational equation obtained by integrating the
system,

∂tz = L−1
0 (L(p)z + B(z,z)) + ω∂ϕz,

∂tv = L−1
0 (L(p)v + B(z,v) + B(v,z)) + ω∂ϕv,

of dimension 2n, with initial conditions z(0) = u and v(0) =
δu, over a modulation period τ , with fixed ω and p.

The leading eigenvalues of the map, which correspond to
the leading Floquet multipliers, are computed by using the
ARPACK package. MRW with leading Floquet multipliers
with modulus larger (smaller) than +1 are unstable (stable).
Notice that in this problem, for any value of p, there are two
marginal (+1) Floquet multipliers due to the invariance under
azimuthal rotations and time translations, with associated
eigenfunctions v1 = ∂tu and v2 = ∂ϕu. To avoid unnecessary
computations they can be deflated by computing the eigen-
values of the map δu −→ v(τ ) − 〈v(τ ),v1〉 v1 − 〈v(τ ),v2〉 v2.
This method to determine the stability of the solutions is very
robust but computationally expensive because it requires the
time integration of and ODE system of dimension 2n over one
period of the modulation. Since the solution is a periodic orbit
of Eq. (10) there is no cheaper alternative to this procedure.

V. RESULTS

Branches of modulated waves

The eigenfunctions at the bifurcation points of Fig. 1 were
used to identify the azimuthal symmetries of the MRW and in
this way to build initial conditions to start their continuation.
The modulation periods τm

i = 2π/ Im(λm
i ) of the branches of

MRW at the critical parameters pm
i are obtained from the

leading eigenvalues, λm
i , at the Hopf bifurcations. The initial

drifting frequencies ωm
i are those of the RW, (um

i ,ωm
i ,pm

i ),
at the bifurcation points. All the results shown in this section
(otherwise mentioned) are obtained with truncation parameters
nr = 32 and Lmax = 60.

Figure 2(a) and their blowups in Figs. 2(b)–2(d) display
the drifting frequency, ω, versus Ra for the RW with five-
or sixfold rotational symmetry in red (light gray) and for the
MRW without any azimuthal symmetry (m = 1 MRW from
now on) and those with five- or sixfold rotational symmetries
in blue (dark gray). The meaning of dashes and symbols can
be seen in the figure caption. While for the RW the frequency
ω always decreases monotonically, for the five- or sixfold
symmetric MRW it increases at the beginning of the branch
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FIG. 2. Bifurcation diagrams: (a) Drifting frequency, ω, versus Ra. (b) Detail corresponding to the square drawn in (a). (c) Detail containing
the regions of stable RW and MRW. (d) Detail showing the loops on the m = 1 branch of MRW and the fivefold branch of RW. (e) Time-averaged
Nusselt number, Nu, and (f) time-averaged kinetic energy density, K , both versus Ra. Solid (dashed) lines indicate stable (unstable) solutions.
The symbols mean the types of bifurcations: (•) Hopf, (×) saddle-node, and (◦) period-doubling.

but starts to decrease soon. In contrast, the behavior of m =
1 MRW is more complex. On average, ω decreases, but it
increases in the regions where saddle-node bifurcations are
present [see Figs. 2(b) and 2(d)].

As said before, the unstable m = 1 branch of MRW arises
from the fivefold symmetric branch of RW [see Fig. 2(b)].
At a saddle-node bifurcation at Ra1

1 = 2.15713 × 105 it be-
comes stable down to Ra1

2 = 2.15690 × 105, where a Hopf
bifurcation occurs. This interval of stability is very small,
as shows the detail of Fig. 2(b), so it would be nearly
impossible to capture it with direct simulations. The stability
analysis of the solutions along this branch has allowed us
to identify several bifurcations. The detail of most of the
saddle points is shown in Fig. 2(d). Notice that in the latter
figure some of the bifurcations are very close, therefore if a
second parameter is varied (for instance E or Pr) codimension
two bifurcations (Hopf-saddle-node, double-Hopf, period-
doubling-saddle-node) could be located. Finally, the branch of
m = 1 MRW ends at a Hopf bifurcation again on the fivefold
symmetric branch of RW [see right-bottom corner of Fig. 2(d)].

