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Geometrical properties of turbulent premixed flames and other corrugated interfaces
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This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that
end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface
spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through
the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique.
Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to
be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds
numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity,
irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred
to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number
that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to
apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed
that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be
proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious.
It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the
evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic
phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is
confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid
jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar evolving in a turbulent medium. The
latter outcome is likely to have strong implications for modeling the corrugation of turbulent interfaces occurring
in many physical situations.
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I. INTRODUCTION

The laminar flamelet concept [1] is without doubt the
most utilized hypothesis for describring turbulent premixed
flames, primarily because of the resulting analytical and
modeling simplifications. Under this assumption, turbulent
wrinkled flames are treated as a collection of thin layers,
whose inner structure is identical to a (possibly stretched) one-
dimensional laminar flame, propagating normal to themselves
in the direction of the unburned turbulent mixture. As a
consequence, the notion of laminar flamelet implies that only
the geometrical properties of the flame (its surface) are needed
for accurately predicting macroscopic features such as the
global consumption speed or heat release. This explains the
incontestable success of the so-called geometrical approaches
for closing the transport equations of, e.g., temperature or
progress variable in either a Reynolds-averaged Navier-Stokes
(RANS) or large-eddy simulation (LES) context. According to
Veynante and Vervisch [2], these geometrical methods include
the G-field equation [3–5], the flame surface density approach
[6–8], and the flame wrinkling description (see Refs. [9–11]
among others). It is also worth stressing that because of the
analytical bridges that were highlighted in Ref. [2] between
the latter approaches and other methods such as the PDF
or the scalar dissipation rate closures, the reliability of all
models finally depend more or less directly on our ability
to describe the geometrical properties of the turbulent flame
front.

However, predicting the evolution of the flame surface in
a turbulent flow is far from being an easy task. To a great

extent, the progress in our understanding of the geometrical
aspects of turbulent flames has been hindered by our inability
to finely describe and predict their multiscale nature. In
effect, flame wrinkling exhibits a wide and continuous range
of scales and suggests it is rather difficult to characterize
and quantify the surface without any appropriate analytical
means. The multiscale facet of corrugated flamelets arises
from the interaction that the flame experiences with turbulence,
which itself features a wide range of turbulent eddies. These
extend from the integral length scale, which retains through its
dynamic and topology significant information about initial and
boundary conditions [12], to the inertial and dissipative range
down until the Kolmogorov length scale for which a universal
statistical description is assumed [13].

While in the context of RANS the total flame surface is
needed for closing the transport equations; in LES, only the
unresolved flame surface, i.e., the flame surface embedded in
a volume of size smaller than the mesh grid, is required. As a
consequence, one has to tackle a local (sometimes referred to
as a scale-by-scale) description of flame folding by focusing on
the contribution of each scale of size r to the interface folding.
This appears quite natural notwithstanding the aforementioned
multiscale facet of turbulent flames. In addition, by analogy
with the turbulent velocity field for which the smallest scales
have the best prospect of being universal [13,14], the smallest
scales of flame wrinkling might also exhibit similar attributes.
This notion of scale similarity or scale universality states that
the scale-by-scale distribution of a fluctuating quantity (i.e.,
as a function of the scale r) can be universal when scaled
by an appropriate set of similarity variables. This feature is
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worth being validated for turbulent flames since it suggests
that a universal subgrid-scale model for the flame wrinkling
might be derived. This encompasses investigating in detail the
degree with which the flame folding at a given scale complies
with scale similarity and emphasizing the associated relevant
normalizing scales. To our knowledge, this has never been
done.

Among the methods that allow us to quantify the scale-by-
scale contribution to the flame wrinkling or more generally
rough interfaces, fractal analysis is one of the most common.
Fractals first originated from Richardson and later from
Mandelbrot, who built up the mathematical framework for
describing the scale dependence of the surface roughness.
Since then, it has been applied to an extremely wide variety of
physical situations. Pragmatically speaking, a fractal behavior
is identified when coarse graining the rough interface at a
scale r results in a power-law dependence of its surface of
the form r−β . The power-law exponent, β, is referred to as
the fractal dimension, which provides a measure of the degree
of roughness of such an interface. For instance, the fractal
dimension of a smooth surface evolving in a volume tends to
2, whereas it approaches 3 when the surface fills the entire
domain.

Gouldin [15,16] was first to apply fractal concepts to
turbulent flames, and since then, there has been a wealth
of experimental [17–20], numerical [9,11,21], and analytical
[22,23] support in favor of a fractal power-law variation for
the distribution of flame folding as a function of the scale r .
While fractal models appear to be well suited for modeling the
flame surface density, it still requires some efficient submodels
for predicting the fractal characteristics as a function of the
local flame and flow parameters. For instance, in LES, the
fractal dimension is often estimated using a dynamic approach
[10,11,24] following the lines of Germano et al. [25]. That the
systematic improvement of the simulation results when such a
procedure is invoked suggests that the current predictions for
the fractal characteristics fail. In other words, it indicates that
we still misunderstand the physical processes at play and that
more work is needed in order to give further insight into the
phenomenology of flame wrinkling with the aim of providing
reliable predictions for the fractal characteristics.

Beyond turbulent combustion, there are several phenomena
than can be described in terms of wrinkled surfaces evolving
in a turbulent flow [6]. These phenomena include, for instance,
turbulent mixing and two-phase flows, which are widely
encountered in a very large variety of combustion applications.
Their understanding is thus of primordial importance. Follow-
ing Pope [6], all these types of interface can be classified
into (i) material surfaces, which pertain to, e.g., two-phase
flows where the interface is often tracked using a level-set
equation [26]; (ii) constant-property surfaces for tackling,
e.g., passive scalar mixing, diffusion flames [6]; and (iii)
propagating surfaces which have been widely applied to, e.g.,
premixed flames [3,4,27]. Also mentioned in Ref. [6], these
three types of surfaces can be regarded as constant-property
surfaces or as propagating surfaces. This has led Peters [4]
to unify the analytical description of premixed flames for
both the corrugated flamelet regime and the thin reaction
zone regime. The aforementioned analogy between different
types of interfaces probably explains why fractal concepts

successfully apply to all of these. It is in effect well known
that turbulence and turbulent mixing (see, e.g., Refs. [28–32]
among others), two-phase flows [33–35], and material lines
evolving in turbulent flows [36] reveal some degree of
fractality. In addition, the surface density concept which, as
mentioned before, is widely used in the field of turbulent
combustion, applies also in the context of turbulent mixing
[37] and two-phase flows [38]. In other words, all these
different phenomena can be described via their geometrical
properties. It is also worth stressing that, speculatively, all these
interfaces might further reveal some degree of similarity or
universality notwithstanding their common transport equation
[6]. One particular aspect of the present study is to give further
insight into the analogy of the geometrical aspects of different
turbulent interfaces.

In previous studies, the fractal characteristics of turbulent
interfaces were generally obtained by use of the box-counting
method or the caliper technique. In the present study, proper
orthogonal decomposition (POD) is used as an alternative
method. The POD, also known as a Karhunen-Loève decompo-
sition or principal component analysis, is a data-driven modal
decomposition that has become very popular for investigating
the nonlinear processes in physics in particular [39–41]. It
has been generally applied to the velocity field, with the
aim of extracting typical spatial and/or temporal patterns of
the coherent large scales in turbulent flows [41,42]. POD is
usually based on the two-point correlation which is computed
from either long-time series or large realizations ensemble.
Statistical stationarity ensures the two-point correlation, and,
accordingly, the empirical function basis, to be weakly
sensitive to the database. In the field of combustion, very few
studies have focused on modal decompositions. POD has been
used by Danby et al. [43] to investigate the autoignition process
of inhomogeneous hydrogen air mixture. These authors carried
several preprocessing techniques on the data set in order to
optimize the number of modes needed to minimize the recon-
struction error. Later, using particle image velocimetry data
sets and OH-planar laser-induced fluorescence (PLIF) together
with the extended POD method introduced in Ref. [42], Duwig
and Fureby [44] and Duwig and Fuchs [45] used POD to
study (i) thermoacoustics instabilities, (ii) the interaction of
precessing vortex core with a swirling flame, and (iii) unsteady
flames driven by acoustic perturbation. Finally, to characterize
the flame shedding process behind a bluff-body, Kostka et al.
[46] used POD and flame chemiluminescence images to educe
coherent behaviors and separate the energy at given mode
into symmetric, asymmetric, and uncorrelated components.
Here we propose to apply the POD algorithm to the spatial
coordinates of the flame contours with the aim of extracting
quantitative information on the fractal characteristics of flame
folding [47]. To the best of our knowledge, this has never been
undertaken before. Note also that data decomposition other
than POD exists. One of these is dynamic mode decompo-
sition (DMD), which was derived independently by Rowley
et al. [48] and Schmid [49]. However, the latter method invokes
a linear mapping between two time-consecutive fluctuating
events. Consequently, this type of decomposition which is
limited only to time-resolved numerical or experimental
data is not tractable in our case, where part of the mea-
surements were made using low-frame-rate Mie scattering
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tomography. Bidimensional empirical mode decomposition
(EMD) [50,51] could also have been used. Nevertheless,
the number of modes that arises from this decomposition
is generally rather limited. This means that the spectral
precision of the latter decomposition is not reliable enough
for accurately quantifying the scale dependence of the flame
wrinkles.

