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Grouping behavior of coaxial settling particles in a narrow channel
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Using numerical simulations, we studied the grouping behaviors of particles settling along their line of
centers in narrow channels having a Reynolds number range of 5 � Re � 50. The calculations are based on
our previously developed lattice Boltzmann direct-forcing–fictitious-domain method. We report the grouping
behavior and investigate the dependence on the number of particles n, the initial interparticle separation h0,
and the Reynolds number Re. In particular, the mode of grouping is found to be independent of the number
of particles when the Reynolds numbers is small. The two lowermost particles always come together first and
form a vertical doublet and then the next two lowest particles form another doublet, and so on. Therefore, we
observe n/2 doublets or (n − 1)/2 doublets when n is even or odd, respectively. The uppermost particle is always
left behind when n is odd. Furthermore, the separation between these doublets remains constant, displaying a
power-law dependence decreasing from top to bottom.
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I. INTRODUCTION

Particulate flows are found in numerous natural situations
and industrial applications. Because of its academic and
engineering importance, particle motion in fluids has been
a long-lasting research topic. Understanding the interaction
mechanisms among multiple particles is of considerable im-
portance to gain insight into microstructural evolution in fluids,
which is usually related to the collective behavior and self-
organization of solid particles. The direct numerical simulation
(DNS) method is a way of solving the problem of particle
motion in fluids. In a DNS method, one must simultaneously
integrate the Navier-Stokes equations (governing the motion
of the fluid) and the equations of rigid-body motion (governing
the motion of the particles). These equations are coupled
through the no-slip condition on the particle boundaries, and
through the hydrodynamic forces and torques that appear in
the equations of rigid-body motion. In this paper, we simulate
particle motion using a DNS method.

Fluid rheological behaviors and inertial effects may com-
plicate the motion of particles in fluids. For instance, hydrody-
namic interactions among particles mediated by the fluid are
highly nonlinear even at a finite Reynolds number because of
inertial effects, which are known to dramatically affect flow
behavior [1–7]. Conversely, one of the unusual phenomena
reported in viscoelastic suspensions is the formation of particle
chains during sedimentation [8–12] and shear flows [13–16]
as a result of normal stress differences. Riddle et al. [8] were
the first to report this unexpected phenomenon, and observed
that two spheres would chain with each other and form a
stable two-particle cluster in some polymer solutions for small
initial separations of the spheres. Recently, Hao et al. simulated
the sedimentation of circular particles in a two-dimensional
channel filled with an Oldroyd-B fluid using a fictitious-
domain–distributed-Lagrange-multiplier method [12]. Even
for a system with only six particles, they observed that particle
chains are formed and move to the center of the channel
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when the elasticity number is greater than a critical value and
the viscoelastic Mach number is less than 1 [12]. They also
reported that the long chain falls faster than a single particle
in the fluid.

However, in this work we report similar behavior for
particles settling along their line of centers in a Newtonian
fluid at a finite Reynolds numbers. We call this type of
behavior “grouping” to distinguish it from “aggregation” in a
non-Newtonian fluid. Similar problems have been extensively
studied and the settling velocity can be analytically calculated
in the case of a creeping flow [17]. However, the motion of
particles is much more complex if we take into account the
inertia effect. For instance, the well-known drafting-kissing-
tumbling (DKT) motion could take place when multiple
particles are settling at finite Reynolds numbers, resulting
from hydrodynamic interactions. Conversely, if the particles
are placed coaxially and released under only the influence
of gravity at finite Reynolds numbers, it will take a very
long time to observe DKT motion. Our work shows that,
before the onset of DKT motion, the settling particles may
display different grouping behaviors according to the Reynolds
number as well as the initial conditions. In other words,
the settling particles may be separated into several groups
resulting from interparticle hydrodynamic interactions. Each
group sediments at the same velocity overall. This behavior
appears not to have been documented yet in a quantitative
way. For instance, two kinds of behaviors are observed for
three identical particles falling along their line of centers in
a long channel. When the Reynolds number is small, the two
lowermost particles form a doublet first and the uppermost
particle is always left behind. Therefore, there are two groups
of settling particles. However, the uppermost particle will catch
up to the doublet to eventually form a triplet if the Reynolds
number is large enough. In this case we can observe only one
group. Undoubtedly, the presence of more particles can lead to
more complex grouping behaviors. The interactions between
particles can be complicated by inertial effects. Our results
show that there are, in total, four kinds of grouping behaviors
when four particles are settling in a channel. The influence
of hydrodynamic interactions is considered to be crucial as
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we have observed very unusual behaviors in the simulations,
such as grouping of all the particles. A better understanding
of this settling problem is nevertheless needed because it
provides valuable insight into the hydrodynamic interactions
among multiple particles at finite Reynolds number. In view
of this, the primary purpose of this work is to show how
the Reynolds number and the initial configurations affect the
grouping behavior of the coaxial settling particles.