In contrast to the m = 1 branch of MRW, the regions of
stability of the six- and fivefold MRW are sufficiently large
[see Fig. 2(c)] as to capture these solutions by time integration
[41]. We have identified the bifurcations on these branches and
checked that the MRW starting at the first period-doubling
bifurcation found correspond to the solutions computed in
Ref. [17] by using azimuthal-symmetry-constrained time
integration. In the latter work, in agreement with Feigem-
baum’s theory, up to three period-doublings leading to chaotic
solutions were found.

The bifurcation diagrams of the time-averaged Nusselt
number, Nu, and kinetic energy density, K , both defined as
in Ref. [42], are shown in Figs. 2(e) and 2(f), respectively.
The curves of RW are very smooth and Nu and K increase
monotonically with increasing Ra. In contrast, the curves of
MRW are not monotonous and the m = 1 branch has a marked
loop.

Note that at Ra = 4.1 × 105 there are five unstable solutions
without azimuthal symmetries and very different values of Nu

and K . The m = 1 branch of MRW has the larger Nu, with
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FIG. 3. (a) Bifurcation diagram of the modulation period, τ , of the MRW versus Ra. (b) Detail showing the loop of the m = 1 branch. The
type of dash and symbols mean the same as described in the caption of Fig. 2

the maximum very near from a Hopf-saddle-node bifurcation
(the saddle-node at Ra1

12 = 4.43366 × 105 and the Hopf point
at Ra1

11 = 4.43358 × 105). This solution has also large values
of K comparable to those of the fivefold symmetric MRW
around Ra = 5.8 × 105.

In Fig. 3(a) the modulation period τ for the three branches
of MRW shown in Fig. 2 is plotted versus Ra, with a detail in
Fig. 3(b) of the double-loop where the m = 1 branch undergoes
several bifurcations. Each branch of Fig. 3(a) starts with a
modulation period τ given by the stability analysis of the RW
at the corresponding bifurcation point. It is worth noticing that
the theoretically predicted τ could not be minimal in the sense
that there might exist another modulation period τ ′ = τ/k with
k ∈ N, and another drifting frequency ω′ = ω − 2π/τ such
that (u,τ ′,ω′,p) is also a MRW (see Ref. [9]). For the five- or
sixfold branches the modulation period τ obtained from the
stability analysis is minimal. However, for the m = 1 MRW the
minimal period is τ ′ = τ/5. Detecting τ ′ is important to avoid
unnecessary time integrations, which are the most expensive
computational task. An algorithm to obtain τ ′ and ω′ directly
from an observable of an experiment with O(2) symmetry was
presented in Ref. [43]. The modulation period is obtained from
the period of the time series of a volume-averaged quantity.
This also applies to our problem because volume-averaged
quantities are invariant under azimuthal rotations.

Figure 4, showing the modulus of the two leading Floquet
multipliers, |μ1| � |μ2|, plotted versus the Rayleigh number,
helps to illustrate how the m = 1 branch of MRW gains and
loses stability in the doublefold of Fig. 2(b). The modulus
of μ1 is plotted in solid line and |μ2| in dashed line. The

symbol • signals the values of |μ1| and |μ2| at the starting
point, and the arrows indicate the path followed along the
curve. The crossings through the horizontal line placed at
|μ| = 1 mark the three bifurcation points along the curve. At
the beginning both multipliers are real. When the first crosses
the unit circle it stabilizes the fluid at the first saddle-node
bifurcation. Afterwards, it collapses with the second forming
a complex conjugated pair of |μ| < 1 that crosses again the unit
circle. This is the Hopf bifurcation that destabilizes the m = 1
branch of MRW. Finally, the pair separates after colliding on
the real axis. The first real multiplier increases its modulus
and the second crosses again the unit circle at the second
saddle-node bifurcation.