On the basis of an extensive experimental study using Mie
scattering tomography measurements in a turbulent Bunsen
burner, the present paper addresses to the following issues.
(i) Is the POD reliable for extracting quantitative information
on the geometrical properties of turbulent interfaces? How
does it compare to other methods such as the caliper technique?
(ii) Does the distribution of wrinkling as a function of r

comply with scale similarity? If yes, then what are the
relevant normalizing scales? (iii) What is the ability of
some existing empirical or phenomenological relations for
predicting the fractal characteristics of corrugated flames?
(iv) Are there similar patterns in the folding distribution of
different interfaces? Could they be represented by a unique
heuristic phenomenology?

The paper is organized as follows. In Sec. II A, the
experimental apparatus and measurement technique are pre-
sented. A comprehensive list of parameters pertaining to the
present database consisting of 24 operating conditions is also
reported. Special emphasis is further given to the application
of the POD algorithm to the flame front spatial coordinates
(Sec. II B). Then the geometrical properties of the turbulent
flames are investigated in detail in Sec. III. Comparison
with the caliper technique is presented in Sec. III A together
with the results pertaining to the scale-similarity analysis
(Sec. III B). The evolution of the fractal properties of the
turbulent flames are discussed and compared to available
theoretical or empirical predictions in Sec. IV. Finally, the
scale-by-scale distributions of wrinkling of different turbulent
interfaces including turbulent flames, passive scalar isovalues,
a turbulent-nonturbulent interface, and a two-phase and a
cavitating flow are presented in Sec. V. Conclusions are drawn
in Sec. VI.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

Before focusing on the scale-by-scale properties of the
turbulent flame fronts, we first turn our attention to the
description of the experiments and data analysis that have
been undertaken in the present study.

A. Experimental setup and description of the database

Experiments were carried out in a high-pressure Bunsen
burner (Fig. 1). An earlier version of this burner originated fin
Ref. [52] was recently upgraded in Refs. [53,54] by replacing
the monogrid turbulence generator by a multiscale grids
generator [55] with the aim of achieving a higher turbulent
intensity. The Bunsen burner (see Fig. 1) has a diameter of
25 mm surrounded by annular coflow of inner and outer
diameters of 30 and 50 mm, respectively. Flames are stabilized
with the help of a stoichiometric methane or air pilot annular
flames located between the inner burner and the coflow. The
annulus is 2.5 mm wide. The burner is placed in a pressure

FIG. 1. High-pressure Bunsen burner with the multigrid injection
system used in the present study.

chamber of inner diameter 300 mm and height 1350 mm that
allows us to reach pressure magnitudes up to 0.5 MPa. The
multigrid turbulence generator consists of three consecutive
grids with different mesh size (2, 5, and 12.5 mm from up- to
downstream) and different solidity (46, 57, and 67%) placed in
a way that maximizes the turbulence energy production [55].
The gap between the first (upstream) and second grid is 7 mm
while the second and third grids are separated by a distance of
17 mm. The last grid is located 60.5 mm upstream the burner
exit to ensure that the flow is statistically homogeneous in
the transverse direction. One- and two-point statistics of the
velocity field have been inferred from extensive measurements
using both hot-wire and laser Doppler velocimetry [53]. These
measurements indicate that although the decay of turbulent
kinetic energy is faster for the multigrid case, the turbulence
intensity is roughly doubled by comparison with the monogrid
case. In addition, the turbulent small scales are smaller and
contain more energy [53].

Measurements are carried out by means of both low-
(10 Hz) and high- (10 kHz) frame-rate Mie-scattering tomog-
raphy. (i) For the low-frame-rate tomography, a Nd-Yag laser
(532 nm) and a charge-coupled-device camera (PIV TSI 4M,
2048 × 2048 pixels2) equipped with a 105-mm F2.8 lens were
used. In this case, Nim = 1000 images were recorded. The
resolution was in the range 0.035–0.075 mm/px depending
on the case. (ii) For the high-frame-rate tomography, use was
made of a continuous Coherent Verdi G20 laser which delivers
up to 20 W at 532 nm. The light scattered by the particles is
then captured by a Phantom V1210 camera, equipped with a
105-mm F2.8 lens, working at an acquisition rate of 10 kHz
with a field of view of 800 × 384 pixels2. Nim = 104 images
were recorded and the resolution was 0.108 mm/px. In both
case, seeding of the flow is made with silicon oil droplets
supplied by an atomizer. Typical size of droplets is about 1 μm.
The effect on the chemical reactions of adding oil droplets is
still an open question. Here we consider that the amount of
oil which is added is sufficiently small for not modifying the
global flame properties such as the laminar flame speed and
thickness.
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The flame contour is then extracted as follows. First, a
contrast-limited adaptive histogram equalization (CLAHE) is
applied to the original images in order to optimize the contrast
in the images. Then, to limit the pixelixation associated with
the CLAHE, images are filtered using a Gaussian filter of
size equal to 4 times the spatial resolution. For the binarizing
procedure, we use a standard threshold-based technique.
More precisely, the histogram of the gray scale is calculated.
The latter reveals two distinct peaks corresponding to the
fresh and burned gas, respectively. The threshold value for
discriminating the flame contour is set as the average value
between the gray scale of these two peaks. Yields estimations
for the progress variable, noted c, which is by definition 0
and 1 in the unburned and burned gas, respectively. This
binarization procedure leads irremediably to a digitization
noise (pixelization) which, in the present case, is smoothed
using a low-pass Gaussian filter, with filter size equal to 3
times the spatial resolution. It was checked that doubling filter
size did not yield observable changes on the properties of
interest (namely the flame wrinkling distribution, Sec. III).
This indicates that the present measurements are well resolved
and that the filter size that is used here is much smaller than
that of the smallest flame wrinkling characteristic length scale.
An example of flame contour detection, superimposed on
the original image, is presented as an illustration in Fig. 2.
For the present case, we made the choice of focusing only
on the longest contour representing the largest topologically
connected object, whereas holes and pockets are not taken
into account. The contribution of these missing flame holes
and pockets to, e.g., the flame surface density was rather
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FIG. 2. Typical image showing the reliability of the contour
extraction and filtering for Flame 18 (Table I). The black line is
the contour coordinates while the color map shows the light intensity
recorded by the camera.

limited notwithstanding the relatively low turbulence intensity
of our experiments. Future work is, however, needed to incor-
porate these disconnected objects into a more self-consistent
description. The axis coordinate system is the following:
The streamwise distance x coincides with the direction of
the bulk flow, whereas the transverse distance is noted y

(Fig. 2).
A total of 24 different operating conditions have been

selected (see Table I). For all cases, the mixture inlet velocity
Ud is equal to 3.6 m s−1 and the mixture of fuel and oxidizer
is created well before the burner inlet so the composition is
perfectly premixed. Four pressure magnitudes are investigated
from 0.1 to 0.4 MPa. Three different fuels are concerned:
methane, propane, and methane+hydrogen. The laminar flame
speed Sl and thickness δl = α/Sl (α is the fresh gas thermal
diffusivity) have been calculated using the PYTHON Cantera
library with the GRI-Mech [56] v. 3.0 mechanism.

Because of the statistical inhomogeneity of the velocity
field in the streamwise direction (transverse inhomogeneity
was found to be much smaller), it is a mistake to assign a
unique value for the turbulence parameters. Therefore, as an
illustration, all turbulent quantities detailed in Table I are the
average values over a domain extending from the burner inlet
to the position Hf ≡ x at which the mean progress variable c

is equal to 50%.
We found that the ratio of the turbulent velocity u′ to

the laminar flame speed Sl ranges from about 1.2 to 9. The
ratio of the integral length scale Lt to the laminar flame
thickness δL extends from about 25 to 160. The Karlovitz
number was calculated as Ka = τη/τc where τη = (ν/ε)0.5

is the Kolmogorov time scale (ν is the fresh gas viscosity

and ε = 15ν(∂u/∂x)2 is the surrogate of the mean turbulent
kinetic energy dissipation rate) and τc = δl/Sl is the chemical
time scale. We found that the Karlovitz number is in the
range 0.16 < Ka < 2.86. The Reynolds number Ret based
on the integral length-scale Lt and the turbulent velocity u′
extends from 150 to 750. Note that some operating conditions
(Flames {1-18}, {7-23}, {8-24}, {9-19}, {15-22}) have
been assessed using both low and high frame rate measure-
ments so comparison between these two techniques can be
handled.

The different operating conditions are reported onto the
Borghi-Peters diagram [1,57] in Fig. 3. All the operating
conditions lie between the corrugated and the thin reaction
zone regimes.

B. The POD algorithm

In the present study, the spatiotemporal features of the
flame fronts are assessed by use of POD. For detailed
mathematical description of POD and many applications the
reader can refer to the review by Berkooz et al. [41]. In this
subsection, details about the pre- and postprocessing steps are
depicted.