In this paper we simulate the settling of particles to
study their grouping behavior, on account of interparticle
hydrodynamic interactions, for the Reynolds number range
5 � Re � 50 and for the number of particles n � 19. The
Reynolds number is defined as Re = ρf U0d/μ, where ρf and
μ are the fluid density and dynamic viscosity, respectively, and
d is the particle diameter. The reference velocity U0 is chosen
by equating the buoyancy-corrected weight of the object with
a unit-coefficient drag force acting on the particle, which is
given by U0 = [0.5πd(ρp/ρf − 1)g]−1 (in two dimensions)
or U0 = [4d(ρp/ρf − 1)g/3]−1 (in three dimensions), where
g is the gravitational constant and ρp is the density of a
particle. For computational practicality, the results presented
here are largely restricted to the case of two-dimensional (2D)
particles, but we also present some three-dimensional (3D)
results for spherical particles. The calculations are based on
our previously developed lattice Boltzmann direct-forcing–
fictitious-domain (LB—DF-FD) method [18]. In Sec. II,
we present a brief outline of the LB—DF-FD method and
define the problem. We then validate our method in Sec. III
by comparing our results with previously reported data for
several benchmark tests. In Sec. IV, we present our simulation
results by first examining the grouping behaviors for n = 4.
The effects of initial particle-particle separation and channel
width are also considered. We then summarize the grouping
behaviors for n = 3 − 6. Finally, we study the unique grouping
behavior at low Reynolds numbers, which is independent of
the number of particles. We present results and discussion for
n � 19.

II. NUMERICAL METHOD

A. Lattice Boltzmann method

We solve the fluid flow problem using the lattice Boltzmann
method (LBM). The discrete lattice Boltzmann equations
of a single-relaxation-time model under external forces are
expressed as [18]

fi(x + ei�t,t + �t) − fi(x,t)

= − 1

τ

[
fi(x,t) − fi

(0)(x,t)
] + wi�t

cs
2

(λ · ei), (1)

where fi(x, t) is the distribution function for the microscopic
velocity ei in the ith direction, fi

(0)(x, t) is the equilibrium
distribution function, λ is the external force, �t is the time
step of the simulation, τ is the relaxation time, cs is the speed
of sound, and wi are weights related to the lattice model.
The fluid density ρf and velocity u are determined by the
distribution function

ρf =
∑

i

fi, ρf u =
∑

i

fiei . (2)

For the two-dimensional, nine-velocity lattice model used
here, the discrete velocity vectors are

ei =
⎧⎨
⎩

(0,0), for i = 0,

(±1,0)c, (0,±1)c, for i = 1 to 4,

(±1,±1)c, for i = 5 to 8,

(3)

where c = �x/�t and �x is the lattice spacing. The speed
of sound c2

s = c2/3. Following Qian [19], the equilibrium
distribution function is

fi
(0)(x,t) = wiρf

[
1 + 3ei · u

c2
+ 9(ei · u)2

2c4
− 3u2

2c2

]
, (4)

where wi are set to w0 = 4/9, w1–4 = 1/9, and w5–8 = 1/36.
By performing a Chapman-Enskog expansion, the macro-

scopic mass and momentum equations at the low-Mach-
number limit can be recovered:

