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From nonlinear models and direct numerical simulations we report on several findings of relevance to the
single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories. The incompressible,
direct numerical simulations (DNSs) were performed in two (2D) and three dimensions (3D), and at a range
of density ratios of the fluid combinations (characterized by the Atwood number). We investigated several
acceleration histories, including acceleration profiles of the general form g(t) ∼ tn, with n � 0 and acceleration
histories reminiscent of the linear electric motor experiments. For the 2D flow, results from numerical simulations
compare well with a 2D potential flow model and solutions to a drag-buoyancy model reported as part of this
work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement
with the so-called level 2 and level 3 models of Mikaelian [K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009)],
and with corresponding 3D drag-buoyancy model solutions derived in this article. Our generalization of the RT
problem to study variable g(t) affords us the opportunity to investigate the appropriate scaling for bubble and
spike amplitudes under these conditions. We consider two candidates, the displacement Z and width s2, but find
the appropriate scaling is dependent on the density ratios between the fluids—at low density ratios, bubble and
spike amplitudes are explained by both s2 and Z, while at large density differences the displacement collapses the
spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at lower Atwood
numbers than predicted by all the models.
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I. INTRODUCTION

A material interface demarcating fluids of dissimilar den-
sities is unstable to the Rayleigh [1]-Taylor [2] instability,
when an acceleration is applied from the light fluid to the
heavy. The fluid mixing resulting from this flow has gained
wide attention over the last few decades owing to its role
in limiting the performance of inertial confinement fusion
(ICF) capsules [3]. Similarly, Rayleigh-Taylor (RT)-driven
mixing is essential to explaining transport processes in the
detonation of type IA supernovae [4–6], mantle convection [7],
formation of volcanic islands [8–10], and density inversions
in the upper atmosphere [11]. In ICF, ablation and blow-off at
an outer layer results in the shell interface accelerated radially
inward with a complex g(t), so that imposed perturbations
will grow dominated by a strong RT instability [3]. While the
RT-dominated flow in these examples is turbulent and highly
nonlinear, a detailed understanding of such flows must be built
from a description of the corresponding elemental, single-
scale problem [12–20]. For an initially sinusoidal, interfacial
perturbation characterized by a perturbation amplitude (h0)
and wave number k(≡ 2π/λ), linear theory [1,2,21] predicts
exponential growth according to

h(t) = h0 cosh (�t), (1)

where � = √
Akg, with the Atwood number A ≡ ρb−ρa

ρb+ρa
(ρb >

ρa) and a constant g. In reality, the acceleration g can result
from a multitude of dynamic phenomena, and vary with time,
as observed in applications. Equation (1) is valid for inviscid
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flows, and only as long as kh(t) � 1. When the perturbation
amplitudes evolve to an extent that this condition is violated,
the flow may be termed nonlinear. During this stage, the flow
is characterized by “bubbles” of light fluid, and “spikes” of
heavy fluid, although the distinction is significant only at large
A when spikes are longer than bubbles. Thus, the nonlinear RT
growth is marked by a prolonged phase during which bubble
and spike tips are observed to advance at a constant velocity
given by

Vb/s =
√

2Ag

(1 ± A)k
. (2)

Note that the above equation implies a constant Froude
number for bubble and spike structures given by

Frb/s = Vb/s√
Agλ

(1+A)

. (3)

Equation (2) may be obtained from a potential flow analysis
[15,22–27], by choosing appropriate velocity potential func-
tions for the light and heavy fluids which are then substituted in
the Bernoulli equation and solved with appropriate boundary
conditions. Instead, these results may also be independently
obtained from a simple and intuitive accounting of the drag,
buoyancy, and inertial forces in the flow [26,28–32], using the
so-called drag-buoyancy models (DBMs).

Thus far, a significant portion of the effort to explain RT
flows has been devoted to the limiting case when g = constant.
Unfortunately, the situation encountered in experiments and
applications is often more complicated, and may be appropri-
ately described with a time-dependent acceleration history.
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In ICF, for instance, it is well known that the implosion
is characterized by periods of time-dependent acceleration
histories [33]. Several studies have sought to exploit the
transient behavior arising from complex accelerations to
improve capsule performance by more careful profiling of
the acceleration pulse. Transients in acceleration histories are
also inherent in many experiments [34–37] either by design or
by accident, so that their effect on the underlying flow must
be quantified to fully understand the flow observed in these
experiments. Motivated by these considerations, several recent
studies have explored the properties of RT mix driven by com-
plex g profiles. Experimental efforts to investigate variable-g
RT have been diverse, and include the rocket rig experiments
of [36], the linear electric motor (LEM) experiments [34,35],
and the drop-tank experiments of [37–39]. In their analysis
of nonlinear RT, Shvarts et al. [28] obtained asymptotic
velocities and simple scaling relations for single-mode and
multimode RT for A = 1, and under acceleration histories that
can be modeled as ∼tn. For the multimode problem, Ramshaw
[40] used a wavelength renormalization approach to extend
a kinetic energy equation derived for the linear stage to the
nonlinear phase of the variable-g RT flow. Finally, Llor [41]
compared single-fluid and two-fluid models using so-called
self-similar variable acceleration RT (SSVART) as a test case.

We briefly summarize recent models of single-mode RT
with g = g(t), before a detailed description of our simulation
results in Sec. IV. For a generalized acceleration drive g(t),
the linear perturbation growth still follows

ḧ − Ag(t)kh = 0. (4)

Mikaelian [42–44] provides analytical solutions to Eq. (4)
for specific functional forms of g(t). For the late-time
nonlinear growth, Ref. [43] proposes four models, which are
labeled levels 1–4 in the order of decreasing complexity (and
increasing ease of obtaining analytical solutions). Thus, a level
1 model includes all physics embedded in the Euler equations,
but solutions can only be obtained numerically. A level 2
model follows the approach of Layzer [22] and others [27]
in defining carefully chosen velocity potential functions for
the light and heavy fluids, thus simplifying the governing
equations to ODEs. The complete set of equations is provided
in [27,43] and not reproduced here, but we note that despite this
simplification, an analytical solution cannot be obtained except
for special cases. In this paper, we derive our own version of a
“level 2 model,” which is valid only for two-dimensions (2D)
and is compared with our numerical simulations in that limit.
A level 3 model, following the work of Mikaelian [42–44],
transforms a set of level 2 ODEs of the linear form of (4)
into a rescaled variable θL that can be applied to the nonlinear
development. A particular value for the initial perturbation
h0 = 1/[k(1 + c)] must be assumed, and this yields

θ̈L − ALkLg(t)θL = 0, (5)

with

kL ≡ c(1 + c)(1 + A)k

2(1 + c + cA − A)
,

AL ≡ 2A

1 + c + cA − A
,

θL ≡ e(h−h0)kL,

and c = 1 (2) indicating three-dimensional (3D) (2D) flows.
Since in these level 3 models, both linear (4) and nonlinear
(5) development have the same form, it is possible to establish
closed-form analytic solutions for various acceleration profiles
[42,43]. While these solutions are strictly valid only for the
special value of h0 = 1/[k(1 + c)], Mikaelian observes that
in practice, this model agrees with the more sophisticated
level 3 model over a wide range of initial amplitudes. From
our own numerical simulations described in Sec. IV, we
agree with this assertion. Finally, [43] also includes a level
4 model, which is obtained by introducing s ≡ ∫ t

0

√
g(t)dt so

that Eq. (5) is transformed to a simpler ordinary differential
equation (ODE) [for certain g(t)’s], with solutions of the
form θL = cosh(s

√
kLAL), in analogy with Eq. (1). We do

not include this model in our comparison.
We also compare our 3D simulation results with a drag-

buoyancy model (DBM), modified by [45] to account for g =
g(t). We derive analytic solutions to the DBM in Sec. II B,
which are compared with the results from our 2D and 3D
direct numerical simulation (DNS) calculations. In [45], Srebo
et al. extend the drag-buoyancy model [28–32] to include time-
dependent accelerations, and finite density ratios, resulting in
the following set of ODEs for bubble and spike velocities:

(ρa + Caρb)
dVb

dt
= (ρb − ρa)g(t) − Cdρb

V 2
b

λ
, (6)

(ρb + Caρa)
dVs

dt
= (ρb − ρa)g(t) − Cdρa

V 2
s

λ
. (7)

In Eqs. (6) and (7), Ca = 2 (1) for 2D (3D), while Cd = 6π

(2π ) for 2D (3D), respectively. Thus, the term on the left
represents inertia (with the appropriate added mass), while
the terms on the right-hand side of each equation represent
buoyancy and drag forces, respectively. Furthermore, note that
the above equations are valid asymptotically, once artifacts
associated with initial conditions decay away. For experiments
and simulations initialized with finite sized perturbations, the
initial exponential growth of imposed modes must also be
included, so that the DB equations are modified as suggested
by [45]

{[CaE(t) + 1]ρa + [Ca + E(t)]ρb}dVb

dt

= [1 − E(t)] (ρb − ρa)g(t) − Cdρb

V 2
b

λ
, (8)

{[CaE(t) + 1]ρb + [Ca + E(t)]ρa}dVs

dt

= [1 − E(t)](ρb − ρa)g(t) − Cdρa

V 2
s

λ
. (9)

Thus, the linear RT growth is modeled here through E(t) =
e−Cekh(t), with Ce = 3 (2) for 2D (3D) flows. For kh(t) � 1,
we recover Eq. (4) for time-dependent acceleration histories.