The spatial coordinates (xi,j and yi,j ) of the flame contour
(the black curve in Fig. 2) are independently resampled using
a fixed number of points Np (hereafter Np = 2000). xi,j and
yi,j are then rearranged in column vectors and concatenated in
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TABLE I. Table of operating conditions. The frame rate of the camera is given. The fuel composition and equivalence ratio φ together with
the laminar flame speed Sl and thickness δl = α/Sl are also provided. Hf is the flame height, defined as the streamwize distance x at which the
mean progress variable c = 50%. The indicated values for the turbulent velocity u′ and integral length scale Lt are the average values over the
domain 0 < x < Hf . The same applies for the Reynolds number Ret and Karlovitz number Ka. As a reminder, case {1-18}, {7-23}, {8-24},
{9-19}, and {15-22} are the same operating conditions investigated using either high or low frame rate tomography.

Case Frame rate Fuel P (bar) φ Sl (m s−1) δl (mm) Hf (mm) u′/Sl Lt/δl Ka Ret

1 10 Hz CH4 1 0.7 0.192 0.117 66.9 2.18 49.16 0.47 159
2 10 Hz CH4 1 0.85 0.310 0.073 34.0 1.79 68.49 0.29 182
3 10 Hz CH4 1 1.0 0.376 0.060 33.9 1.47 83.18 0.20 182
4 10 Hz CH4 3 0.7 0.111 0.067 40.5 4.66 76.15 0.83 526
5 10 Hz CH4 4 0.9 0.190 0.030 28.8 3.06 164.43 0.30 750
6 10 Hz C3H8 1 0.8 0.363 0.062 53.2 1.28 87.67 0.16 166
7 10 Hz 70%CH4+30%H2 1 0.6 0.114 0.198 52.6 4.66 27.32 1.65 167
8 10 Hz 80%CH4+20%H2 1 0.7 0.210 0.107 44.8 2.39 48.76 0.54 172
9 10 Hz CH4 1 0.8 0.269 0.084 46.5 1.83 63.00 0.31 171
10 10 Hz 70%CH4+30%H2 2 0.6 0.093 0.120 46.3 5.31 43.71 1.64 342
11 10 Hz 80%CH4+20%H2 2 0.7 0.151 0.074 40.7 3.44 69.21 0.67 351
12 10 Hz CH4 2 0.8 0.191 0.059 39.4 2.76 86.92 0.43 354
13 10 Hz 70%CH4+30%H2 3 0.6 0.059 0.127 43.1 8.63 40.80 2.87 521
14 10 Hz 80%CH4+20%H2 3 0.7 0.121 0.062 34.3 4.58 80.39 0.79 547
15 10 Hz CH4 3 0.8 0.165 0.045 32.3 3.45 108.44 0.44 555
16 10 Hz CH4 2 0.77 0.190 0.059 42.2 2.67 87.95 0.41 347

17 10 kHz CH4 1 0.6 0.114 0.197 78.8 3.41 30.74 1.15 155
18 10 kHz CH4 1 0.7 0.192 0.117 66.3 2.19 49.02 0.47 159
19 10 kHz CH4 1 0.8 0.269 0.084 48.4 1.77 63.95 0.30 168
20 10 kHz CH4 2 0.6 0.076 0.147 76.0 5.21 40.77 1.65 313
21 10 kHz CH4 3 0.6 0.059 0.127 74.9 6.80 46.81 1.87 471
22 10 kHz CH4 3 0.8 0.165 0.045 34.6 3.27 110.72 0.40 539
23 10 kHz 70%CH4+30%H2 1 0.6 0.114 0.198 56.6 3.93 28.01 1.50 163
24 10 kHz 80%CH4+20%H2 1 0.7 0.210 0.107 48.4 2.27 49.91 0.49 168

a matrix called the snapshot matrix Xi,j , viz.,

Xi,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 · · · x1,j · · · x1,Nim

...
...

...
...

...
xi,1 · · · xi,j · · · xi,Nim

...
...

...
...

...
xNp,1 · · · xNp,j · · · xNp,Nim

y1,1 · · · y1,j · · · y1,Nim

...
...

...
...

...
yi,1 · · · yi,j · · · yi,Nim

...
...

...
...

...
yNp,1 · · · yN,j · · · yNp,Nim

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The subscript i ∈ [1 : Np] stand for the contour point number
and j ∈ [1 : Nim] is the image number. Consequently, the
matrix Xi,j is 2Np × Nim. From this snapshot matrix, one can
compute some basic statistics such as the mean flame position
Xi , the standard deviation X′

i or the probability of finding
the flame at a given position in the flow. We now define the
normalized flame position matrix as

χi,j = Xi,j − Xi

X′
i

. (2)

The POD algorithm describes the data using a global
approach based on an energetic representation. This means that

local features can be either overestimated or underestimated
depending on whether or not their associated energy is high
or low in the control domain. Even though the turbulent flow
corrugating the flame is nearly homogeneous, in this study, the
flame front is inhomogeneous since the standard deviation X′

i

(the flame brush) increases monotonically with the streamwise
distance [58,59]. Therefore, the POD decomposition based on
Xi,j would have been biased since the first modes (the most
energetic) are localized only on the flame tip where X′

i is
maximum but are not present at the base of the flame where
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FIG. 3. Experimental conditions overlaid on the premixed com-
bustion regime diagram. The color of the symbols refers to the value
of the Karlovitz number.
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X′
i is smaller. To circumvent this bias, we decided to apply

the POD on the reduced flame coordinates χi,j since χ ′
i,j is in

essence homogeneous.
The POD algorithm consists in determining a decomposi-

tion of the snapshot matrix in a sum of k deterministic functions
�k(�x) or �i,k called modes that depend only on space,
multiplied by temporal coefficients 
k(t) or 
k,j weighted
by a factor Wk , viz.,

χi,j =
Nm∑
k=1

�i,k × 
k,j × Wk. (3)

In Eq. (3), Nm is the number of modes used for the
reconstruction and is discussed in Appendix. Equation (3) can
also be rewritten in a matrix formulation as

χ = �W�. (4)

In the context of POD, the mathematical constraint on the
deterministic functions and temporal coefficients is that they
are both orthogonal regarding the inner product on the
integrable squared function space L2, viz.,∑

j


k,j
l,j = δk,l, (5a)

∑
j

�j,k�j,l = δk,l, (5b)

where δk,l is the Kronecker symbol. Equations (5a) and (5b)
can be recast in matrix formulation as

��T = I, (6a)

��T = I, (6b)

where I is the identity matrix and the superscript T designates
the transposed matrix.

By convention the modes and the temporal coefficients
are sorted from the largest to the smallest eigenvalue. For
this reason, the POD is often referred to as an energy-driven
decomposition.

One of the main advantage of using POD is that the
flame contours can be reconstructed mode by mode. The
reconstructed flame coordinates XR

i,j,k (where the superscript
R stands for “reconstructed”) which thus depend on space
i ∈ [1 : Np], on time (or image number) j ∈ [1 : Nim] and
mode number k ∈ [1 : Nm] are given by

XR
i,j,k =

(
xR

i,j,k

yR
i,j,k

)
= Xi + (�i,k
k,jWk) × X′

i . (7)

An example is given in Fig. 4 in which the flame front
coordinates are reconstructed using three distinct modes k =
1,10,50. Specifically, the mean flame coordinates Xi (the black
curves), the reconstructed flame contour of minimum ampli-
tude XR

i,k = Xi + (�i,kWk min{
k,j })X′
i (green curves) and

of maximum amplitude XR
i,k = Xi + (�i,kWk max{
k,j })X′

i

(red curves) are represented in this figure. As expected, the
first mode k = 1 is associated with larger amplitudes by
comparison with the mode number 10 and 50. Noticeable is
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FIG. 4. Example of the POD decomposition applied to the
flame contour coordinates of Flame 18 (Table I). The mean flame
coordinates are represented by the black full line, while the blue
dash-dot and red dashed lines correspond respectively to XR

i,k =
Xi + (�i,kWk min{
k,j })X′

i and XR
i,k = Xi + (�i,kWk max{
k,j })X′

i ,
with k = 1 (left), k = 10 (center), and k = 50 (right).

the fact that fluctuations associated with k = 1 are mostly
perceptible at the tip of the flame.

Even though not clearly discernible for k = 1, one also
perceives a hint of periodicity for k = 10, this periodicity being
much more easily distinguishable for k = 50. This suggests
that a given mode number k can be related to a physical spatial
scale (wavelength). However, unlike DMD or the Fourier
transform there is no straightforward relation between POD
modes and scales. Here the following procedure is proposed.
(i) The curvilinear coordinate s of the mean flame of
coordinates (x,y) is calculated, viz.,

s =
∫ Npδτ

δτ

√(
∂x

∂τ

)2

+
(

∂y

∂τ

)2

dτ, (8)

where τ = [1 : Np]δτ is the curvilinear parameter. Then, (ii),
the complex number zR

j,k(s) = xR
j,k(s) + iyR

j,k(s), where here

i = √−1 is calculated, and (iii) the Fourier transform of the
modulus |zR

j,k|(s) is calculated. |zR
j,k|(s) corresponds to the

absolute distance between the reconstructed coordinates of
mode k and mean flame positions. (iv) Finally, the physical
spatial scale r(k) associated with the mode k is identified as
the inverse of the wave number at which the spectrum of
|zR

j,k|(s) is maximum.
Results of this procedure are presented in Fig. 5. Except

for mode numbers k < 10, a clear linear dependence between
the mode number and the wave number at which the contour
spectrum is maximum is evidenced, i.e., r−1 = Akrk with
Akr the coefficient of proportionality. This is confirmed by
the plateau that extends over more than two decades for
the compensated wave number (Akrkr)−1. Therefore, this
procedure allows Akr to be estimated for each operating
condition in order to assign a physical spatial scale to a mode
number.
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FIG. 5. Correspondence between mode numbers k and wave
numbers r−1 for Flame 18 (Table I). A clear linear slope, i.e., r−1 ∝ k

is observed as also confirmed by the compensated wave number
(kr)−1.