∂ρf

∂t
+ ∇ · (ρf u) = 0, (5)

∂(ρf u)

∂t
+ ∇ · (ρf uu) = −∇p + μ∇2u + λ, (6)

where p is the pressure, λ is the pseudo–body force responsible
for the motion of rigid bodies, and μ is the dynamic viscosity
which can be expressed as μ = ρf (2τ–1)(�x)2/6�t . For
simplicity we set �x = 1 and �t = 1 in the present work.

B. Fluid-particle coupling

The fluid and solid particle are coupled by means of the
fictitious-domain scheme [20]. In this method, the domains
inside the particles are filled with the same fluid and satisfy
the constraint of rigid-body motion. Therefore, the velocity is
described by

u = U + � × r (the particle inner domain P ), (7)

where U and � are the particle’s translational and rotational
velocities, respectively, and r is the position vector with respect
to the particle’s center of mass. Moreover, in this method,
various Lagrangian nodes are needed to represent the particle,
and a Eulerian mesh is used for the fluid.

The motion of a particle with mass M and moment of inertia
J is governed by Newton’s equations,

M
dU
dt

= FH +
(

1 − 1

ρr

)
M g+FC, (8)

d( J · �)

dt
= TH , (9)

where ρr is the density ratio of particle to fluid. Fc is the
collision force acting on the particle by other particles within
a certain interparticle cutoff distance, which will be further
discussed. FH and TH are the hydrodynamic forces and
torques on the particle, respectively:

FH =
∫

∂P

n · σds, (10)

TH =
∫

∂P

r × (n · σ )ds, (11)

where σ is the fluid stress tensor and n is the unit outward
normal on the particle surface. FC , the particle-particle
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collision force, is described below. Based on a direct-forcing
scheme, the force exerted on the Lagrangian points in the
particle domain can be expressed as

λn+1 = ρf

un+1 − u∗

�t
= ρf

Un+1 + �n+1 × r − u∗

�t
, (12)

where u∗ is a temporary velocity, which satisfies the mo-
mentum equation [Eq. (6)] with zero body force, and λn+1

is the discrete form of the pseudo–body force in Eq. (6). In
the interest of brevity, the specific numerical algorithms of the
LB—DF-FD method are not explained here; they are described
in detail in [18].

C. Particle-particle interactions

When two particles come into close contact with each
other, the lubrication force becomes important. This force
is caused by the attenuation of the fluid film in the gap
between the two particles and is repulsive upon approach and
attractive upon separation of the particles. However, when
the gap between two particles is of the order of one lattice
spacing, the lubrication force is not completely resolved with
the lattice Boltzmann method. To solve this problem, we
applied a lubrication force model proposed by Kromkamp
et al. [21]:

FC =
{

0, h > δc,

− 1
2μU12 · R12

′[( a1+a2
h

)3/2(
F 0 + h

a1+a2
F 1

) − (
a1+a2

δc

)3/2(
F 0 + δc

a1+a2
F 1

)]
, h < δc,

(13)

Here a1 and a2 are the radii of the two particles. U12 =
U1 − U2, h = |R12| − (a1 + a2) is the distance between the
particle surfaces, and δc represents the cutoff distance between
the particle surfaces for the added lubrication force, which
is fixed at δc = 1.6�x in the simulations. The unit vector
R12

′ = R12/|R12|. According to Kromkamp et al. [21], F0 and
F1 are two constants given by F0 = 3.3322 and F1 = 12.829.
For a three-dimensional system, the lubrication force proposed
by Nguyen and Ladd is adopted [22].