Our objectives in this article are (1) to develop a potential
flow model for variable g RT in 2D (Sec. II A), and to obtain
analytical solutions to the DBM for single-mode RT with g(t)
in 2D and 3D (Sec. II B); (2) to perform detailed 2D and 3D
DNS to rigorously validate our potential flow model as well
as the closed-form solutions developed for the DBM over a
wide range of time-dependent profiles; and (3) to use DNS to
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systematically identify the limits of validity of the potential
flow model and the DBM for variable g RT. The rest of
the article is organized as follows: In Sec. II A, we derive
a Layzer-type 2D potential flow model valid for variable g

RT. This is followed by a development of analytical solutions
to the DBM in Sec. II B, valid for acceleration profiles that
satisfy ġ

g2 → 0. The details of the numerical method, problem
description, and code validation and numerical convergence
study are provided in Sec. III. In Sec. IV A, we compare
2D numerical simulations at A = 0.15 and A = 0.9 with the
potential flow model described in Sec. II A and the solution
to the DBM given in Sec. II B. The results are extended
to 3D flows in Secs. IV B–IV D. In particular, Sec. IV B
describes results from simulations at A = 0.15, while the
corresponding spike behavior from high Atwood simulations
are highlighted in Sec. IV C. A detailed Atwood variation study
was conducted, and is summarized in Sec. IV D.

II. NONLINEAR MODELS

A. Potential flow model

In this section, we derive a simple potential flow model for
variable g RT flows in 2D, that is valid for low density ratios of
the two fluids. The model may be considered a special case of
the generalized Layzer model of [27] valid for 2D flows, and is
included here to guide insights in to our simulation results. The
derivation of the model follows a Layzer-type framework, later
adopted by Goncharov [25] (for arbitrary density ratios) and
Mikaelian [42,43] (for variable accelerations in 3D). Following
[22–27,46], we define in 2D a perturbation function given by

z = η(x,t) = η0(t) + η2(t)x2, (10)

where the acceleration g(t) is directed in the negative z

direction, and η0(t) and η2(t) are the time-dependent amplitude
and curvature near the bubble tip. Note that for bubbles,
η0 > 0 and η2 < 0, while reversing the signs of these quantities
produces incorrect results for spikes, as noted by [42,43], and
will not be attempted here. Thus, the potential flow model
derived below is only valid for bubbles and spikes in the limit of
low Atwood numbers, and for bubbles only in the single-fluid
limit (A → 1). The following velocity potentials are defined
for dense and light fluids according to

ϕh(x,z,t) = a1(t) cos (kx)e−k[z−η0(t)], z > 0, (11)

ϕl(x,z,t) = b0(t)z + b1(t)cos(kx)ek[z−η0(t)], z < 0, (12)

where a1(t), b0(t) and b1(t) are the perturbed velocity
amplitudes for the heavy and light fluids, respectively. To de-
termine the unknown functions {η0(t),η2(t),a1(t),b0(t),b1(t)},
we resort to stipulating the following kinematic and dynamic
boundary conditions.

We first turn to the kinematic conditions corresponding to
the interfacial surface perturbation represented by Eq. (10):

ηx(vh)x − ηx(vl)x = (vh)z − (vl)z, (13)

ηt + ηx(vh)x = (vh)x. (14)

Substituting Eqs. (13) and (14) in (10) and for (vh(l))x =
− ∂ϕh(l)

∂x
from Eqs. (11) and (12), and expanding in pow-

ers of the transverse coordinate x, neglecting terms O(xi)
(i � 3), we obtain the following relations equivalent to the
above kinematic boundary conditions:

dξ1

dt
= ξ3, (15)

dξ2

dt
= −1

2
(6ξ2 + 1)ξ3, (16)

b0 = − 6ξ2

3ξ2 − 1
2

ka1, (17)

b1 = 3ξ2 + 1
2

3ξ2 − 1
2

a1, (18)

where ξ1 = kη0, ξ2 = η2/k, ξ3 = k2a1√
kg0

, and we define τ =
t
√

kg0. Thus, ξ1 and ξ2 are the nondimensional amplitude and
curvature, while ξ3/k is the nondimensional velocity. Finally,
the Bernoulli equation governing both fluids is given by

−ρh(l)
∂ϕh(l)

∂t
+ 1

2
ρh(l)(∇ϕh(l))

2 + ρh(l)g(t)z

= −ph(l) + fh(l)(t). (19)

Substituting the dynamical boundary condition ph = pl at
the interface z(x,t) = η(x,t) in Eq. (19), we arrive at

ρh

[
−∂ϕh

∂t
+ 1

2
(∇ϕh)2

]
− ρl

[
−∂ϕl

∂t
+ 1

2
(∇ϕl)

2

]
+ g(t)(ρh − ρl)z = fh − fl. (20)

Substituting for ϕh, ϕl from Eqs. (11) and (12) in Eq. (20),
and equating coefficients of x2, we obtain after some lengthy
but straightforward algebraic manipulation, the following
evolution equation for ξ3:

dξ3

dτ
= −N (ξ2,r)

D(ξ2,r)

ξ 2
3

(6ξ2 − 1)
+ 2(r − 1)

ξ2(6ξ2 − 1)

D(ξ2,r)
G(τ ),

(21)

where r = ρh/ρl and G(τ ) = g(t)/g0,

D(ξ2,r) = 12(1 − r)ξ 2
2 + 4(1 − r)ξ2 + (r + 1),

N (ξ2,r) = 36(1 − r)ξ 2
2 + 12(4 + r)ξ2 + (7 − r).

The coupled system of Eqs. (15)–(18) and (21) can be nu-
merically integrated with the initial conditions ξ1(0) = kη0(0),
ξ2(0) = −( 1

2 )ξ1(0), and ξ3(0) = 0 (starting from rest), to obtain
solutions for time-evolving bubble amplitude, curvature, and
velocity for arbitrary g(t). In Sec. IV A, we compare results
from our 2D DNS calculations, with the solution to Eq. (21)
for several acceleration functions.

B. Analytical solution to DB model

Here, we derive an analytical solution for the drag-
buoyancy equation subject to time-dependent acceleration
drives. We rewrite Eq. (6) as

dVb

dt
+ a V 2

b = bg(t) (22)
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with

a = Cdρb

λ(ρa + Caρb)
,

and

b = (ρb − ρa)

(ρa + Caρb)
.

Note that Eq. (22) is a nonlinear Riccati equation [47], and
can be solved using the approach outlined below. First, the
reduction method is used to transform Eq. (22) to a second
order linear equation [48], by defining variable u so that

Vb = u′

au
. (23)

Combining Eqs. (22) and (23) results in

ü − abg(t) = 0, (24)

with initial conditions: u′(0) = 0 and u(0) �= 0. Equation (24)
is similar to Eq. (16) in [42], and hence we follow the same
approach outlined in that article. Accordingly, Eq. (24) is
transformed to the variable s:

d2u

ds2
− abu(s) + 1

2g2

dg

dt

du

dt
= 0. (25)

In the above equation, following [42] the third term may be
neglected for acceleration profiles of the form g ∼ tn, n � 0
so that ġ

g2 ∼ 0 (and for many other profiles considered here).
The solution to the simplified equation is then

u = c1 cosh[
√

ab s(t)], (26)

where c1 is a constant. Now, substituting (26) into Eq. (24), we
can obtain for the time-dependent, asymptotic bubble velocity
Vb:

Vb =
√

b

a

ds

dt
tanh[

√
ab s(t)], (27)

where ds
dt

= √
g(t). Note that the asymptotic expression for

the bubble Froude number (for both 2D and 3D) may be
obtained from (27) as

Vb√
bg(t)

a

= Vb√
2Ag(t)λ
Cd (1+A)

= Frb = tanh[
√

ab s(t)], (28)

with Cd = 6π (2π ) for 2D (3D) flows. Equations (27) and
(28) imply bubble amplitudes that asymptotically evolve as
ln{cosh[

√
ab s(t)]}, which is the same form of the amplitude

solution obtained by Mikaelian in [42,43] from his Wentzel-
Kramers-Brillouin approximation of the potential flow model.
This agreement is not surprising, since the Layzer-type
potential flow models simplify to the DBM equations at late
times (as originally noted in [26]). For g(t) = g0t

n, the final
equation for Vb, will be of the form

Vb =
√

g0b

a
tn/2 tanh

(√
g0ab

tn/2+1

n/2 + 1

)
. (29)

The above procedure is equally valid for spikes, which
follow an equation similar to (22), but with

a = Cdρb

λ(ρb + Caρa)
,

and

b = (ρb − ρa)

(ρb + Caρa)
.

Thus, the spike solution is also given by Eqs. (27) and (28),
but with appropriate modifications for a and b.

Since our numerical simulations were initialized with a
finite amplitude, and evolve through a stage of linear growth
before culminating in nonlinear saturation, we include a
solution to the DBM equations that captures these initial
transients. In particular, the bubble and spike amplitudes are
particularly sensitive to these transients associated with the
linear growth, and the comparison with simulation data will
be affected by it. Thus, we integrate the truncated version of
Eq. (25) not from t = 0, but from t = tnl , the transition time
from linear to nonlinear RT behavior, when the bubble velocity
has reached Vb,nl , the velocity at the end of linear growth that
satisfies the Fermi condition. Upon algebraic simplification,
the finite-amplitude counterpart of (27) is obtained as

Vb =
√

bg(t)

a

ce2
√

abs(t) − 1

ce2
√

abs(t) + 1
, (30)

where c is obtained from the initial condition Vb(tnl) = Vb,nl

as

c =
1 + Vb,nl

f

y
(
1 − Vb,nl

f

) ,

with y = e2
√

abs(tnl ), f =
√

bg(tnl )
a

, and s(tnl) = ∫ tnl

0

√
g(t)dt .