III. SCALE-BY-SCALE ANALYSIS OF THE FLAME
WRINKLING

A. Definition, parametrization, and comparison
with the caliper technique

We now turn our attention to the contribution of each scale
to the flame wrinkling. Since only two-dimensional images
of the flame contours are accessible in the present study, our
focus will be on the contribution of each scale to the arclength
of the interface separating the fresh to the burned gas. This
provides a measure of the degree of wrinkling (or roughness)
at a given scale (see, for instance, Refs. [32,60] and references
therein). In this goal, the POD algorithm is first employed to
reconstruct the flame coordinates (xR

i,j,1:k,y
R
i,j,1:k) from the first

mode up to a given mode k, viz.,(
xR

i,j,1:k

yR
i,j,1:k

)
= Xi + X′

i

k∑
m=1

(�i,m
m,jWm). (9)

This is equivalent to low-pass filtering the flame front coordi-
nates. Then the scale-by-scale contribution to the arclength of
the flame front is defined as

L(k) = 1

Nim

j=Nim∑
j=1

∫ Npδτ

δτ

s(τ )dτ, (10)

where

s(τ ) =
⎡
⎣(

∂xR
τ,j,1:k

∂τ

)2

+
(

∂yR
τ,j,1:k

∂τ

)2
⎤
⎦

1/2

(11)

is the curvilinear coordinates along the flame contours recon-
structed using k modes. Recalling that the scale r is related to
the mode number k via the relation r = (Akrk)−1, the arclength
L(k) can be plotted also as a function of the physical scale r .
Notwithstanding the analogy between POD reconstructions
and classical filtering, this approach turns out to be rather
similar to that employed in Ref. [32] where the coarse graining
of the interface was done using a box filter of varying filter
size. An example is given in Fig. 6 where the flame arclength
L(r) is normalized by the arclength of the (mean) nonwrinkled
interface, hereafter noted L0. The shape of L(r) is quite similar
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ηo L( r )
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η
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L( r )
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η

β

FIG. 6. Assessment of the curvilinear arclength L/L0 of the flame
contour as a function of the scale r/ηo through the POD technique
(symbols) for Flame 1. Also plotted is the parametric expression
Eq. (12) (full line) where the parameters ηo, ηi , and β have been
inferred from nonlinear least-squares fit.

to that observed in many previous studies (see, for instance,
[32,60]). At large scales, L(r)/L0 tends to unity and then
increases rapidly as we travel through scales of smaller size
before reaching a plateau at very small scales. This curve,
known as the Richardson plot in fractal analysis, allows the
main characteristics of the flame wrinkling to be identified as
described below.

It is well known [29,30] that the fractal facet of folded
interfaces is observed over a range of scales spanning from
an outer cutoff (a large scale) ηo to an inner cutoff (a small
scale) ηi . Within this range, it is observed that the arclength
of a wrinkled interface follows a power-law evolution of the
form L(r) ∝ r−β where β is related to the so-called fractal
dimension (Fig. 6). For scales much larger than ηo, L(r) is
constant and is equal to L0 (Fig. 6). When the scale ηi � r , we
have L(r)/L0 = (ηo/ηi)β [29,30]. These three distinct scaling
can be matched together in a single parametric expression of
the form

L(r)

L0
=

(
ηo

ηi

)β

⎡
⎣1 + (

r
ηo

)2

1 + (
r
ηi

)2

⎤
⎦

β/2

. (12)

This matched-scaling function is very similar to that first
initiated by Batchelor [61] and further extensively used in,
e.g., Refs. [62–67] for describing velocity or scalar structure
functions [68,69] in turbulent flows, where three distinct
scaling at respectively large, small, and intermediate scales
are also observed.

In the context of fractal analysis, after extensively scruti-
nizing the literature, it was found that a similar equation to
Eq. (12) was first suggested by Mandelbrot for describing
the “rank-frequency” relation of words in literature [70].
This relation is sometimes referred to as the Zipf-Mandelbrot
law [71,72]. It was further employed by Rigaut [71,72] for
describing the coverage length of pulmonary alveolus. In
Refs. [71,72], this expression was used to justify the systematic
deviations from a pure fractal behavior at very small value of r .
He called this type of behavior “semifractal” since the fractal
dimension appeared to be scale dependent. Our claim here
differs considerably since the bending of fractal plots at small
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FIG. 7. Comparison of the POD (lines) and caliper (symbols)
techniques for assessing L/L0 for case 9, 19, 15, and 22. The arclength
is normalized by the small-scale quantities, i.e., L/L0(ηo/ηi)−β vs
r/ηi .

and large scales is in our case related to the inner and outer
cutoff but not to a change in fractal dimension which remains
constant independent of r .

The appropriateness of Eq. (12) to describe the scale-
by-scale contribution to the flame wrinkling is illustrated
in Fig. 6. The parameters ηo, ηi , and β have been here
inferred from a nonlinear least-squares fit using the function
nlinfit of MATLAB. The normalized standard deviation between
experiments and the fitting function is always of the order
10−4, which demonstrates a posteriori the perfect adequacy of
Eq. (12) for characterizing L(r). The main advantage of using
this parametric expression is that the assessment of the three
parameters ηo, ηi , and β is totally unambiguous and does not
imply any degree of arbitrariness, notably in the estimation of
the “best” range of scaling in the inertial range which spans
between ηi < r < ηo. This is even more relevant for low to
moderate Reynolds numbers.

In the goal of validating the present assessment of the scale-
by-scale properties of the turbulent flame fronts, we carried
out a comparison with the caliper technique. In the caliper
technique [73], the length of a curve is estimated by counting
the number of ruler lengths of size r to cover the whole length
of the curve. This process is repeated for a set of ruler lengths.
In the present case, use was made of the algorithm proposed
in Refs. [60,74].

Results are presented in Fig. 7 where the scale-by-scale
contribution to the arclength as obtained using either the
POD or the caliper technique is shown. Two couples of
operating conditions, i.e., Flames (9-19) and Flames (15-22),
are considered to compare the assessments made using either
the high- or the low-frame-rate tomography technique.

POD analysis is based on a statistical approach [41].
Furthermore, since the decomposition is data driven, it may be
sensitive to convergence and statistical independence of flow
realizations. These two constraints may lead to severe issues
as far as high-speed measurements are concerned. Indeed,
while using high-speed tomography enables the flame front
dynamics to be tracked, two main issues arise: (i) successive
snapshots are, by definition, statistically dependent and (ii) the
time of measurement is short (camera memory limitation).
The conjunction of these two shortcomings may lead to

TABLE II. Parameters ηo, ηi , and β as given by a least-squares fit
using Eq. (12) for all experimental conditions investigated here. The
error is computed as the average of 100 × |QPOD/QCaliper − 1| over
the 24 conditions, where Q denote the quantity under consideration.
Again, cases {1-18}, {7-23}, {8-24}, {9-19}, and {15-22} are the
same operating conditions investigated using either high- or low-
frame-rate tomography.

POD Caliper

Case ηo (mm) ηi (mm) β ( ηo

ηi
)β ηo (mm) ηi (mm) β ( ηo

ηi
)β

1 16.5 1.87 0.26 1.76 12.1 2.24 0.31 1.70
2 11.8 1.11 0.29 1.98 13.8 1.61 0.29 1.86
3 15.3 1.41 0.24 1.78 13.4 1.69 0.26 1.71
4 11.1 0.68 0.32 2.45 13.1 1.33 0.36 2.29
5 19.6 0.72 0.30 2.71 19.4 1.06 0.30 2.38
6 15.2 1.31 0.25 1.84 12.6 1.59 0.27 1.76
7 13.7 1.17 0.29 2.05 16.9 1.64 0.30 2.03
8 14.8 1.04 0.27 2.00 16.4 1.48 0.28 1.96
9 11.6 1.22 0.25 1.86 17.5 1.47 0.25 1.86
10 12.4 0.69 0.34 2.61 16.5 1.22 0.36 2.59
11 13.7 0.77 0.33 2.51 15.7 1.21 0.35 2.48
12 12.0 0.82 0.31 2.37 15.8 1.21 0.33 2.33
13 12.0 0.61 0.34 2.88 14.7 1.09 0.40 2.85
14 12.9 0.56 0.33 2.75 15.1 0.97 0.36 2.71
15 12.2 0.62 0.32 2.62 15.1 0.94 0.33 2.54
16 12.2 0.92 0.29 2.13 12.1 1.55 0.35 2.06

17 21.1 1.73 0.20 1.66 16.2 1.61 0.23 1.71
18 22.0 1.72 0.25 1.87 15.6 1.97 0.29 1.83
19 23.9 1.87 0.25 1.87 14.6 1.78 0.28 1.81
20 17.6 1.06 0.27 2.15 15.0 1.69 0.35 2.16
21 15.4 0.79 0.29 2.40 15.6 1.52 0.38 2.42
22 20.8 1.03 0.30 2.45 13.2 1.26 0.36 2.34
23 20.9 1.55 0.27 2.04 15.2 1.89 0.33 1.99
24 23.2 1.61 0.25 1.95 15.5 1.69 0.28 1.87

Error (%) 23.6 27.6 10.6 3.1

unconverged statistics. By comparing low and high frame rates,
we have addressed these issues. According to the POD analysis
of our results, we do not see significant differences between
both frame rates, meaning that statistical convergence has
been achieved. Indeed, the agreement between the high- and
low-frame-rate tomography is particularly satisfactory, with
differences that do not exceed 10%.