D. Problem definition

We consider the interactions of multiple settling particles
that are initially located along the channel axis and then
released under gravity. For simplicity, we consider only the
case where all the particles are equally spaced. h0 is defined as
the initial interparticle separation which is the closest distance
between two neighboring particles. The computational domain
is L × H = 4d × 400d (in two dimensions) or L × L × H =
4d × 4d × 250d (in three dimensions). We believe that the
height of the domain is large enough to allow the settling
particles to reach a steady state. We choose no-slip boundary

conditions on all four fixed walls of the domain. This
avoids specifying the far-field boundary conditions on a finite
computational domain. For the following, the parameters are
fixed at ρf = 1, ρp = 2, and d = 20 (in lattice units).

III. VALIDATION

To demonstrate the use of the LB—DF-FD method and
further validate its results, we compare our results with a
previous immersed-boudary–LBM simulation of the well-
known DKT motion [23]. In the simulations, the domain is
2 cm (x direction) × 8 cm (y direction), which corresponds
to a computational domain of 200 × 800 lattice units. The
fluid density is 1 g/cm3, and the viscosity is 0.01g/cm s. The
particle density is 1.01 g/cm3, and the radius of the particles is
0.1 cm. Initially, the first particle is 0.001 cm off center of the
channel axis at a height of 7.2 cm and the second particle is
at the channel center at a height of 6.8 cm. The particles start
settling in the y direction under the influence of gravity. For
particle-particle interactions, we choose a collision technique
proposed by Glowinski et al. [24]:

Fi,j

C =
{

0, |X i − Xj | > ai + aj + ζ,
cij

εp

( |X i−Xj |−ai−aj −ζ

ζ

)2( X i−Xj

|X i−Xj |
)
, |X i − Xj | < ai + aj + ζ.

(14)

According to Feng and Michaelides [23], the parameter
cij is the force scale chosen to be the buoyancy force on the
particle; εp is the stiffness parameter for collisions, which is
usually taken to be εp = �x2; ai and aj are the radii of the i and
j particles, respectively; and ζ is the range of the repulsion
force which is taken to be ζ = 1.5 �x. We summarize our
comparisons in Fig. 1. It is shown that the present results
are in good agreement with the immersed–boundary–lattice-
Boltzmann method results [23]. We also present the results for
εp = �x which are almost identical to those for εp = �x2.

To further validate our simulation method, a spherical
particle settling in a square tube is simulated and compared
with previous results. A spherical particle of diameter d is

released in a vertical square channel of width L and settles
under gravity. In the simulations, d = 13 and τ = 0.8, and
the Reynolds number is fixed at Re∞ = 0.36, which is based
on U∞, the unconfined terminal velocity from the Stokes
equation. The sphere is initially released at the center of the
cross section of the channel with zero velocity. The particle
settles along the axis of the channel and reaches its terminal
velocity. Due to the wall effects the terminal velocity will be
less than the terminal velocity of an unconfined particle. As
shown in Fig. 2(a), there is good agreement between previous
results [25,26] and the present ones. The second case is the
dependence of the Reynolds number ReT , which is based
on the terminal settling velocity UT , on the ‘’best number”
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FIG. 1. Comparison between previous results and the current simulations for drafting-kissing-tumbling (DKT) motion: (a) Transverse
coordinates and (b) longitudinal coordinates of the two particles.

ND [27]. ND is given by ND = Re2 and Re is the Reynolds
number based on U0. In this case, d = 16 and ρr = 2, and the
computational domain is 80 × 80 × 960. One can see a good
agreement between previous results [20,27,28] and the present
ones for ReT < 100 in Fig. 2(b).