To compare with our simulation data, we use linear theory
solutions for different g profiles from [42,43], as long as
kh(t) < 1(0 � t < tnl). For larger kh(t), we switch to Eq. (30)
which is integrated in time to obtain the bubble amplitudes
that are used for comparison with the simulation data.

III. NUMERICAL METHODS AND PROBLEM SETUP

The DNS calculations described in this article were per-
formed using MOBILE [49,50], a parallelized, 3D variable den-
sity, finite volume incompressible flow solver. The advection
algorithm is of third order accuracy and—where necessary—
preserves monotonicity at every time step using a nonlinear,
upwind-biased numerical scheme. When viscous terms are
adequately resolved, there are no regions of the flow where
velocity gradients are large relative to the mesh resolution,
and thus the nonlinearity of the advection scheme is negligible
everywhere and the simulation is truly DNS. The simulations
in this article are initialized with a sharp density interface, and
in this spatially local and temporally brief instance nonlinearity
ensures that the algorithm remains stable. A fractional step
approach is employed to incorporate source terms, viscous
terms, and the pressure correction or velocity projection. Note
that the use of multigrid acceleration allows for an efficient
solution of the pressure Poisson equation that arises from
the projection. Parallelization is implemented through the
MPI protocol, while postprocessing of flow fields, calculating
derived quantities, and reducing them to concise statistics is
performed using a macrolanguage interpreter with a syntax that
is transparent to the parallelization. Further details of the ad-
vection algorithm available in MOBILE can be found in [49–51].

013118-4



EVOLUTION OF THE SINGLE-MODE RAYLEIGH-TAYLOR . . . PHYSICAL REVIEW E 93, 013118 (2016)

FIG. 1. Results from 3D zoning study: (a) Time evolution of planar-averaged amplitudes at different mesh resolutions from MOBILE

simulation with g(t) = g0(1 + αt2). (b) Corresponding linear growth rates as a function of scaled mesh width k.

The single-mode simulations were initialized with sinu-
soidal perturbations of the interface separating light and heavy
fluids, of the form

h(x,y) = h0[cos (kx) + cos(ky)], (31)

where h0 is the initial perturbation amplitude and k ≡ 2π/λ

is the perturbation wave number. For all the simulations
described below, we set h0 as 1% of the perturbation
wavelength λ so that the initial stages of flow development
are completely described using the linear theory framework.
The dimensions of the computational domain were chosen to
be λ × λ × φλ in the (x,y,z) directions, where λ = 1 cm, and
the aspect ratio φ = 4 (8) for low (high) Atwood calculations.
Furthermore, for high Atwood number simulations, the initial
interface was positioned asymmetrically at z = 2λ to allow
for the accelerated growth of spikes expected at such large
density differences. For the simulations with different time-
dependent g profiles, we maintain a constant value of the scaled
kinematic viscosity ϑSCL = ϑ(t)√

Ag(t)λ3
= 10−3, thus ensuring

the simulations are evolving under the same Reynolds number
history regardless of the driving acceleration functions. Since
several of our g profiles are ∼tn with n > 0, a constant
viscosity (independent of g) would modify growth in the
early stages for different g profiles, thus complicating the
comparison of the nonlinear stages which is our main interest
in this work. Furthermore, by requiring ϑ ∼ √

Ag(t), we
ensure that the Reynolds number associated with the secondary
Kelvin-Helmholtz instabilities that appear in the nonlinear
stage of RT development is the same for all accelerations
considered here. Finally, periodic boundary conditions were
enforced in the homogeneous directions (x, y), while outflow
conditions were imposed on the boundaries along z (direction
of gravity).

A detailed grid convergence study was performed with
an acceleration profile specified according to g(t) = g0(1 +
γ t2), suggested by [42]. Mikaelian [42] derived solutions to
the above “harmonic oscillator” profile, obtained in terms
of Hermite polynomials. However, for the special case of

√
g0kA/γ = 1, the solution for the linear stage reduces to

[42,52]

h(t) = h0e
γ t2

2 . (32)

In Fig. 1(a), we compare the time evolution of the
perturbation amplitude from simulations with mesh zoning
varied from 8 zones/λ to 256 zones/λ with Eq. (32). We
find that for kh(t) < 1 (linear stage RT), simulations with
numerical resolution greater than 32 zones/λ are in good
agreement with the analytical result. At larger amplitudes,
the perturbation amplitudes from the numerical simulations
undergo nonlinear saturation, and as a result deviate from the
exponential growth predicted by Eq. (32). The corresponding
scaled growth rates (�/�theory) from the linear stage are plotted
in Fig. 1(b) as a function of the normalized zoning parameter
k, where  is the mesh spacing in centimeters. As k → 0,
the growth rates from the simulations saturate to ∼90% of the
inviscid theoretical value, with the 10% difference in growth
rate likely due to the inclusion of viscosity in the simulations.
Table I contains a summary of all acceleration profiles included
in this study, and their properties.

At the resolution employed in our simulations, we do not
expect the numerical viscosity to significantly affect our results
in the linear or nonlinear regimes. From dimensional analysis
([51] and references therein), the numerical viscosity may be
modeled as ϑnumerical = �

√
Ag(t)3, where  = λ/N is the

zone width employed in the simulations, and ϖ is a constant
that characterizes the dissipative lossiness of a particular
numerical scheme or its implementation. From detailed zoning
studies reported in [51], we found ϖ ∼ 0.3 for the third
order advection implementation in MOBILE. Then, the ratio
of physical and numerical viscosities in our simulations could

be estimated as ϑphysical

ϑnumerical
∼ ϑSCL

�

√
λ3

3 = ϑSCL
�

N3/2 independent of

the particular g(t) profile used. For ϑSCL ∼ 10−3 and N = 128
zones employed in this work, we estimate ϑphysical

ϑnumerical
∼ 4.8 so that

most of the dissipation observed in our simulations is physical
in origin. For the typical simulation parameters employed
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TABLE I. Summary of acceleration profiles investigated using MOBILE.

g s2 ≡ {√g(t)dt}2 U ≡ ∫
g(t) dt Z ≡ ∫

(
∫

g dt)dt
ġ

g2

g0t
n 4g0

(n+2)2 tn+2 g0
n+1 tn+1 g0

(n+1)(n+2) t
n+2 n

g0
t−(n+1)

g0(1+ ∝ t2) g0

{
1
2 t

√
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here, the RT linear growth dispersion relation of [53] may be
simplified to � ∼ √

Agk − ϑk2, by considering g = constant
for simplicity and taking ϑ2k4 � Agk for our conditions.
Thus, viscous dissipation (physical and numerical) reduces
the linear RT growth by an amount ϑk2. From Fig. 1(b), it
can be inferred that the 10% growth reduction observed is
primarily due to ϑphysical which accounts for more than 80%
of this reduction in linear growth rate. We expect these trends
to continue into the nonlinear and late-time chaotic stages of
RT development. Specifically, the seeding and growth rate of
secondary Kelvin-Helmholtz structures is dependent on the
viscosity (and Reynolds number), but we expect the physical
viscosity to dominate this dynamics as demonstrated above for
the linear stage.

IV. NUMERICAL RESULTS

We first discuss 2D and 3D simulations in this section that
were driven by time-dependent acceleration histories of the
form g(t) = g0t

n, with n = 0, 1, 2, 3 and g0 varied for each
case so that all simulations evolve to s2 = 200 cm by t = 10 s.
For the baseline case (n = 0), this meant g0 = 2 cm/s2. The

acceleration history g(t), width s2, and displacement [34,36]
Z ≡ ∫ t

0

∫ t ′′

0 g(t ′)dt ′dt ′′ are plotted for the different acceleration
profiles in Figs. 2(a)–2(c), respectively. Note that the variable
Z may be interpreted as the displacement of the test rig
in a LEM [34,35] type of experiment when driven by an
acceleration function g(t). For the g(t) profiles shown in Fig. 2,
ġ

g2 = n
g0

t−(n+1) from Table I and vanishes at late times.

A. 2D simulations

To study the effect of dimensionality on the nonlinear
RT development under time-varying acceleration histories,
we performed a set of 2D DNS calculations initialized with
interfacial perturbation specified as h(x) = h0 cos(kx), where
h0 = 0.01λ. We interpret the z locations of the 1% and 99%
planar-averaged volume fraction levels as the bubble and spike
tip locations, from which the corresponding amplitudes are
inferred. In Figs. 3(a)–3(c), we plot the time evolution of
the bubble and spike amplitudes from 2D simulations with
A = 0.15, and g = g0t

n, with n = 0, 1, and 3, respectively.
The data from simulations are compared with the solution
from the potential flow model we describe in Sec. II A and the

FIG. 2. Time histories of (a) the acceleration g, (b) the scaling width s2, and (c) the interface displacement Z for the acceleration profiles
used in this study: g(t) = g0t

n, n = 0,1,2,3.
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FIG. 3. Time evolution of line-averaged bubble and spike amplitudes from 2D simulations with A = 0.15 and g(t) = g0t
n: (a) n = 0, (b)

n = 1, and (c) n = 3. Results from MOBILE simulations are compared with 2D potential flow model described in Sec. II A and the drag-buoyancy
solution given in Sec. II B.