Figure 7 also emphasizes that the POD technique agrees
nicely with the caliper method, although some slight discrep-
ancies are observed. This difference is mainly attributed to a
well-known bias in the caliper technique associated to the fact
that the analyzed curve does not contain an integer number
of rulers [74,75]. This effect is mostly visible at large scales
as highlighted in Fig. 7, where it is observed that L(r) issued
from either the POD or the caliper technique closely match
until a physical scale r < 20ηi ≈ ηo.

A comparison between the POD and caliper methods is
further provided in Table II for the 24 different operating con-
ditions. Some differences are again noticeable. Discrepancies
are observed mainly at the levels ηo and ηi with differences
of about 25%, whereas the fractal dimension assessed by
the two techniques is within 10%. These differences are
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again attributed to the bias in the estimation of L(r) at large
scales using the caliper technique. This bias affects the fitting
procedure for estimating ηo and so forth ηi . Differences can
be also due to the method used to relate a mode number to
a physical scale. However, the quantity (ηo/ηi)β , representing
the ratio of the wrinkled to unwrinkled arclength agrees very
nicely, independently of the method employed (∼3%).

In summary, the fractal characteristics of the flame are
computed by an unambiguous least-squares fit method using
the parametric expression Eq. (12). The caliper technique
compares favorably well with POD except at large scales for
which the caliper technique is known to provide some biased
results. The quantity (ηo/ηi)β assessed by the two methods
is in excellent agreement. Consequently, we conclude that
the POD algorithm is reliable for assessing the scale-by-scale
contribution to the arclength.

B. Scale similarity of the flame wrinkling

In the context of turbulent nonreacting flows, there has been
a long-standing quest for assessing the relevant characteristic
scales that ought to be invoked for normalizing velocity
or scalar energy spectra or structure functions (see, e.g.,
Refs. [14,76] and references therein). For instance, if one
observes a collapse of energy spectra over a given range of
scales, once normalized by the relevant velocity and length
scales, it is stated that these spectra comply with scale
similarity over this particular range of scales. If so, then scale
similarity suggests that energy spectra can be represented by an
universal parametric expression [14]. Seeking for such scaling
is thus of tremendous importance in the analytical description
of turbulence.

In the present study, the same question is addressed for the
scale-by-scale contribution to the arclength L(r). Specifically,
we investigate the degree with which L(r) complies with
scale similarity using different characteristic quantities. In the
present case, one can invoke two characteristic length scales for
normalizing r , i.e., ηo and ηi , and two characteristics length-
scales for normalizing L(r), namely L0 and L0(ηo/ηi)β . There-
fore, one can construct different types of scale similarity, viz.,

(i) Large-scale similarity, viz.,

L

L0
vs

r

ηo

, (13)

which is equivalent to normalizing velocity energy spectra by
the integral length scale and the velocity variance. In this case,
scale similarity is expected to hold at large scales.

(ii) Small scale similarity, viz.,

L/L0

(ηo/ηi)β
vs

r

ηi

, (14)

which is equivalent to normalizing velocity energy spectra by
the Kolmogorov velocity and length scales. In this case, scale
similarity is expected to hold at small scales. Note that the
small-scale-similarity variables do not depend only on some
small scales characteristics but depend also on the large scales
through the appearance of L0 and ηo.

(iii) Log-similarity. This type of similarity solution orig-
inates from nonreacting turbulent flows. It has been first
observed and justified for the temperature field in a Rayleigh-

Bénard convection flow [77] and further investigated in detail
for the velocity field in fully developed homogeneous isotropic
turbulence [76,78–80]. In the context of fluid turbulence,
log-similarity is predicted by both the multifractal model
and the variational approach of the small scale intermittency
[79,80]. The first attempt in investigating the appropriateness
of log similarity for fractal plots originates from Meakin
[81–83]. When applied to L(r), log similarity consists of
calculating

L =
log

(
L
L0

)
β log

(
ηo

ηi

) vs R =
log

(
r
ηo

)
log

(
ηo

ηi

) . (15)

L might be interpreted here as a normalized scale entropy as
in Refs. [34,35,84]. One can further define the scale entropy
flux F [34,35,84],

F = − ∂L
∂R . (16)

β × F is a measure of the local fractal dimension. Indeed, if
L(r)/L0 = (r/ηo)−β in the range ηi < r < η0, then it can be
readily shown that βF = −β∂L/∂R = β over −1 < R < 0.
By injecting Eq. (12) into Eq. (15), it is readily shown that

L = 1 + 1

2a
log

⎡
⎣1 + (

r
ηo

)2

1 + (
r
ηi

)2

⎤
⎦, (17)

where a = log (ηo/ηi), i.e., corresponds to the logarithmic
separation between ηo and ηi . At this stage it is easy to notice
thatL does not depend on β. By further using the trigonometric
relation cosh(x) = (e2x + 1)/2ex , it can be shown that the
scale entropy is written as follows:

L(R) = 1

2a

{
a + log

[
cosh(aR)

cosh(aR + a)

]}
. (18)

By differentiating with respect to R, the scale entropy flux
reads

F(R) = −1

2
{tanh(aR) − tanh(aR + a)}. (19)

Results for the 24 different operating conditions using the
three aforementioned sets of similarity variables are presented
in Figs. 8–11. As one could have expected, none of the scalings
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FIG. 8. Large-scale similarity, i.e., L/L0 is plotted as a function
of r/ηo. The arrow indicates increasing values of (ηo/ηi)β .
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based on either outer (large) scales or inner (small) scales
lead to a complete collapse over the entire range of scales.
Specifically, a strong scatter is observed within the inertial
range (if it may be defined as the scale separation between ηo

and ηi is moderate) where the scaling exponent β and (ηo/ηi)β

are interdependent. This was already noticed in Ref. [21],
where it was found that the fractal dimension followed a similar
evolution to the flame surface density.

We now turn our attention to the degree with which
log similarity holds for L(r). Figures 10 and 11 present
respectively the scale entropy L and the scale entropy flux
F as a function of the normalized logarithmic separation R.
All the curves collapse reasonably well except for a separation
R close to either −1 or 0 corresponding to r = ηi and ηo,
respectively. Note also that the scale entropy distribution
differs significantly from that corresponding to an infinite value
of a, i.e., for an infinite separation between ηo and ηi .

This departure is more easily discernible when the scale
entropy flux is plotted (Fig. 11). Let us recall that F is a
measure of the local (as a function of R) fractal dimension.
As mentioned above, for a proper inertial range to be defined,
the scale entropy flux should reach a value of 1 for scales
in the range −1 < R < 0. Clearly, F does not reveal any
plateau and its maximum value is always below 1. This might
be wrongly interpreted as evidence of a “scale-dependent”
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FIG. 10. (a) Scale entropyL(R) as defined by Eq. (15). The black
dash-dotted lines represents the asymptotic distribution, i.e., a → ∞.
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FIG. 11. Scale entropy flux F(R) as given by Eq. (16). The black
dash-dotted lines represents the asymptotic distribution, i.e., a → ∞.

fractal behavior as in Refs. [31,71,72] (sometimes referred to
as semifractal or multifractal behavior). Although this scenario
is physically tenable, the fractal dimension β appearing in
Eq. (12) is in essence scale independent. Therefore, this lack
of scaling is rather due to the overlapping effect associated
with the bending of L(r) near the outer and inner cutofsf. By
comparing experimental curves to that corresponding to an
infinite value of a (black dash-dotted line), it appears that a
plateau can indeed be observed but for a much higher value of
ηo/ηi .

On the basis of Eq. (19), it is possible to assess the
conditions needed for Fmax ≡ max(F) to reveal a plateau. In
effect, it is readily shown that

Fmax = tanh

(
a

2

)
= 1 − 2

ηo

ηi
+ 1

≈ 1 − 2

(
ηo

ηi

)−1

, (20)

when ηo

ηi
is sufficiently large.

Figure 12 depicts the evolution of Fmax as given by Eq. (20)
together with the experimental assessments inferred from the
present database. This figure reveals that Fmax → 1 is only
approached asymptotically. A value of ηo/ηi of the order of
103 is needed forFmax to be equal to 1 with a reasonable degree
of precision. It is worth noticing that the present experimental
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FIG. 12. Fmax as a function of the scale ratio ηo/ηi . The full
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2 ) while the dashed line is given by the
approximation 1 − 2(ηo/ηi)

−1, symbols correspond to Fmax for the
24 operating conditions investigated here. The inset shows 1 − Fmax.
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database for which 10 � ηo/ηi � 30 is far from fulfilling this
condition. This lack of scaling range is further confirmed when
the compensated arclength L(r)/L0(r/ηo)β [given by Eq. (12)]
is plotted as a function of r/ηo for different ratios ηo/ηi

(Fig. 13). When ηo/ηi = 2 · 101, which is at the midspan of our
experiments, the scaling range is very limited and resembles
an inflection point rather than a clear plateau. Beyond 1 × 103,
one can unambiguously discern a scaling range over about two
decades.