Figure 4(b) displays the 20 first leading Floquet multipliers
for the last solution computed on the m = 1 branch of MRW,
which ends again on the fivefold RW. There are nine complex
conjugated pairs, eight of them outside the unit circle, and two
real, so close to each other, that are indistinguishable in the
figure. One of them is outside the unit circle. This means
that several of the bifurcations detected along this branch
(as much as 29) are due to multipliers entering to the unit
circle. Except in the three Hopf bifurcations where the stable
MRW lose their stability, any other Hopf or period-doubling
bifurcations gives rise to unstable three-frequency solutions or
period-doubled MRW, respectively. For instance, 20 branches
of unstable objects are born along only the m = 1 branch.
Thus, the phase space of this problem is so complex that it is
almost impossible to unfold a small part of the full bifurcation
diagram. However, in some cases, as in Ref. [32], chaotic
finite-amplitude solutions at this range of parameters can be

1
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FIG. 4. (a) Modulus of the two leading Floquet multipliers versus Ra, for the solutions shown in the detail of Fig. 2(b). (b) Leading Floquet
multipliers of the last solution calculated on the m = 1 branch. The closed curve is the unit circle.
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FIG. 5. Poincaré section at 	((ro + ri)/2,0,3π/8) = 0 of the azimuthal component of the velocity field vϕ(ri + (ro − ri)/7,0,3π/8)
plotted versus 	 at the same point. (a) Stable m = 1 MRW at Ra = 2.15701 × 105. (b) Stable three-tori bifurcated from the m = 1 MRW at
Ra = 2.15685 × 105.

understood as trajectories that visit in a random way the stable
RW and MRW, pointing out the interest of the computation of
unstable solutions by continuation methods.

When the MRW lose their stability via Hopf bifurcations,
branches of three-frequency solutions (three-tori) of Eq. (7)
or two-frequency RW (two-tori) of Eq. (10) arise at the
bifurcation points. By means of time integration of Eq. (7), the

three stable three-tori bifurcated from the five- or sixfold MRW
and the m = 1 MRW have been found. The Poincaré section
at 	((ro + ri)/2,0,3π/8) = 0 of the azimuthal component of
the velocity field vϕ(ri + (ro − ri)/7,0,3π/8) plotted versus
	 at the same point, for a stable m = 1 MRW at Ra =
2.15701 × 105, is displayed in Fig. 5(a). Figure 5(b) shows
the same Poincaré section but for the stable three-tori at

FIG. 6. The left column of three plots contains the contour plots of 	 on a sphere, on the equatorial plane, and on a meridional section, for
solutions lying on the m = 1 branch of MRW at Ra = 2.04612 × 105, 2.20259 × 105, 3.23559 × 105, 4.31323 × 105, 4.87302 × 105 (from
top to bottom). The right column corresponds to K for the solution and same Ra.
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Ra = 2.15685 × 105, bifurcated from the m = 1 MRW. In
this case the section is no longer a curve but a band. It is
worth noticing that both types of oscillatory solutions are
obtained from initial conditions given by the continuation
code. Although they are stable near Rac, their stability interval
is very short, and the basin of attraction of the stable five-
or sixfold symmetric RW is much larger than that of the
m = 1 MRW and three-tori of Eq. (7), then it would be almost
impossible to get them by chance with time integrations.