DBM, and show excellent agreement at early and intermediate
times (hb/s < λ). Note that the solution to the potential
flow model [Eqs. (15)–(21)] is only valid asymptotically.
As a result, the dashed line in Figs. 3(a)–3(c) is obtained
at early times as the solution to the linear theory [Eq. (4)],
while a transition to the nonlinear solution is carried out
at t = tnl , where tnl can be obtained from the so-called
Fermi transition [22]: �(t)h(t)linear|t=tnl

= Vb|t=tnl
. At late

times, the appearance of secondary nonlinear instabilities
in the form of Kelvin-Helmholtz (KH) vortices accelerates
bubbles and spikes to higher velocities [54–57], in contrast
with the “Layzer-type” model which assumes bubble and
spike structures where shear instability has not yet developed
nonlinearly. The bubble and spike acceleration is particularly
evident in Figs. 4(a)–4(c), where we plot the time development
of the Froude number defined in Eq. (3), and compare MOBILE

results with the potential flow model as well as the analytical
solution to the DBM (Sec. II B). The Froude number shows
three distinct stages of evolution: (i) an early linear stage,

where our simulation results are explained by numerically
integrating Eq. (4) but for the g(t) profiles considered here,
(ii) a nonlinear stage during which the 2D DNS results are in
agreement with the DBM and the potential flow model, and
(iii) a late-time chaotic stage during which the appearance of
Kelvin-Helmholtz vortices complicates the bubble and spike
evolution so that the corresponding fronts accelerate away
from the constant Froude numbers predicted by the models. In
Figs. 3 and 4 , as n is increased, the linear stage of growth is
prolonged in time, but we expect the results to collapse when
scaled with either length scales considered here (s2 or Z). This
is discussed further in Sec. IV B.

We repeat these calculations at higher density ratios
corresponding to A = 0.9, and plot the corresponding bubble
and spike amplitudes in Figs. 5(a)–5(c). Once again, as n is
increased, the amplitude plots reveal a linear growth phase
that is extended in time. At such large density differences,
the shear-driven Kelvin-Helmholtz instability is inertially
suppressed [21,54,55], so that the bubble amplitudes remain

FIG. 4. Time evolution of bubble and spike Froude numbers from 2D simulations with A = 0.15 and g(t) = g0t
n: (a) n = 0, (b) n = 1,

and (c) n = 3. Results from MOBILE simulations are compared with 2D potential flow model described in Sec. II A and the drag-buoyancy
solution given in Sec. II B.
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FIG. 5. Time evolution of line-averaged bubble and spike amplitudes from 2D simulations with A = 0.9 and g(t) = g0t
n: (a) n = 0, (b)

n = 1, and (c) n = 3. Results from MOBILE simulations are compared with 2D potential flow model described in Sec. II A and the drag-buoyancy
solution given in Sec. II B.

in good agreement with the potential flow model even at
late times for all the acceleration histories considered here.
However, the spike amplitudes in Figs. 5(a)–5(c) exhibit
accelerated behavior (free fall) in contrast with the model
prediction of a constant terminal velocity. This discrepancy can
be clearly seen in the Froude number plots in Figs. 6(a)–6(c),
where the spike Froude numbers do not show any sign of
saturation, in contrast with the 2D model predictions of an
Atwood-dependent Froude number for the spikes. We explore
this further for 3D flows in the next section.

B. 3D simulations: A = 0.15

1. g(t) = g0 tn

In this section, we describe results from 3D simulations
initialized with perturbations specified according to Eq. (31),
and at an aspect ratio of 4 (for A = 0.15). Diagonal slices of
volume fraction from the simulation with n = 0 are shown in
Figs. 7(a)–7(c) at early (t

√
Agk = 2), intermediate (t

√
Agk =

6), and late times (t
√

Agk = 8.9), respectively. At early times

[Fig. 7(a)], the interface retains its sinusoidal form, while
remaining symmetric with respect to the light and heavy fluids.
At t

√
Agk = 6, the differentiation of the interface into bubble

and spike structures is evident, while the incipient formation
of secondary Kelvin-Helmholtz structures is visible at this
stage. By t

√
Agk = 8.9, the KH rollups have saturated to form

secondary vortex structures on either side of the primary RT
bubble and spike columns. The vorticity associated with the
KH instability results in an induced flow that drives the bubble
and spike structures to velocities in excess of the potential flow
predictions [54–57].

The locations of the bubble and spike fronts (based on
displacement from the initial interface height of 1% and 99%
of the planar-averaged volume fraction) are plotted against t

in Figs. 8(a)–8(c) (n = 0, 1, and 3, respectively), while the
corresponding Froude numbers are shown in Figs. 9(a)–9(c)
and compared with the level 2 and 3 models of [43] as well as
the modified DBM [45] solution (Sec. II B). The simulations
were carried out with νSCL ∼ 10−3, and hence at early times
appear to slightly lag behind the models which were initialized

FIG. 6. Time evolution of bubble and spike Froude numbers from 2D simulations with A = 0.9 and g(t) = g0t
n: (a) n = 0, (b) n = 1, and

(c) n = 3. Results from MOBILE simulations are compared with 2D potential flow model described in Sec. II A and the drag-buoyancy solution
given in Sec. II B.
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FIG. 7. Diagonal slices of volume fraction contours showing
bubble and spike structures at (a) t

√
Agk = 2, (b) t

√
Agk = 6, and

(c) t
√

Agk = 8.9. The simulations were performed with A = 0.15
and a constant acceleration (g0 = 2 cm/s2).

with the inviscid linear theory. Following nonlinear saturation,
the amplitudes associated with bubble and spike structures
are in good agreement with the level 2 and 3 models [43]
as well as the modified DBM [45], while the Froude number
from the simulations approaches 1√

π
when scaled by g(t) in

Eq. (3). Once again, the late-time acceleration due to secondary
instabilities is observed for both bubble and spike Froude
numbers in Figs. 9(a)–9(c), but the magnitude of acceleration
(and eventual saturation velocity) could be determined by the
Reynolds number of the flow [57]. Previous studies [54,57]
have observed that the precise magnitude of this acceleration
could depend on several factors including the viscosity of the
flow and the density difference between the fluids.

In Fig. 10, we evaluate the appropriate scaling for RT
driven by time-dependent g by plotting the bubble and spike
amplitudes against time t [Fig. 10(a)], the width s2 [Fig. 10(b)],
and the displacement Z [Fig. 10(c)]. From Eqs. (6) and (7),
it is clear that the use of s2 as a scaling length emphasizes a

balance between buoyancy and drag forces in the flow, while
the use of “Z” implies a balance between inertia and buoyancy
forces. If either s2(t) or Z(t) were found to adequately
collapse all of our results, it would imply the existence of a
universal scaling parameter, and thus a universal solution that
describes all acceleration profiles. Models suggest s2 should
be that variable, an assertion we test with our 3D simulations.
Furthermore, since s2 and Z emphasize the balance between
different aspects of the drag-buoyancy equation, collapsing
the data based on either variable would imply the dominance
of those terms in the DBM and the flow dynamics. Clearly,
neither picture is sufficiently complete when g(t) varies with
time, but earlier studies [34,36,42,43] have shown the scaling
width s2 collapses bubble (and spike) amplitudes at low
Atwood numbers, while spike amplitudes are explained by
the displacement Z at large density differences. Furthermore,
s2 falls out as a natural length scale in the analytical solutions
derived in [43], as well as the solution to the DBM obtained
in Sec. II B of this article. In spite of this, for the low Atwood
number set plotted in Fig. 10, we find both s2 and Z to collapse
the amplitudes from all of our simulations with varying values
of n. Thus, we defer a judgment on the appropriate scaling for
time-dependent g’s to the next section, where we examine RT
behavior at large density differences.

2. LEM-type profiles

We examine two idealized g profiles inspired by the
linear electric motor experiments of [34,35], and theoretically
investigated by Mikaelian [42,43]. The acceleration histories
studied here [Fig. 11(a)] correspond to an idealization of
profiles G_1 and G_2 reported in [34], and are given by

g(t) = g0

t0
t, t � t0,

(33)

g(t) = g0

{
1 − t − t0

tL − t0

}
, t > t0.

In Fig. 11, LEM1 (2) profiles correspond to t0 = 2(6), while
g0 = 6 cm/s2 and the time of the end of the “experiment”
tL = 8 s for both cases. The corresponding scale s2 is plotted

FIG. 8. Time evolution of planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.15 and g(t) = g0t
n: (a) n = 0,

(b) n = 1, and (c) n = 3. Results from simulations are compared with the solution to the Drag Buoyancy model in Sec. II B, and the level 2
and 3 models of [43].
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FIG. 9. Time evolution of bubble and spike Froude numbers from 3D simulations with A = 0.15 and g(t) = g0t
n: (a) n = 0, (b) n = 1,

and (c) n = 3. Results from simulations are compared with the solution to the drag-buoyancy model in Sec. II B, and the level 2 and 3 models
of [43].

in Fig. 11(b) for both profiles, and is given by the expression
s2(tL) = 4

9g0t
2
L, independent of t0, the time at which the

acceleration pivots from positive to negative slope. In contrast,
the displacement Z(t) retains a dependence of t0 (Table I), and
is shown for both profiles in Fig. 11(c). For the first segment
(ġ > 0), Mikaelian [43] provides linear theory solutions in
terms of Airy functions, which we use to initialize Vb,nl in our
drag-buoyancy model [Eq. (30)]. Equation (33) may also be
easily modified to represent an impulsively accelerated test cell
giving rise to a Richtmyer-Meshkov (RM) instability-driven
flow, but we have not included this case in our analysis.