This clearly demonstrates that the finite ratio between ηo

and ηi has a drastic impact on the distribution of L(r). A finite
separation between ηo and ηi implies a crossover between the
statistical behavior of large (≡ ηo) and small scales (≡ ηi)
which affects the maximum value of the scale entropy flux,
i.e., the apparent slope of L(r) in the inertial range. In the
field of nonreacting turbulent flows, this effect is generally
referred to as a finite Reynolds number effect (see, for instance,
Refs. [65,66,85,86] and references therein). In this context, the
inertial range might be preferably called the restricted scaling
range as in, e.g., Ref. [86].

Therefore, because of the aforementioned finite ratio effect,
it is not surprising to observe that scale similarity does not hold
in the present case (Figs. 8 and 9). Indeed, one may need to
reach much higher values of ηo/ηi for large and small scales
to behave independently and for an asymptotic value for β

to be possibly attained. Consequently, finite Reynolds number
effects are likely to shed doubts on most of the experimental
or numerical estimations of β and the quest for an universal
value or universal evolution for this parameter is worth being
revisited.

IV. IMPLICATION FOR MODELLING

Many studies [9,11,20] have emphasized the ability of
fractal models for predicting the flame surface density in either
the RANS (e.g. Refs. [15,16]) or LES (e.g., Refs. [10,11])
context. Figure 14 put emphasis on the excellent correlation
between (ηo/ηi)β and the averaged flame surface density over

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5
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FIG. 14. Correlation between the averaged flame surface density
and (ηo/ηi)β .

the domain. The latter is defined as〈∫
�dy

〉
= 2

Hf

∫ Hf

x=0

∫ ∞

y=0
�(x,y)dxdy, (21)

where the flame surface density �(x,y) has been estimated
using the same procedure as in [20,87]. Therefore, the
challenge is focused on the predictions of the parameters ηo,
ηi , and β. We thus now turn our attention to the ability of
some available empirical or phenomenological relations for
predicting the evolution of the fractal parameters with respect
to the flow or flame characteristics.

A. Prediction of the inner and outer cutoffs

There is wealth of experimental [17,88] data and phe-
nomenological arguments [11,20,89] which suggest that, in
analogy with nonreacting flows, the inner cutoff is proportional
to the Kolmogorov length scale. In this case

ηi

δl

= CKa−1/2. (22)

Using the present definition for δl = α/Sl , Gülder and Small-
wood [17] advocated a value for C of 15.4 while Roberts et al.
[88] found a value of 4.9. Kobayashi et al. [89] suggested that
the inner cutoff could also be identified with the crossover
length scale in the kinetic energy spectrum between inertial
and dissipative scales. This was further recently confirmed
by some physical reasoning arguments [20]. In this case, the
value for C relates to the Kolmogorov constant Cu = 2 through
C = r∗

1 = (11Cu)3/4 ≈ 10.2. However, this scaling might hold
only for sufficiently large values of Karlovitz number so the
flame can be treated as a passive interface. For low Karlovitz
numbers, it has been proposed that the inner cutoff should
rather scale with the Gibson length scale LG/Lt = (Sl/u

′)3

[1,11,20], which in terms of δl is written as

ηi

δl

= Ka−2. (23)

To be consistent with both the high and low Karlovitz regimes,
Refs. [11,20] suggested the following expression for ηi :

ηi

δl

= r∗
1 Ka−1/2 + Ka−2. (24)
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FIG. 15. Evolution of the inner (circles) and outer (squares)
cutoffs as a function of the Karlovitz number. The inner and outer
cutoffs are normalized respectively by the laminar flame thickness
δl and integral length scale Lt . The black full line corresponds to
Eq. (22) with C = r∗

1 ≈ 10.2, the red dash-dotted curve is given by
Eq. (24), the green dotted curve corresponds to Eq. (25), and the blue
dashed line represents Eq. (26).

Using similar arguments, Ref. [90] proposed the following
parametrization for ηi/δl :

ηi

δl

= 0.345Ka−2 exp(−Ka)

+ 6.41Ka−1/2[1 − exp(Ka)]. (25)

Shim et al. [91] have also conjectured that, in analogy
with nonreacting flows, the inner cutoff should approach the
diameter of the most probable vortices ≈8η, viz. [91],

ηi

δl

= 8Ka−1/2 exp

(
3

4
Ka−1/2

)
. (26)

Equations (22), (24), (25), and (26) are compared to the
present assessments of ηi in Fig. 15. Although experimental
data are relatively scattered, our study confirms the decreasing
tendency of ηi/δl with respect to the Karlovitz number as given
by Eq. (22) with a constant C consistent with that predicted
in Ref. [20], i.e., C = r∗

1 ≈ 10.2. In contrast, the predictions
given by Eq. (24) [11,20], Eq. (25) [90], and Eq. (26) [91]
appear to differ significantly from experimental data. Note
that care should be paid in extrapolating these conclusions
to Karlovitz number beyond the range studied here. Also
plotted in Fig. 15 is the ratio between the outer cutoff ηo

and the integral length scale Lt . Here again, notwithstanding
the relatively large scatter, experiments indicate that ηo is
globally proportional to Lt . In the present case, the coefficient
of proportionality is found to be about 3.

B. Prediction of the fractal dimension β

Sreenivasan et al. [29] suggested that at infinite Reynolds
numbers, the exponent β of a passive interface should be equal
to 1/3. For reacting flows, Peters et al. [1] soon realized that
the kinematic restoration mechanism might act in smoothing
the flame interface and derived an expression highlighting the
effect of u′/Sl on β, viz. [23],

β =
(

3 + 1

u′/Sl − 1

)−1

. (27)

1 2 3 5 10

′

6.5/3

  7/3

7.5/3

u /SL

2
+

β

FIG. 16. Fractal dimension β as a function of u′/Sl . The black full
line and red dashed line correspond to Eq. (28) and (27), respectively.

The same year, on the basis of an extensive experimental study,
North et al. [18] ended up with an empirical relation of the form

β = 2.05

u′/Sl + 1
+ 2.35

Sl/u′ + 1
− 2. (28)

Chakraborty and Klein [90] also proposed an expression for
describing the evolution of β with respect to the Karlovitz
number

β = 1

3
erf(Ka). (29)

More recently, another Karlovitz-dependent expression for β

was suggested [11,20],

β = 1

3
+ 1

3

r∗
1 Ka−1/2

r∗
1 Ka−1/2 + Ka−2 (30)

so the ratio of the turbulent to laminar flame speed given by
(ηo/ηi)β is consistent with Damköhler predictions at both high
and low Karlovitz numbers. Equation (30) suggests that β is
1/3 at low Karlovitz number and 2/3 in the high Karlovitz
regime in agreement with recent findings of DNS at very high
Ka [21].

The fractal dimension β obtained from our database is
compared to that predicted by either Eq. (27), Eq. (28),
Eq. (29), and Eq. (30) in Figs. 16 and 17. Despite the scatter,

10
−1

10
0

10
1

6.5/3

  7/3

7.5/3

  8/3

Ka

2
+

β

FIG. 17. Fractal dimension as a function of Ka, the red dashed
line represents β = 1/3, the black curve designates Eq. (30), while
the green dash-dotted line is given by Eq. (29).
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experimental data globally confirm the increasing tendency
of β with respect to u′/Sl (Fig. 16). Predictions arising from
either Eq. (27) or Eq. (28) are roughly consistent with this
increase even though the scatter in the data hampers drawing
any firm conclusions. In Fig. 17, experimental values of β are
compared to Eqs. (29) and (30). It clearly appears that Eq. (30)
differs significantly with experiments and that β is much closer
to a value of 1/3 than 2/3. Here also, the scatter in the data are
too large to assess the ability of Eq. (29) for predicting β.

Both the scatter in the data and the discrepancy with
theoretical or empirical predictions are likely to be related to
the aforementioned finite-Reynolds-number effects. Indeed,
because of the limited ratio between ηo and ηi as emphasized
in Fig. 12, the large scales, which are known to be nonuniversal
in the sense that they depend on the type of initial and
boundary conditions, strongly affects the statistical behavior
of the inertial and small scales. Consequently, much higher
values for the logarithmic separation a are needed to draw firm
statements about the evolution of β with respect to the flow and
flame parameters. As shown in Fig. 15, ηi is proportional to the
Kolmogorov length scale η, i.e., ηi ≈ 10η, while ηo ≈ 3Lt .
Since Ret ∼ (Lt/η)3/4, then Ret ≈ ( 10

3
ηo

ηi
)4/3. Therefore, a

clear inertial range, i.e., ηo/ηi ≈ 103 for Fmax ≈ 1, might be
achieved for Ret ≈ 5 × 104. Assuming that η ∼ δL ∼ 0.1 mm
for Ka ∼ 1 to lie within the flamelet regime, then Lt should
be of the order of 30 cm. This type of turbulence is clearly
beyond the reach of existing laboratory experiments. Hence,
as was done in nonreacting fluid turbulence, for which
the quest for large-scale and very high Reynolds number
experiments have motivated many recent studies, similar needs
now arise in the field of combustion. As a consequence, before
confirming available predictions for β, a dynamical procedure
for estimating this parameter might be preferably invoked
in LES of turbulent premixed combustion at relatively low
Reynolds numbers (see, e.g., Refs. [10,11,24]).