IV. RESULTS

A. Grouping behaviors for n = 4

We detail the grouping behaviors (GBs) for n = 4 in this
section. The initial interparticle separation and channel width
are fixed at h0

′ = h0/d = 1.5 and L′ = L/d = 4, respectively.
In total, four distinct behaviors can be observed during particle
settling by varying the Reynolds number. Typical streamline
patterns, along with pressure distributions, are displayed in
Fig. 3. For referencing convenience, we number the particles
from top to bottom. The behaviors illustrated in Figs. 3(a)
and 3(b), which show the results for Re = 15 and Re = 25,
respectively, are qualitatively similar. In both cases particle 3

first comes closer to particle 4 and then particle 1 comes closer
to particle 2, forming two separate vertical doublets. In the
first case, however, the distance between these two doublets
remains finite, while in the second case these two doublets
eventually contact and form a four-particle cluster, which
settles as a single cohesive unit. This can be further confirmed
by examining the time history of normalized separations
between the neighboring particles as seen in Figs. 4(a)
and 4(b), which correspond to conditions in Figs. 3(a) and 3(b),
respectively. We believe that the upper doublet is dragged
into the wake of the lower doublet during settling, resulting
from stronger hydrodynamic interactions for larger Reynolds
numbers. For reference convenience in the following sections,
we denote these two behaviors as “GB I” and “GB II,”
respectively.

At intermediate Reynolds numbers we observe a transient
behavior, as shown in Fig. 3(c). The nature of the third case
is utterly different because particle 2 first settles individually,
rather than grouping with particle 1. The distance between

(a)                                            (b)
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FIG. 2. Comparison between previous results and the current simulations for a settling sphere along the axis of a square channel: (a) The
dependence of the terminal settling velocity on the particle-wall distance ratio, (b) ReT vs N

1/3
D . ReT is the Reynolds number based on the

terminal settling velocity, and ND is called the “best number,” which is given by ND = Re2. U∞ is the unconfined terminal velocity from the
Stokes equation.
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(a)                                              (b) 

(c)                                              (d) 

FIG. 3. Evolution of the settling behavior as the Reynolds number is increased: (a) Re = 15, (b) Re = 25, (c) Re = 32.7, and (d) Re = 40.
The particles are consecutively numbered from the top to the bottom.

particle 1 and particle 2 remains constant, as shown in Fig. 4(c),
while the distance between particle 2 and the doublet (particle
3 and particle 4) increases, because of the larger settling
velocity of the latter. Furthermore, this behavior is rarely
encountered in the simulations because we can observe it only
when the Reynolds number is approximately 32.7 under the
above-mentioned conditions. We call this type of behavior
“GB III.”

If the Reynolds number is large a different class of behavior
is found: particle 3 and particle 4 form a doublet first and then
particle 2 joins it quickly, which makes a triplet, resulting in an
increase in the settling velocity. This leads to the fact that the
trailing particle (particle 1) is always left behind, as shown in
Fig. 3(d). We call this type of behavior “GB IV.” While there
are a total of four grouping behaviors that can manifest when
varying the Reynolds number, the evolution of grouping be-
havior is not simply I → II → III → IV, as is discussed below.

In Fig. 4, we also present the results of the lubrication force
model proposed by Yuan and Ball [29] with a cutoff distance
of δc = 1.6 �x. There are negligible differences between the
results of these two models. Furthermore, to check the effect of
the cutoff distance, we conduct corresponding simulations of
δc = 2.0 �x for the lubrication force proposed by Kromkamp
et al. [21]. As shown in Fig. 4, the effect of the cutoff

distance δc is also negligible if δc
∼= �x. We also examine

the same problem using the repulsive force model [24]. From
a qualitative point of view, all the results are comparable,
despite the different mechanisms; therefore, we believe that
the collision methods do not alter the essential features of the
settling behavior of particles.

Figure 5 shows the normalized particle settling velocity
over time for the different grouping behaviors seen in Fig. 3.
For comparison, we also show the settling velocity of an
isolated particle under the same flow conditions. It can be
observed that the grouping behavior results in an increase in the
settling velocity, which is consistent with previous experiments
of three spheres settling in shear-thinning fluids [10,11]. This
leads to the fact that the cluster may leave neighboring particles
behind, as shown in Fig. 3(c). However, in some cases the
reverse happens. The cluster may drag the neighboring particle
into its wake and then form a larger cluster, as shown in
Fig. 3(d).