Figures 12(a) and 12(b) are plots of time evolution of
bubble and spike amplitudes for the LEM1 and LEM2 profiles,
respectively, obtained from our 3D DNS calculations. We
also include predictions of bubble amplitude from the level
3 model of [43] and bubble and spike amplitudes from our
analytical solution to the DBM equations. Once again, the
planar-averaged amplitudes obtained from simulation results
are in good agreement with the simplified potential flow
solution [43] as well as the DBM solution obtained in

Sec. II. At late times, slight deviation between simulations
and models are observed due to the appearance of secondary
KH instabilities that accelerate the bubble and spike tips. The
solutions to the DBM equation asymptotes to a Froude number
of ∼ 1√

π
for the bubble in agreement with simulation data (0.58

± 0.04) before secondary instabilities assert themselves on
the bubble dynamics. Similarly, the spike Froude number is
obtained from Eq. (3) as Frs → 0.65 in agreement with our
simulation predictions (0.7 ± 0.03). As commented earlier, we
find that both scaling widths (s2 and Z) collapse bubble and
spike data from the different LEM simulations, with the scale
s2 achieving slightly better collapse of the data.

3. g(t) = g0(t/ t0)a, a = −1.2

Acceleration profiles that evolve as ta with a < 0 are
interesting since they violate the condition ġ

g2 → 0, required
to obtain closed-form solutions to the DBM or the level 4
model of [43]. Thus, such profiles could potentially constitute
a discriminating test case for the analytical solutions derived

FIG. 10. Planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.15 plotted against (a) time, (b) scaling width s2,
and (c) interface displacement Z.
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FIG. 11. Time histories of (a) the acceleration g, (b) the scaling width s2, and (c) the interface displacement Z for LEM-type acceleration
profiles [34,35].

in this work. We report results from 3D simulations driven by

g(t) = g0

(
t

t0

)a

, t > t0

(34)
g(t) = 0, t � t0,

with a = −1.2 and g0 = 2 cm/s2. Furthermore, [58,59] at-
tribute blast-wave acceleration observed in their experiments
on the OMEGA laser to a g profile modeled by Eq. (34),
with a ∼ −1.2. Recent numerical simulations of a chemically
reacting RM mixing layer [60] revealed pressure waves from
combustion that accelerated the material interface approxi-
mately according to the profiles specified in Eq. (34). Figure 13
is a plot of the time dependence of the variables (g, s2, Z) for
the acceleration profiles considered in this section. For this
acceleration profile, the scaling width s2 and displacement Z

for t > t0 are given by

s2 =
{

4g0

ta0 (a + 2)2

(
t

a+2
2 − t0

a+2
2

)2
}

, (35)

Z = g0

ta0 (a + 1)

{
ta+2 − ta+2

0

a + 2
− ta+1

0 (t − t0)

}
, (36)

and are thus related through a complex time-dependent
expression. In Fig. 14, we plot bubble and spike amplitudes for
the above acceleration history, which show good agreement
with predictions from the DBM solution [Eq. (30)] and the
simplified level 3 model from [43], even though ġ

g2 �= 0 for
these profiles. The RT flow is initialized by the impulsive
acceleration at t = t0, followed by a decaying function.

C. 3D simulations: A = 0.9

The simulations described above were repeated with a fluid
density ratio of 19 (A = 0.9), with the perturbation interface
positioned asymmetrically at z = 2λ to accommodate spike
acceleration. Similar to Fig. 7, we plot the diagonal slices of
the volume fraction at early, intermediate, and late times for

FIG. 12. Time evolution of planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.15 and acceleration profiles
corresponding to (a) LEM1 and (b) LEM2. Results from simulations are compared with the solution to the drag-buoyancy model in Sec. II B,
and the level 2 model of [43].
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FIG. 13. Time histories of the acceleration g, the scaling width
s2, and the interface displacement Z for acceleration profiles of the
form g(t) = g0( t

t0
)a with a = −1.2, and g(t) = 0 for t < t0.

the large Atwood number simulations in Figs. 15(a)–15(d).
Following nonlinear saturation (τ = 6), significant asymmetry
is visible between bubble and spike structures in Figs. 15(c)
and 15(d), with the spikes outpacing bubble penetration into
the heavy fluid. In contrast with the low Atwood number
simulations, secondary instabilities are inertially suppressed
at large density differences [21] rendering bubble and spike
structures featureless.

The time evolutions of planar-averaged bubble and spike
amplitudes are shown in Figs. 16(a)–16(c) for the high A

simulations with n = 0, 1, and 3, respectively. The corre-
sponding plots for the bubble and spike Froude numbers are
shown in Figs. 17(a)–17(c). In Fig. 16, the bubble amplitudes
are compared with the level 2 and 3 models of [43] and the
modified DBM [45], while the spike amplitudes are compared

FIG. 14. Time evolution of planar-averaged bubble and spike
amplitudes from 3D simulations with A = 0.15 and acceleration
profiles of the form g(t) = g0( t

t0
)a with a = −1.2, and g(t) = 0 for

t < t0. Results from simulations are compared with the solution to
the drag-buoyancy model in Sec. II B, and the level 2 model of [43].

FIG. 15. Diagonal slices of volume fraction contours showing
bubble and spike structures at (a) t

√
Agk = 2, (b) t

√
Agk = 6.0,

(c) t
√

Agk = 8.9, and (d) t
√

Agk = 15.1. The simulations were
performed with A = 0.9 and a constant acceleration (g0 = 2 cm/s2).

with the DBM prediction since the potential flow models are
not valid for spikes at large density differences. In contrast
to the low Atwood results, at A = 0.9, the bubble velocity
asymptotes at late times to a terminal velocity that is marked
by a Froude number → 1/

√
π in agreement with Eq. (3), and

are independent of the specific acceleration profile used. Thus,
in this limit, the suppression of secondary instabilities renders
bubble profiles consistent with the assumptions in potential
flow models, which accurately predict the bubble amplitudes
and velocities for n = 0, 1, and 3. Figure 17 reveals strikingly
different behavior for spikes, which appear to evolve with
an acceleration, for instance, corresponding to hs ∼ gt2 (for
n = 0) in agreement with the potential flow model of Zhang
[60]. However, note that the model of [61] suggests free-fall
behavior for spikes only in the limit of ρh/ρl → ∞, while the
simulations in this work reveal such a behavior even at finite
(but large) density ratios. We explore this trend in greater detail
in Sec. IV D, where we discuss an Atwood variation study. The
spike prediction from the modified DBM misses this critical
behavior, instead evolving to a saturation Froude number that
is dependent on A.

We explore the appropriate scaling behavior at large
Atwood numbers by plotting bubble and spike amplitudes
against t [Fig. 18(a)], width s2 [Fig. 18(b)], and the dis-
placement Z [Fig. 18(c)]. Bubble amplitudes are adequately
explained by s2 and Z [Figs. 18(b) and 18(c)], so that hb from
simulations with different n collapse when plotted against both
length scales. However, the collapse for spike amplitudes is
significantly improved when plotted against the displacement
Z over the width s2. A closer examination of Eqs. (7) or (9)
confirms this behavior, since ρl → 0 implies vanishing drag
and a dynamic balance only between inertia and buoyancy, the
balance implied by the displacement Z.

D. Atwood variation study

To elucidate bubble and spike scaling at any density ratio
or driving acceleration profile, we performed a set of 3D
simulations at A = 0.5 (n = 3), 0.6 (n = 2), 0.7 (n = 1), 0.8
(n = 1), 0.9 (n = 0), and 0.9 (n = 1). Based on the earlier
discussion, we restrict ourselves to spike behavior in this
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FIG. 16. Time evolution of planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.9 and g(t) = g0t
n: (a) n = 0,

(b) n = 1, and (c) n = 3. Results from simulations are compared with the solution to the drag-buoyancy model in Sec. II B, and the level 2 and
3 models of [43].

section, since bubbles appear to evolve independently of the
density ratios (modulo secondary instabilities). We plot −hs

vs t for all the cases considered here in Fig. 19(a). From
Eq. (9) at large density differences (ρl → 0) and late times
[E(t) → 0], it is reasonable to expect that spikes should evolve
with hs ∼ 2AZ(t) or

hs = 2αsAZ(t). (37)

For A = 1, Eq. (7) and Zhang [61] predict αs = 0.5, but the
behavior at finite density ratios (and time-varying acceleration
histories) is not clear. By varying A and n in our simulations,
we seek to verify the applicability of Eq. (37) over a wide
range of conditions. From our detailed simulation study, we
find that Eq. (37) accurately describes spike behavior for
A � 0.5, while spikes resemble bubbles at lower density ratios.
Figure 19(b) is a plot of the spike acceleration coefficient αs

against the Atwood number from our parameter scan, where αs

is obtained in each case from fitting Eq. (37) to our simulation
data. In addition to data from MOBILE, we also plot results from

earlier studies at constant g (n = 0), including simulations
using the incompressible code RTI3D [19,55,62], and the
experiments of [18] that used magnetorheological fluids to
achieve A → 1. Regardless of the value of n, Fig. 19(b)
clearly shows spike free-fall behavior for A � 0.5 from both
simulations and experiments. This finding lies in contrast to
the DBM [28–32,45], as well as the potential flow models
[22–27]. In Fig. 19(c), we plot the spike amplitudes from all
the simulations described above, and find that spikes satisfy
hs ∼ 2αsAZ(t) in every case.