V. HEURISTIC PHENOMENOLOGY OF WRINKLED
INTERFACES

Heretofore, in this paper, experimental data of the turbulent
flames have been analyzed with the goal of demonstrating the
ability of POD for quantifying their scale-by-scale statistics
and the suitability of some theoretical-empirical relations for
predicting them. In the following, we now concentrate on the
particular phenomenological aspects of flame wrinkling and on
the degree of generality that this phenomenology can reveal
for giving further insight into the corrugation of some other
interfaces.

A. Analytical aspects

It is well known that the hyperbolic tangent is solution of
the differential equation f ′ + f 2 − 1 = 0. The appearance of
the hyperbolic tangent in Eq. (19) thus indicates that the scale
entropy flux F(R) is governed by the following differential
equation:

1

2a

∂F(R)

∂R − C(R) × F(R) = 0, (31)

or, equivalently, the differential equation for L(R) is

1

2a

∂2L(R)

∂R2
− C(R)

∂L(R)

∂R = 0, (32)

where

C(R) = 1

2
[tanh(aR) + tanh(aR + a)]. (33)

Even though the analysis is provided here in the context of
statistically stationary turbulent flames, the time derivative of
L can be added to Eq. (32) as was done in Refs. [34,35,84]. In
this case, the transport equation for L writes

1

γ

∂

∂t
L(R,t) + C(R,t)

∂L(R,t)

∂R = 1

2a

∂2L(R,t)

∂R2
, (34)

where γ is referred to as a scale-entropy diffusion coefficient
[34,35,84]. Equation (34) can be interpreted as a one-
dimensional convection-diffusion equation, where the scalar
L depends on space R and the rightmost term of Eq. (34)
represents the diffusion mechanism, whereas the second term
on left-hand side corresponds to the transport of L by a
“convection velocity” C(R). On the other hand, one can also
do some algebra and end up with a pure diffusion equation
with a source term consistently with [84] or a diffusion-
convection equation with a source term. With these different
interpretations in mind, it is, however, worth stressing that
keeping this formulation for Eq. (34) allows us to highlight
interesting analogies between Eq. (34) and other transport
equations which are widely used in the field of turbulence
and/or turbulent combustion.

Indeed, one can note that Eq. (34) is analogous to the Lin’s
equation [92] which describes the transport of velocity energy
spectrum E(q,t) in homogeneous isotropic turbulence, viz.,

∂

∂t
E(q,t) + T (q,t) = 2νq2E(q,t), (35)

where q is the wave number and T (q,t) is the energy
transfer spectrum. A similar equation holds for the scalar
energy spectrum [86,93]. The convective term in Eq. (34) thus
relates to the transfer term T (q,t) which itself arises from the
nonlinear convective term in the Navier-Stokes equation. On
the other hand, the dissipative term 2νq2E(q,t) corresponds
to the right-hand side of Eq. (34). By further proceeding in
the analogy, one notices that the viscosity ν in Eq. (35) can
be identified with γ /4a. There is thus an analogy between
a = log(ηo/ηi) and the Reynolds number in fluid turbulence.
For instance, for a given γ , the weaker is the viscosity in the
Lin’s equation, the more the logarithmic separation between
ηo and ηi and vice versa. This is obviously also the case in
fluid turbulence where the logarithmic separation between the
integral length and the Kolmorogov length scale is proportional
to the Reynolds number.

Note also that Peters [3] has derived a transport equation
for the energy spectrum of a propagating interface whose
formulation is also analogous to either Eq. (34) or Eq. (35).

Furthermore, by removing the leftmost term in Eq. (19)
which is equivalent to focusing only on inertial and small
scales, one obtains that the scale entropy L is solution of the
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following partial differential equation:

1

γ

∂L
∂t

= 1

2a

∂2L
∂R2

+
(

∂L
∂R

)2

− 1

4
. (36)

This equation looks like the Kardar-Parisi-Zhang (KPZ)
equation [94]. The KPZ equation is widely used notably for
predicting the diffusion-limited growth of rough interfaces
[83]. It is therefore not surprising that the latter may also
govern the scale entropy. In the field of combustion, the
application of the KPZ equation, though not widespread, is
not new. It has notably provided significant insight into the
prediction of turbulent flame propagation in weak turbulence
[95] and the comprehension of slow combustion of solid
material [96]. Equation (36) is also quite analogous to the
Kuramoto-Sivashinsky (KS) equation [97,98] for which the
dispersion term would have been omitted. This suggests that
Eq. (34) together with Eq. (12) are likely to be demonstrated
on some more fundamental basis using, for instance, the G

equation, the KPZ, or the KS equation. Analytical results
for the inner and outer cutofsf might be also obtained by
use of these equations. This question is beyond the scope
of the present study but is worth being revisited in further
investigations.

B. Implications

This analogy between the scale entropy transport equation
and the Lin’s equation indicates that a rather pragmatic
phenomenology for describing the scale-by-scale properties
of wrinkled turbulent flames can be invoked. It indeed appears
that the wrinkling is driven by two distinct mechanisms,
(i) a diffusion process and (ii) transfer of interface between
the different scales. In the context of turbulent flames,
the destruction of flame surface is related to the so-called
kinematic restoration mechanism [3,4], i.e., the smoothing
by the effect of the flame propagation velocity. The latter
diffusion processes might also be attributed to the viscous
effects that damp the turbulence activity at small scales. On
the other hand, the transfer of flame interface through the
different scales R is likely to be more complex since it relates
to the cascade process inherent to all turbulent flows. In the
field of fluid mechanics, this equilibrium assumption between
diffusion and transfer was first initiated by the pioneering work
of Kolmogorov [68,69] for describing turbulent flows. Since
then, it has become extremely common. It is therefore not
surprising to draw similar conclusions for turbulent reacting
flows.

The phenomenology described above suggests that the scale
entropy formalism together with Eq. (15) for describing L(r)
might not be restricted to turbulent flame fronts only. This
also transpires notwithstanding the aforementioned analogy
between Eq. (34) and the KPZ equation, which is reputed to ap-
ply in many unrelated problems. Indeed, this phenomenology
could a priori hold for describing the scale-by-scale (possibly
fractal) properties of some other wrinkled objects as far as they
are driven by diffusive and convective processes. These include
(though not limited to) material lines or surfaces evolving in
turbulent flows [36,99,100], turbulent-nonturbulent interfaces
[28,32], two-phase flows (see the rather recent use of the
scale entropy formalism made by [34,35]), or, more generally,

isoscalars in homogeneous and/or heterogeneous gas and/or
liquid mixtures [101]. Even though further work is needed
to confirm this, the formalism employed here and related
results [especially Eq. (34) which emanates directly from
Eq. (12)] thus appear to be rather heuristic in that sense they
are likely to be generalized to some other kind of interfaces.
The aforementioned different physical situations for which
Eq. (34) may apply are found in many combustion processes.
For instance, in rocket engines or direct injection spark ignition
engines, the chain of physical processes starting from the
atomization of liquid fuel → evaporation → turbulent mixing
→ diffusion and/or partially premixed turbulent flames could
possibly be treated in this context. Hence, our opinion is that
the generalization of the scale-entropy formalism to other kind
interfaces is worth being mentioned and investigated further
in the present paper.

C. Experimental evidence

For this purpose, we consider the following five types of
wrinkled interfaces. The POD algorithm was applied to each
interface spatial coordinates and the arclength was calculated
in a similar fashion as described previously. These interfaces
include

(i) A turbulent flame. Flame 13 of the present database is
considered as an example.

(ii) The interface separating the turbulent-nonturbulent
region in a very high Reynolds number boundary layer. For this
particular case, results for L(r) are not obtained by applying
the POD algorithm but are taken directly from Fig. 5(b) of
Ref. [32].

(iii) To be as close as possible from some combustion
applications, we also considered a turbulent isoscalar field
evolving in an optically accessible engine [103]. Measure-
ments were done by means of PLIF on acetone which is used
as a fuel tracer. The experimental setup is not recalled but the
reader can refer to Ref. [103] for details. The data reduction
for the PLIF images is also fully described in Ref. [103].

(iv) The interface separating the liquid to the vapor phase in
a cavitating backward-facing step flow. Here, again, the reader
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FIG. 18. Large-scale similarity. The symbols represent the ex-
perimental assessment, whereas the lines correspond to the fit using
Eq. (12). Black diamonds: Flame 13; green right triangle: cavitating
flow; red left triangle: isoscalar; blue circles: turbulent-nonturbulent
interface [32]; magenta squares: Two-phase flow [102].
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FIG. 19. Small-scale similarity. For legend definitions see the
caption to Fig. 18.

can refer to Refs. [104,105] where a detailed description of the
experimental setup is provided. Specifically, the case “cav2”
in Refs. [104,105] is considered for the present study. The
direct visualization of the interface was carried out using a
high-speed camera. The interface detection was performed
using the same procedure as described in Sec. II A.