The flow patterns along the m = 1 branch of MRW are
shown in Fig. 6. It shows, from top to bottom, a sequence of
solutions at Ra = 2.04612 × 105, 2.20259 × 105, 3.23559 ×
105, 4.31323 × 105, 4.87302 × 105. Three projections of the
temperature perturbation are displayed in the left group of
plots. The radius of the spherical surfaces ranges from r =
ri + 0.22d to r = ri + 0.3d, although they are represented
with the same size as the other sections. They correspond
approximately to the location where the columns of 	 get the
maximum. The middle projections are taken on the equatorial
plane, and the right ones on a meridional section that cuts
the equatorial cell of 	 by its maximum. The scale of
colors is the same in each solution, with blue (dark gray)
meaning cold fluid. The same projections are taken for the

kinetic energy density K (right group of plots), but with
the spherical projections taken close to the outer boundary
at r = ri + 0.975d, where it reaches its maximum at high
latitudes, and with the spherical surface seen from the pole.

The meridional sections show the typical patterns of
convection in a regime where rotation plays a dominant role
in the dynamics: the z dependence of the flow is weak, and
outside a columnar region the fluid is nearly stagnant. The
cells of convection are symmetric with respect to the equatorial
plane and attached to the inner sphere. The equatorial sections
of K display a double-layered pattern of spiraling vortices.
The solutions close to the fivefold RW have the symmetry
weakly broken and the five convective cells have similar size
(see first and last rows of Fig. 6). In contrast, far away the
bifurcation points, the number of convective cells diminishes,
some of them are significantly smaller than the others and the
convection is localized in patches whose intensity grows and
decays while the full pattern is rotating.

Contour plots along the fivefold branch of MRW
at Ra = 2.73868 × 105, 3.32581 × 105, 4.00390 × 105,

5.22800 × 105, 5.82313 × 105 are shown in Fig. 7. The
patterns of the first solution resemble those of the fivefold RW
at the bifurcation point. As the Rayleigh number is increased,

5

FIG. 7. Same contour plots as in Fig. 6 for fivefold symmetric solutions at Ra = 2.73868 × 105, 3.32581 × 105, 4.00390 × 105, 5.22800 ×
105, 5.82313 × 105 (from top to bottom).

013119-8



CONTINUATION AND STABILITY OF CONVECTIVE . . . PHYSICAL REVIEW E 93, 013119 (2016)

FIG. 8. Same type of contour plots as in Fig. 6. The first row corresponds to 	 and K for the solution at the first Hopf bifurcation point
(Ra1

2 = 2.15690 × 105) on the m = 1 branch, the next two rows show the real and imaginary parts of the leading eigenfunction at the same
point.

the cells of hot fluid spiral and expand to the outer boundary,
confining the cold fluid in small cells near the interior. In
addition, the vortices of K become connected near the inner
boundary, indicating that there are strong internal mean zonal
circulations in this region of parameters (see for instance the
third row at Ra = 4.00390 × 105). The same behavior was
found when the sixfold MRW were analyzed.

Figures 8, 9, and 10 display, respectively, the contour plots
of 	 and K for the m = 1 MRW, the five- or sixfold MRW
at the Hopf bifurcation points where they lose stability, and
the corresponding real and imaginary parts of the critical
eigenfunction. At the bifurcation the symmetry of the five- or
sixfold MRW is broken, but as can be seen in the second and

third rows of Fig. 10 the eigenfunction of the sixfold MRW is
invariant under a rotation of π . Therefore the three-frequency
of waves emerging at this point retains a twofold rotational
symmetry.

Finally, to check the sensibility of the bifurcation points
with the spatial resolution, the variation of Ra, τ, ω and
the argument of the leading eigenvalue, Arg(λ), is studied
for the four bifurcations where the MRW become stable
or unstable. The results are included in Table I. We have
changed both the number of radial collocation points, nr ,
and the spherical harmonics truncation parameter, Lmax. The
computation of the five- or sixfold symmetric branches is
performed applying symmetry constraints to reduce the size

FIG. 9. Same contour plots as in Fig. 8 for the solution and the real and imaginary parts of the leading eigenfunction at the first Hopf
bifurcation point (Ra5

1 = 2.86197 × 105) on the fivefold branch.
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FIG. 10. Same contour plots as in Fig. 9 for the solution and the real and imaginary parts of the leading eigenfunction at the first Hopf
bifurcation point (Ra6

1 = 2.60701 × 105) on the sixfold branch.

of the systems, n, required to obtain them. In contrast, all the
modes must be retained when computing the branch without
rotational symmetry. The values of n range from 57 692 up
to 1 061 977. When analyzing the stability of the solutions no
symmetry constraints are imposed. In this case the number of
discretization points range from 345 991 up to 1 061 977. The
determination of the critical point was performed in each case
by inverse interpolation.