V. SUMMARY

Using nonlinear models and 3D direct numerical simula-
tions, we have investigated the response of the single-scale
RT problem to time-dependent accelerations. As noted earlier,
experiments [17–20,34–36] and applications [3–11] are more
suitably characterized by such complex acceleration histories
rather than a constant g, which has been the focus of most RT
studies. Several acceleration profiles were considered as part

FIG. 17. Time evolution of bubble and spike Froude numbers from 3D simulations with A = 0.9 and g(t) = g0t
n: (a) n = 0, (b) n = 1,

and (c) n = 3. Results from simulations are compared with the solution to the drag-buoyancy model in Sec. II B, and the level 2 and 3 models
of [43].
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FIG. 18. Planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.9 plotted against (a) time, (b) scaling width s2, and
(c) interface displacement Z.

of our study, including profiles that fit g(t) = g0t
n, LEM-type

profiles, and g profiles that are suggestive of blast waves. Our
results build extensively on earlier work by many authors,
particularly the series of articles by Mikaelian [42–44], who
developed potential flow models (at different levels of coarse
graining) that were compared with 2D simulations using the
CALE code. In the current study, we have developed a 2D
potential flow model, while also deriving solutions to an
intuitive drag-buoyancy model [28–32] for bubble and spike
tips for any g profile satisfying the condition ġ

g2 → 0. We
validate our models with detailed 2D and 3D simulations of
variable g RT. By systematically varying the Atwood number,
we are able to elucidate spike behavior and clarify limitations
of existing potential flow and drag-buoyancy models. Finally,
the wide range of acceleration histories and density ratios
explored here allows us to investigate appropriate scaling
factors for bubble and spike amplitudes. A brief discussion
of our results follows.

Models. Consistent with earlier findings [42–44], we report
bubble amplitudes from 3D simulations in good agreement

with predictions from potential flow models as well as the
DBM, for all A and g profiles investigated. We have developed
a 2D potential flow model valid for arbitrary g(t), which we
have validated extensively using numerical simulations. We
compare bubble amplitudes from 3D MOBILE simulations with
the level 2 and 3 models of [43], and our solutions to the
DBM presented in Sec. II (accounting for transients due to
the initial linear growth). The DBM solution was obtained by
transforming the original set of nonlinear Eqs. (6) and (7) to
a linear, second order equation. Following [42,43], we neglect
ġ

g2 to obtain a general analytic solution in terms of the variable

s. Note that the omission of the ġ

g2 term was not found to be
very restrictive, with the DBM (and likely the level 4 model)
successfully predicting the bubble amplitudes for all cases
considered here, even when g ∼ ta , a < −1, which would
seemingly violate this condition. From the simulations and
models, we conclude bubbles always evolve with a constant
Froude number approaching 1√

π
.

Atwood number. Spikes exhibit a strong dependence on the
Atwood number, mimicking bubble behavior at low density

FIG. 19. Atwood number variation: (a) Time evolution of spike amplitudes from 3D simulations with different Atwood numbers and g

profiles. (b) Spike growth rate αs plotted against the Atwood number and (c) spike amplitudes plotted against 2αsAZ.
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FIG. 20. Planar-averaged bubble and spike amplitudes from 3D simulations with A = 0.15 and g(t) = g0
τa , a = 2,3, τ = 1 − t

T
, plotted

against (a) the scaling width s2, and (b) the interface displacement Z.

differences, while transitioning to free-fall behavior at large
A. None of the existing models accurately describes this
transition, which occurs at A ∼ 0.5 in our simulations. Thus,
for A � 0.5, our simulations suggest hs = 2αsAZ, where Z is
a displacement scale and αs is an Atwood-dependent growth
coefficient for spikes. We find that in general, potential flow
models [22–27] are incapable of describing the spike free fall
observed in our simulations occurring at large density ratios,
since they do not account for the sharpening of the spike tips.
An exception is the Zhang model [61] for 2D spikes that was
generalized to 3D in [63], which accurately predicts αs = 0.5
at A = 1 (fluid/vacuum case). Equation (7) also captures spike
behavior at infinite density ratios, since the last term in that
equation vanishes in that limit resulting in the expected free-
fall behavior. However, several simulations [19,55], including
results from MOBILE presented here, have revealed the onset
of the so-called “free-fall” behavior to occur starting at
A ∼ 0.5. If confirmed with experimental verification, this
would imply that no single model describes the entire range of
spike behavior observed here. Thus, spike evolution in the
limit of A → 0 is captured by the potential flow models,
while the A → 1 limit is described by the models of Zhang
and DBM, but the transition between these limits remains
unexplained by current models. Mikaelian [44] has suggested
interpolating between the extremes of spike behavior. Such
an interpolation strategy will have to be informed by the
simulation results presented here. Alternatively, Eq. (7) may
be modified by neglecting the drag term for A > 0.5, but
an additional coefficient must be introduced to explain the
Atwood-dependent growth rate αs(A).

Scaling. Simulations driven by time-dependent accelera-
tions also afford us the opportunity to search for the existence
of a universal scaling parameter that collapses bubble and
spike amplitudes from any g(t). For instance, the level 4
model of [43] (and our DBM solution) obtain bubble and
spike amplitudes as explicit functions of s, rather than the
displacement function Z. As noted earlier, the Z scaling
emphasizes a dynamic balance between inertia and buoyancy
forces in Eqs. (6) and (7), while the s2 scaling implies that

buoyancy and drag forces are balanced. The width (s2) was
introduced as a candidate for scaling observed amplitudes from
the rocket rig experiments [36]. The LEM experiments [34,35]
evaluated both variables and concluded that the width provided
a slightly better collapse of the turbulent mixing width data.
From 2D single-mode simulations, Mikaelian [42,43] also
found a better collapse when amplitudes were plotted against
s2 rather than Z, but only at low A.

From our detailed simulation study with a wide range of
acceleration profiles, and variations in the Atwood number,
we conclude there is no single scaling variable that collapses
all the reported data. At low A, the solution to the DBM and
level 4 models suggest bubbles (and spikes) should prefer to
scale with s2. However, an examination of Fig. 10 suggests
both scaling variables collapse the data reasonably well. This
is not surprising since for the acceleration profiles shown in
Fig. 10 (g ∼ tn), s2/Z is constant and independent of time.
This result was derived analytically in [44], and implies both
variables encapsulate the same time dependence associated
with g(t) and can thus collapse the data equally well for
such acceleration histories. In fact, this remained the case for
many of the g profiles investigated in our study (Table I). We
also investigated, through numerical simulations, acceleration
profiles of the form

g(t) = g0(
1 − t

T

)a , (38)

with a = −2 or −3 and t < T . The case a = −2 was
investigated by the authors of [44], who defined τ = 1 − t/T

and obtained the ratio s2/Z as a strong function of τ . For a =
−2, s2

Z
∼ −ln(1 − t

T
) and diverges as t → T , but the solution

is self-similar. However, for a = −3, s2/Z is independent
of t asymptotically. We compare data from simulations with
a = −2 and −3 in Fig. 20, and find both s2 and Z to collapse
the amplitudes. Finally, we also compared data between
different classes of acceleration profiles, and still found both
scaling variables to be adequate. It is surprising that even for g

profiles where s2/Z depends strongly on time, both variables
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collapse our simulation data. Since the displacement Z also
explains our spike data (starting at A > 0.5), these results
suggest that Z might be a superior scaling over the entire
range of density differences studied here.

At A = 1, the DBM explicitly suggests a scaling of spike
amplitudes with the displacement Z [since the drag term
in Eq. (7) vanishes], while bubbles should retain the same
behavior from low A. Data from several previous simulations
and experiments, as well as the MOBILE calculations reported
in this work support this claim. While potential flow models
generally fail in this limit, the model of Zhang [61] and the
extension by [63] capture this behavior as well as the observed
spike growth rate of αs = 0.5. However, our simulations report
hs ∼ Z (and not s2) for any g profile, even at finite density
ratios, starting at A = 0.5. If verified experimentally, this
would require corresponding modifications to both the DBM
and the potential flow models. From the above, we conclude

for most acceleration profiles that satisfy s2/Z → constant
either exactly or asymptotically, bubbles (at any A) and spikes
(at low A) may be collapsed adequately with either scale.
For certain profiles [44] that violate this condition (Fig. 20),
the width should be the superior scaling; however, even in
such cases we find the displacement to collapse the data
reasonably well. For A > 0.5, spikes from any acceleration
grow as 2αsAZ, with the growth rate αs depending on the
density ratio.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.
The authors are deeply grateful to Dr. Karnig Mikaelian for
extensive discussions and valuable insights that have guided
this work.

[1] Lord Rayleigh, Scientific Papers II (Cambridge University Press,
Cambridge, 1900), pp. 200–207.

[2] G. I. Taylor, Proc. R. Soc. London, Ser. A 201, 192 (1950).
[3] J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition

and Energy Gain using Indirect Drive (Springer-Verlag, New
York, 1998).

[4] M. Zingale, S. E. Woosley, C. A. Rendleman, M. S. Day, and
J. B. Bell, Astrophys. J. 632, 1021 (2005).

[5] M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate,
Astrophys. J. 435, 339 (1994).