(v) The interface separating the gas to the liquid in a liquid
jet destabilized by a surrounding air flow. Here also, results for
L(r) are not obtained by applying the POD algorithm but are
obtained by digitizing the top curve of Fig. 6.16 of Ref. [102].

Figures 18 to 21 depicts the scale-by-scale contribution
to the arclength for the four interfaces investigated here. By
focusing on Figs. 18 and 19, it clearly appears that Eq. (12)
is perfectly tailored for representing L(r), irrespectively of
the interface considered. For the isoscalar data, the arclength
has been calculated using different isoscalar values. Results
were qualitatively similar, i.e., Eq. (12) was still perfectly
suited for fitting experimental results. The scale entropy and
the scale entropy flux are also presented (Figs. 20, and 21).
These quantities suggest that even for the boundary layer data
for which the Reynolds number was extremely high, or the
liquid jet of Ref. [102] which provides ηo/ηi ≈ 60, the scale
separation between ηo and ηi is still not sufficiently large to
reach the asymptotic scaling at very large value of a. This
means that these asymptotic scaling are still beyond the reach
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FIG. 20. Scale entropy. Symbols and lines are same as Fig. 18.

−2 −1.5 −1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

R

F
=

−
∂
L

/
∂
R

FIG. 21. Scale entropy flux. Symbols and lines are the same as
described in the caption to Fig. 18.

of the existing laboratory experiments and that further efforts
are needed to attain these extreme regimes.

As a consequence, the fact that the five different interfaces
match perfectly with Eq. (12) means that the transport
equation Eq. (34) applies as a direct consequence. This is
the experimental evidence that the phenomenology described
above, emphasizing the primordial role played by diffusion
and convection, although not demonstrated by use of either
the exact transport equations or simplified stochastic or
deterministic equations, is indeed heuristic in that sense that it
generalizes to a large number of apparently unrelated physical
situations. To our opinion, this might have several useful
implications notably for describing and modeling the physical
processes at play at the level of these interfaces which are all
widely encountered in many practical situations.

VI. SUMMARY

An extensive experimental database, consisting of 24 tur-
bulent premixed Bunsen flames with 19 independent operating
conditions, has been analyzed in detail. The flame front
is tracked by means of either low- or high-frame-rate Mie
scattering tomography and a standard binarization procedure.
POD is applied to the flame front spatial coordinates with
the goal of extracting the geometrical properties of turbulent
interfaces. The latter is measured by calculating the scale-
by-scale contribution to the arclength, i.e., the length of the
interface reconstructed using k modes. Special care has been
also given to the correspondence between a mode number k

and a physical scale r . In this context, we proposed a method
that revealed that the mode number is linearly related to the
wave number, i.e., the inverse of the physical scale, and has
yielded the following outcomes:

(i) The POD compares favorably well with the caliper
technique except at large scales, where the latter method is
reputed to be biased. For comparing the fractal characteristics
of flame wrinkling inferred from these two methods, a
parametric expression for L(r) is proposed that allows us to
compute ηo, ηi , and β in a totally unambiguous fashion. This
expression, though not demonstrated, appears to be perfectly
tailored for describing L(r) irrespectively of the flame or the
interface considered.
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(ii) In analogy with nonreacting turbulent flows, the degree
with which L(r) complies with scale similarity is appraised.
Three type of similarity are concerned, i.e., large-scale simi-
larity, small-scale similarity, and log similarity. It is observed
that none of these three types of similarity holds for the
range of Reynolds number investigated here. It is argued
that finite-Reynolds-number effects may be at play and that
much higher separations between ηo and ηi have to be reached
for drawing firm conclusions about the plausibility of scale
similarity for turbulent flames. In this context, the asymptotic
approach of Fmax towards unity, which provides an observable
of the extent of the inertial range, is discussed in detail.

(iii) The ability of fractal models for predicting the flame
surface density is confirmed. The fractal characteristics ηo,
ηi , and β are compared to available empirical or phenomeno-
logical relations. While the predictions for ηo and ηi appear
to be relatively robust, experimental data (especially for β)
remain particularly scattered. Here, again, it is noted that much
higher Reynolds numbers are needed before reassessing the
evolution of β, ηo, and ηi as a function of the flow and/or
flame parameters. For instance, Ret ≈ 5 × 104 may be the
limiting value that should be achieved for Fmax to be equal to
1 within a percentage point, so a clear scaling range is likely
to be discernible.

(iv) A rather pragmatic phenomenology for the flame
wrinkling, which emanates directly from Eq. (12), is finally
discussed. A balance equation for the scale entropy L(R,t) is
obtained, revealing the primordial role played by diffusion and
convection in the destruction and/or creation of interface. This
equation appears analogous to some exact transport equations
such as the Lin’s equation (the transport equation of the
kinetic energy spectrum), the Corrsin’s equation (the transport
equation of a passive scalar energy spectrum), or the Peters’
equation (the transport equation of the interface spectrum). It
also reveals some interesting degree of closeness with either
the stochastic KPZ or deterministic KS equation. This suggests
that Eq. (12) is likely to be demonstrated on some more
physical basis. This will be the topic of a future study. It thus
transpires that the latter phenomenology could apply to some
other folded interfaces as long as they are driven by convective
and diffusive processes. It is indeed confirmed by experiments
that Eq. (12) is nicely tailored for representing L(r) for the four
interfaces considered here. As a direct consequence, Eq. (34)
applies to these interfaces. Hence, the scale entropy formalism
opens a promising alternative for understanding and modeling
the statistical behavior of corrugated interfaces. To our opinion,
this result should lead to important progress since such folded
interfaces are widely encountered in many different situations.

Specifically, it turns out that in LES, fractal models such as
that developed by, e.g., Refs. [10,11,20] for assessing the
unresolved flame surface density can be applied to turbulence,
turbulent mixing, or two-phase flows.
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APPENDIX: DETERMINATION OF THE NUMBER
OF MODES

In order to minimize the computational cost of the POD
algorithm, one generally sets the number of modes Nm as the
smallest dimension of χ , i.e., Nm = min{2Np,Nim}. Hence,
two cases can be considered depending on Nim and Np,

(i) Nim > 2Np (high-frame-rate tomography), in which
case the direct method [39,41] is invoked. The correlation
matrix R∗ is then defined as

R∗ = χχT . (A1)

Then, using Eqs. (4) and (6a), it is readily shown that

R∗ = χχT = �W 2�T = ���−1. (A2)

One identifies from Eq. (A2) an eigenvalue problem, which
yields the estimation of W 2 = �, the diagonal eigenvalue
matrix, and �, the eigenvector matrix. Once � is known, the
temporal coefficient matrix � is obtained by projecting χ onto
the eigenvectors �.

(ii) Nim < 2Np (low-frame-rate tomography), in which
case the snapshot method [40] is employed. The correlation
matrix R is then defined as

R = χT χ . (A3)

Plugging Eqs. (4) and (6b) into Eq. (A3), one ends up with

R = χT χ = �T W 2� = �−1��. (A4)

Contrary to the previous case, Eq. (A4) yields the temporal
coefficient matrix � and �, and the mode matrix � is obtained
by projecting χ onto the eigenvectors �.

[1] N. Peters, Symposium (International) on Combustion, Twenty-
First Symposium (International) on Combustion 21, 1231
(1988).

[2] D. Veynante and L. Vervisch, Prog. Energ. Combust. 28, 193
(2002).

[3] N. Peters, J. Fluid Mech. 242, 611 (1992).
[4] N. Peters, J. Fluid Mech. 384, 107 (1999).

[5] H. Pitsch and L. Duchamp de Lageneste, Proc. Combust. Inst.
29, 2001 (2002).

[6] S. Pope, Int. J. Eng. Sci. 26, 445 (1988).
[7] K. Bray, M. Champion, and P. A. Libby, in Turbulent Reactive

Flows (Springer, Berlin, 1989), pp. 541.
[8] T. Poinsot, S. Candel, and A. Trouvé, Prog. Energ. Combust.
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(2007).

[61] G. K. Batchelor, Proc. Camb. Phi. Soc. 47, 359 (1951).
[62] G. Stolovitzky, K. R. Sreenivasan, and A. Juneja, Phys. Rev. E

48, R3217 (1993).
[63] S. Kurien and K. R. Sreenivasan, Phys. Rev. E 62, 2206 (2000).
[64] K. G. Aivalis, K. R. Sreenivasan, Y. Tsuji, J. Klewicki, and

C. A. Biltoft, Phys. Fluids 14, 2439 (2002).
[65] R. A. Antonia, R. J. Smalley, T. Zhou, F. Anselmet, and L.

Danaila, J. Fluid Mech. 487, 245 (2003).
[66] R. A. Antonia and P. Burattini, J. Fluid Mech. 550, 175

(2006).
[67] F. Thiesset, R. A. Antonia, and L. Danaila, Phys. Fluids 25,

115105 (2013).
[68] A. Kolmogorov, Proc. USSR Ac. Sci. 30, 299 (1941).
[69] A. Kolmogorov, Dokl. Akad. Nauk. SSSR 125, 15 (1941).
[70] B. Mandelbrot, in Logique, langage et théorie de l’information
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