As can be seen in the table the accuracy of the results is
very good. Even with the lower resolutions used at least three
significant figures are obtained for Arg(λ) and four or more
for the other quantities.

VI. SUMMARY

Modulated thermal Rossby waves and their stability have
been computed in rotating spherical geometry for parameter
values of Pr and η of geophysical relevance.

The MRW have been obtained as periodic orbits in the
rotating frame of reference where only the period of the
modulation is observed. Newton-Krylov continuation allows
us to obtain unstable RW and MRW that cannot be found
by only using time integrations. The use of matrix-free linear
solvers for the Newton iterations avoids the storage of the
Jacobian matrix allowing us to tackle high resolutions needed
for low Ekman and Prandtl number flows. In this way we have
been able to compute stable MRW stabilized at a saddle-node
bifurcation of an unstable branch of MRW.

To find a single MRW up to relative tolerance 10−8 the
Newton-Krylov method typically converges in four Newton
iterations. Each of them requires an evaluation of the function,
i.e., one time integration of an ODE system of dimension
n = O(105 − 106) plus an average of 15 GMRES iterations,
i.e., 15 additional time integrations of an ODE system of
dimension 2n are needed. Close to the bifurcation points the
convergence slows down, so efficient and accurate (high-order)
time integration is essential.

TABLE I. Variation of the critical parameters of the MRW at the bifurcations where they change the stability with the resolution.

nr m Lmax
m

n Rac τ ω Arg(λ)

32 1 60 345991 215713.2 0.0709448 90.6995 0
40 1 72 623415 215716.7 0.0709454 90.6989 0
50 1 84 1061977 215716.7 0.0709454 90.6989 0

32 1 60 345991 215689.7 0.0706949 90.7367 0.0388974
40 1 72 623415 215692.4 0.0706954 90.7363 0.0389272
50 1 84 1061977 215692.4 0.0706953 90.7363 0.0389286

32 5 12 69223 286197.3 0.0361569 80.7386 2.47680
40 5 14 117975 286203.6 0.0361561 80.7383 2.47700
50 5 16 192913 286203.8 0.0361561 80.7384 2.47701

32 6 10 57691 260700.8 0.0378892 63.2709 1.13710
40 6 12 103935 260703.5 0.0378885 63.2706 1.13703
50 6 14 177037 260703.4 0.0378885 63.2706 1.13704
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We have performed an exhaustive stability analysis to detect
and classify the large sequence of bifurcations that takes place
along these branches. In contrast to what happens with the
RW, we have found that the range of Ra in which the MRW
are stable is very small. This is especially true in the case of the
m = 1 MRW, stable very close to the onset at Ra/Rac = 1.16.
The stability regions of the RW and MRW overlap giving rise
to regions of multistability of two and three different types of
waves.

The five- or sixfold and m = 1 MRW lose their stability
via tertiary Hopf bifurcations, giving rise to three-frequency
stable solutions. In addition, we have found more than 50
Hopf and period-doubling bifurcations along the branches
of RW and MRW studied. These bifurcations give rise to

branches of unstable modulated and three-frequency waves,
which configure the skeleton of the phase space. To have
the tools to compute them is important because the study of
the unstable branches of solutions could explain the origin
of stable temporally chaotic flows observed experimentally in
the same range of parameters or computed from uncontrolled
initial conditions.
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