[6] C.-Y. Wang and R. A. Chevalier, Astrophys. J. 549, 1119 (2001).
[7] S. Zhang and M. T. Zuber, Earth Planet. Sci. Lett. 189, 75 (2001).
[8] B. D. Marsh, J. Geol. 87, 687 (1979).
[9] B. D. Marsh and I. S. E. Carmichael, J. Geophys. Res. 79, 1196

(1974).
[10] S. A. Fedotov, Bull. Volcanol. (Rome) 39, 241 (1975).
[11] C. S. Huang, M. C. Kelley, and D. L. Hysell, J. Geophys. Res.

98, 15631 (1993).
[12] D. J. Lewis, Proc. R. Soc. London, Ser. A 202, 81 (1950).
[13] R. M. Davies and G. I. Taylor, Proc. R. Soc. London, Ser. A

200, 375 (1950).
[14] R. Collins, J. Fluid Mech. 28, 97 (1967).
[15] J. Hecht, U. Alon, and D. Shvarts, Phys. Fluids 6, 4019 (1994).
[16] J. Hecht, D. Offer, U. Alon, D. Shvarts, S. A. Orszag, and R. L.

McCrory, Laser Part. Beams 13, 423 (1995).
[17] J. P. Wilkinson and J. W. Jacobs, Phys. Fluids 19, 124102 (2007).
[18] J. White, J. Oakley, M. Anderson, and R. Bonazza, Phys. Rev.

E 81, 026303 (2010).
[19] P. Ramaprabhu and G. Dimonte, Phys. Rev. E 71, 036314 (2005).
[20] D. H. Sharp, Physica D 12, 3 (1984).
[21] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

(Oxford University Press, Oxford, 1961).
[22] D. Layzer, Astrophys. J. 122, 1 (1955).
[23] S. I. Sohn, Phys. Rev. E 67, 026301 (2003).
[24] S. Abarzhi, K. Nishihara, and J. Glimm, Phys. Lett. A 317, 470

(2003).
[25] V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002).
[26] U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. 74,

534 (1995).

[27] K. O. Mikaelian, Phys. Fluids 21, 024103 (2009).
[28] D. Shvarts, U. Alon, D. Ofer, R. L. McCrory, and C. P. Verdon,

Phys. Plasmas 2, 2465 (1995).
[29] G. Dimonte, Phys. Plasmas 7, 2255 (2000).
[30] B. Cheng, J. Glimm, and D. H. Sharp, Phys. Rev. E 66, 036312

(2002).
[31] Y. G. Cao, W. K. Chow, and N. K. Fong, Commun. Theor. Phys.

56, 751 (2011).
[32] S. Bouquet, P. Gandeboeuf, and P. Pailhories, Math. Methods

Appl. Sci. 30, 2027 (2007).
[33] R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald,

and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
[34] G. Dimonte and M. Schneider, Phys. Fluids 12, 304 (2000).
[35] G. Dimonte and M. Schneider, Phys. Rev. E 54, 3740

(1996).
[36] K. I. Read, Physica D 12, 45 (1984).
[37] J. W. Jacobs and J. M. Sheeley, Phys. Fluids 8, 405 (1996).
[38] C. E. Niederhaus and J. W. Jacobs, J. Fluid Mech. 485, 243

(2003).
[39] P. R. Chapman and J. W. Jacobs, Phys. Fluids 18, 074101

(2006).
[40] J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998).
[41] A. Llor, Laser Part. Beams 21, 305 (2003).
[42] K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009).
[43] K. O. Mikaelian, Phys. Rev. E 81, 016325 (2010).
[44] K. O. Mikaelian, Phys. Rev. E 89, 053009 (2014).
[45] Y. Srebro, Y. Elbaz, O. Sadot, L. Arazi, and D. Shvarts, Laser

Part. Beams 21, 347 (2003).
[46] R. Banerjee, L. Mandal, S. Roy, M. Khan, and M. R. Gupta,

Phys. Plasmas 18, 022109 (2011).
[47] W. T. Reid, Riccati Differential Equations (Elsevier, New York,

1972).
[48] E. L. Ince, Ordinary Differential Equations (Dover Publications,

New York, 1956).
[49] A. G. W. Lawrie, On Rayleigh-Taylor mixing: confinement

by stratification and geometry, Ph.D. thesis, University of
Cambridge, 2009.

[50] A. G. W. Lawrie and S. B. Dalziel, Phys. Fluids 23, 085109
(2011).

013118-16

http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1086/433164
http://dx.doi.org/10.1086/433164
http://dx.doi.org/10.1086/433164
http://dx.doi.org/10.1086/433164
http://dx.doi.org/10.1086/174817
http://dx.doi.org/10.1086/174817
http://dx.doi.org/10.1086/174817
http://dx.doi.org/10.1086/174817
http://dx.doi.org/10.1086/319439
http://dx.doi.org/10.1086/319439
http://dx.doi.org/10.1086/319439
http://dx.doi.org/10.1086/319439
http://dx.doi.org/10.1016/S0012-821X(01)00345-4
http://dx.doi.org/10.1016/S0012-821X(01)00345-4
http://dx.doi.org/10.1016/S0012-821X(01)00345-4
http://dx.doi.org/10.1016/S0012-821X(01)00345-4
http://dx.doi.org/10.1086/628460
http://dx.doi.org/10.1086/628460
http://dx.doi.org/10.1086/628460
http://dx.doi.org/10.1086/628460
http://dx.doi.org/10.1029/JB079i008p01196
http://dx.doi.org/10.1029/JB079i008p01196
http://dx.doi.org/10.1029/JB079i008p01196
http://dx.doi.org/10.1029/JB079i008p01196
http://dx.doi.org/10.1007/BF02597830
http://dx.doi.org/10.1007/BF02597830
http://dx.doi.org/10.1007/BF02597830
http://dx.doi.org/10.1007/BF02597830
http://dx.doi.org/10.1029/93JA00762
http://dx.doi.org/10.1029/93JA00762
http://dx.doi.org/10.1029/93JA00762
http://dx.doi.org/10.1029/93JA00762
http://dx.doi.org/10.1098/rspa.1950.0086
http://dx.doi.org/10.1098/rspa.1950.0086
http://dx.doi.org/10.1098/rspa.1950.0086
http://dx.doi.org/10.1098/rspa.1950.0086
http://dx.doi.org/10.1098/rspa.1950.0023
http://dx.doi.org/10.1098/rspa.1950.0023
http://dx.doi.org/10.1098/rspa.1950.0023
http://dx.doi.org/10.1098/rspa.1950.0023
http://dx.doi.org/10.1017/S0022112067001922
http://dx.doi.org/10.1017/S0022112067001922
http://dx.doi.org/10.1017/S0022112067001922
http://dx.doi.org/10.1017/S0022112067001922
http://dx.doi.org/10.1063/1.868391
http://dx.doi.org/10.1063/1.868391
http://dx.doi.org/10.1063/1.868391
http://dx.doi.org/10.1063/1.868391
http://dx.doi.org/10.1017/S026303460000954X
http://dx.doi.org/10.1017/S026303460000954X
http://dx.doi.org/10.1017/S026303460000954X
http://dx.doi.org/10.1017/S026303460000954X
http://dx.doi.org/10.1063/1.2813548
http://dx.doi.org/10.1063/1.2813548
http://dx.doi.org/10.1063/1.2813548
http://dx.doi.org/10.1063/1.2813548
http://dx.doi.org/10.1103/PhysRevE.81.026303
http://dx.doi.org/10.1103/PhysRevE.81.026303
http://dx.doi.org/10.1103/PhysRevE.81.026303
http://dx.doi.org/10.1103/PhysRevE.81.026303
http://dx.doi.org/10.1103/PhysRevE.71.036314
http://dx.doi.org/10.1103/PhysRevE.71.036314
http://dx.doi.org/10.1103/PhysRevE.71.036314
http://dx.doi.org/10.1103/PhysRevE.71.036314
http://dx.doi.org/10.1016/0167-2789(84)90510-4
http://dx.doi.org/10.1016/0167-2789(84)90510-4
http://dx.doi.org/10.1016/0167-2789(84)90510-4
http://dx.doi.org/10.1016/0167-2789(84)90510-4
http://dx.doi.org/10.1086/146048
http://dx.doi.org/10.1086/146048
http://dx.doi.org/10.1086/146048
http://dx.doi.org/10.1086/146048
http://dx.doi.org/10.1103/PhysRevE.67.026301
http://dx.doi.org/10.1103/PhysRevE.67.026301
http://dx.doi.org/10.1103/PhysRevE.67.026301
http://dx.doi.org/10.1103/PhysRevE.67.026301
http://dx.doi.org/10.1016/j.physleta.2003.09.013
http://dx.doi.org/10.1016/j.physleta.2003.09.013
http://dx.doi.org/10.1016/j.physleta.2003.09.013
http://dx.doi.org/10.1016/j.physleta.2003.09.013
http://dx.doi.org/10.1103/PhysRevLett.88.134502
http://dx.doi.org/10.1103/PhysRevLett.88.134502
http://dx.doi.org/10.1103/PhysRevLett.88.134502
http://dx.doi.org/10.1103/PhysRevLett.88.134502
http://dx.doi.org/10.1103/PhysRevLett.74.534
http://dx.doi.org/10.1103/PhysRevLett.74.534
http://dx.doi.org/10.1103/PhysRevLett.74.534
http://dx.doi.org/10.1103/PhysRevLett.74.534
http://dx.doi.org/10.1063/1.3073746
http://dx.doi.org/10.1063/1.3073746
http://dx.doi.org/10.1063/1.3073746
http://dx.doi.org/10.1063/1.3073746
http://dx.doi.org/10.1063/1.871476
http://dx.doi.org/10.1063/1.871476
http://dx.doi.org/10.1063/1.871476
http://dx.doi.org/10.1063/1.871476
http://dx.doi.org/10.1063/1.874060
http://dx.doi.org/10.1063/1.874060
http://dx.doi.org/10.1063/1.874060
http://dx.doi.org/10.1063/1.874060
http://dx.doi.org/10.1103/PhysRevE.66.036312
http://dx.doi.org/10.1103/PhysRevE.66.036312
http://dx.doi.org/10.1103/PhysRevE.66.036312
http://dx.doi.org/10.1103/PhysRevE.66.036312
http://dx.doi.org/10.1088/0253-6102/56/4/26
http://dx.doi.org/10.1088/0253-6102/56/4/26
http://dx.doi.org/10.1088/0253-6102/56/4/26
http://dx.doi.org/10.1088/0253-6102/56/4/26
http://dx.doi.org/10.1002/mma.944
http://dx.doi.org/10.1002/mma.944
http://dx.doi.org/10.1002/mma.944
http://dx.doi.org/10.1002/mma.944
http://dx.doi.org/10.1103/PhysRevLett.98.155001
http://dx.doi.org/10.1103/PhysRevLett.98.155001
http://dx.doi.org/10.1103/PhysRevLett.98.155001
http://dx.doi.org/10.1103/PhysRevLett.98.155001
http://dx.doi.org/10.1063/1.870309
http://dx.doi.org/10.1063/1.870309
http://dx.doi.org/10.1063/1.870309
http://dx.doi.org/10.1063/1.870309
http://dx.doi.org/10.1103/PhysRevE.54.3740
http://dx.doi.org/10.1103/PhysRevE.54.3740
http://dx.doi.org/10.1103/PhysRevE.54.3740
http://dx.doi.org/10.1103/PhysRevE.54.3740
http://dx.doi.org/10.1016/0167-2789(84)90513-X
http://dx.doi.org/10.1016/0167-2789(84)90513-X
http://dx.doi.org/10.1016/0167-2789(84)90513-X
http://dx.doi.org/10.1016/0167-2789(84)90513-X
http://dx.doi.org/10.1063/1.868794
http://dx.doi.org/10.1063/1.868794
http://dx.doi.org/10.1063/1.868794
http://dx.doi.org/10.1063/1.868794
http://dx.doi.org/10.1017/S002211200300452X
http://dx.doi.org/10.1017/S002211200300452X
http://dx.doi.org/10.1017/S002211200300452X
http://dx.doi.org/10.1017/S002211200300452X
http://dx.doi.org/10.1063/1.2214647
http://dx.doi.org/10.1063/1.2214647
http://dx.doi.org/10.1063/1.2214647
http://dx.doi.org/10.1063/1.2214647
http://dx.doi.org/10.1103/PhysRevE.58.5834
http://dx.doi.org/10.1103/PhysRevE.58.5834
http://dx.doi.org/10.1103/PhysRevE.58.5834
http://dx.doi.org/10.1103/PhysRevE.58.5834
http://dx.doi.org/10.1103/PhysRevE.79.065303
http://dx.doi.org/10.1103/PhysRevE.79.065303
http://dx.doi.org/10.1103/PhysRevE.79.065303
http://dx.doi.org/10.1103/PhysRevE.79.065303
http://dx.doi.org/10.1103/PhysRevE.81.016325
http://dx.doi.org/10.1103/PhysRevE.81.016325
http://dx.doi.org/10.1103/PhysRevE.81.016325
http://dx.doi.org/10.1103/PhysRevE.81.016325
http://dx.doi.org/10.1103/PhysRevE.89.053009
http://dx.doi.org/10.1103/PhysRevE.89.053009
http://dx.doi.org/10.1103/PhysRevE.89.053009
http://dx.doi.org/10.1103/PhysRevE.89.053009
http://dx.doi.org/10.1063/1.3555523
http://dx.doi.org/10.1063/1.3555523
http://dx.doi.org/10.1063/1.3555523
http://dx.doi.org/10.1063/1.3555523
http://dx.doi.org/10.1063/1.3614477
http://dx.doi.org/10.1063/1.3614477
http://dx.doi.org/10.1063/1.3614477
http://dx.doi.org/10.1063/1.3614477


EVOLUTION OF THE SINGLE-MODE RAYLEIGH-TAYLOR . . . PHYSICAL REVIEW E 93, 013118 (2016)

[51] P. Ramaprabhu, V. Karkhanis, and A. G. W. Lawrie, Phys. Fluids
25, 115104 (2013).

[52] K. O. Mikaelian (private communication).
[53] S. I. Sohn, Phys. Rev. E 80, 055302(R) (2009).
[54] P. Ramaprabhu, G. Dimonte, P. Woodward, C. Fryer, G.

Rockefeller, K. Muthuraman, P.-H. Lin, and J. Jayaraj, Phys.
Fluids 24, 074107 (2012).

[55] P. Ramaprabhu, G. Dimonte, Y.-N. Young, A. C. Calder, and B.
Fryxell, Phys. Rev. E 74, 066308 (2006).

[56] J. Glimm, X. L. Li, and A.-D. Lin, Acta Math. Appl. Sin. 18, 1
(2002).

[57] T. Wei and D. Livescu, Phys. Rev. E 86, 046405 (2012).

[58] C. C. Kuranz, R. P. Drake, E. C. Harding, M. J. Grosskopf,
H. F. Robey, B. A. Remington, M. J. Edwards, A. R. Miles, T.
S. Perry, B. E. Blue, T. Plewa, N. C. Hearn, J. P. Knauer, D.
Arnett, and D. R. Leibrandt, Astrophys. J. 696, 749 (2009).

[59] R. P. Drake, D. R. Leibrandt, E. C. Harding, C. C. Kuranz,
M. A. Blackburn, H. F. Robey, B. A. Remington, M. J. Edwards,
A. R. Miles, T. S. Perry, R. J. Wallace, H. Louis, J. P. Knauer,
and D. Arnett, Phys. Plasmas 11, 2829 (2004).

[60] N. Attal and P. Ramaprabhu, Shock Waves 25, 307 (2015).
[61] Q. Zhang, Phys. Rev. Lett. 81, 3391 (1998).
[62] M. J. Andrews, Int. J. Numer. Methods Fluids 21, 205 (1995).
[63] K. O. Mikaelian, Phys. Rev. E 78, 015303(R) (2008).

013118-17

http://dx.doi.org/10.1063/1.4829765
http://dx.doi.org/10.1063/1.4829765
http://dx.doi.org/10.1063/1.4829765
http://dx.doi.org/10.1063/1.4829765
http://dx.doi.org/10.1103/PhysRevE.80.055302
http://dx.doi.org/10.1103/PhysRevE.80.055302
http://dx.doi.org/10.1103/PhysRevE.80.055302
http://dx.doi.org/10.1103/PhysRevE.80.055302
http://dx.doi.org/10.1063/1.4733396
http://dx.doi.org/10.1063/1.4733396
http://dx.doi.org/10.1063/1.4733396
http://dx.doi.org/10.1063/1.4733396
http://dx.doi.org/10.1103/PhysRevE.74.066308
http://dx.doi.org/10.1103/PhysRevE.74.066308
http://dx.doi.org/10.1103/PhysRevE.74.066308
http://dx.doi.org/10.1103/PhysRevE.74.066308
http://dx.doi.org/10.1007/s102550200001
http://dx.doi.org/10.1007/s102550200001
http://dx.doi.org/10.1007/s102550200001
http://dx.doi.org/10.1007/s102550200001
http://dx.doi.org/10.1103/PhysRevE.86.046405
http://dx.doi.org/10.1103/PhysRevE.86.046405
http://dx.doi.org/10.1103/PhysRevE.86.046405
http://dx.doi.org/10.1103/PhysRevE.86.046405
http://dx.doi.org/10.1088/0004-637X/696/1/749
http://dx.doi.org/10.1088/0004-637X/696/1/749
http://dx.doi.org/10.1088/0004-637X/696/1/749
http://dx.doi.org/10.1088/0004-637X/696/1/749
http://dx.doi.org/10.1063/1.1651492
http://dx.doi.org/10.1063/1.1651492
http://dx.doi.org/10.1063/1.1651492
http://dx.doi.org/10.1063/1.1651492
http://dx.doi.org/10.1007/s00193-015-0571-6
http://dx.doi.org/10.1007/s00193-015-0571-6
http://dx.doi.org/10.1007/s00193-015-0571-6
http://dx.doi.org/10.1007/s00193-015-0571-6
http://dx.doi.org/10.1103/PhysRevLett.81.3391
http://dx.doi.org/10.1103/PhysRevLett.81.3391
http://dx.doi.org/10.1103/PhysRevLett.81.3391
http://dx.doi.org/10.1103/PhysRevLett.81.3391
http://dx.doi.org/10.1002/fld.1650210303
http://dx.doi.org/10.1002/fld.1650210303
http://dx.doi.org/10.1002/fld.1650210303
http://dx.doi.org/10.1002/fld.1650210303
http://dx.doi.org/10.1103/PhysRevE.78.015303
http://dx.doi.org/10.1103/PhysRevE.78.015303
http://dx.doi.org/10.1103/PhysRevE.78.015303
http://dx.doi.org/10.1103/PhysRevE.78.015303