Typically, the velocity of a doublet is more than 30% greater
than that of an isolated particle, as shown in Figs. 5(a) and 5(c),
while the velocity of a triplet is more than 60% greater than
that of an isolated particle, as shown in Fig. 5(d).

For the behavior of GB I which is observed at low Reynolds
number, two stable doublets always settle at the same velocity,
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FIG. 4. Time history of normalized separations between neighboring particles for different grouping behaviors: (a) Re = 15 (GB I), (b)
Re = 25 (GB II), (c) Re = 32.7 (GB III), and (d) Re = 40 (GB IV). h′

i-j represents the separation between the surfaces of particles i and j

which is normalized by the particle diameter d .

as shown in Fig. 5(a), which leads to a constant distance
between the two doublets. To gain more insight into this kind
of behavior, we also studied the effects of initial interparticle
separation h′

0 and channel width L′. In Fig. 6, we show the
final separation between particle 2 and particle 3 (i.e., the final
distances between doublets) under different conditions. The
distance between doublets decreases with increasing Reynolds
number. The smaller the initial interparticle separation, the
smaller the final distance between doublets. Furthermore, the
effect of the walls is also remarkable, as shown in Fig. 6. The
distance is larger when the walls are closer to the particles.
This is because the walls suppress particle settling, which
takes more time to form the doublets. To further investigate
the effect of δc, we also present the results for δc = �x and
δc = 2.0 �x for L′ = 4 and h′

0 = 1.5. As one can see in Fig. 6,
there is little difference among the results when varying the
value of δc. The same problem has also been solved by using
the lattice Boltzmann method proposed by Lallemand and
Luo [30], which treats moving boundaries in a different way.
The results are also presented in Fig. 6, which shows agreement
with the results by the present LB—DF-FD method [18].

We have done a detailed study of the effects of initial
interparticle separation h0

′ as well as channel width L′ on
the grouping behavior, and summarize the results in Fig. 7.
As previously mentioned, there are four different grouping
behaviors, but the evolution of the grouping behavior is
complex. For large value of h0

′, such as h0
′ > 1, the settling

of particles goes through five overall stages as the Reynolds
number increases, i.e., I → II → I → III → IV, while it goes
through four stages (I → III → IV → II) for small initial
separations such as h0

′ < 1. Furthermore, we observe six total
stages (I → II → I → III → IV → II) for particle settling when
h0

′ = 1. As mentioned above, the GB III behavior is rarely
observed because it takes place only at a specific Reynolds
number which shows a linear relationship with the value of
h0

′, as shown in Fig. 7(a). We believe that it can be regarded
as a transient motion from I to IV. The effect of the walls on
the settling behavior is also found to be significant, as shown
in Fig. 7(b). The initial separation is fixed at h0

′ = 1.5. We
observe only two behaviors (I → II) when the particles are very
close to the walls, i.e., L′ < 3.5. Furthermore, the behavior of
GB I is more likely to happen for small Reynolds number.
However, particle settling becomes much more complex if the
walls are distant from the particles, and five stages (I → II →
I → III → IV) are seen as the Reynolds number increases.

To supplement and compare our two-dimensional results,
we present some three-dimentional results for h0

′ = 1.5 and
n = 4 in Fig. 8. Similarly to the two-dimensional results
shown in Fig. 3, we also observed four different behaviors
when varying the Reynolds number. There is no qualitative
difference between the 2D and 3D results except that for the
behavior of GB I we observe much larger distances between
doublets in three dimensions at similar Reynolds numbers.
However, as the variations between the 2D and 3D results are
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FIG. 5. Time history of normalized settling velocity for different grouping behaviors: (a) Re = 15 (GB I), (b) Re = 25 (GB II), (c)
Re = 32.7 (GB III), and (d) Re = 40 (GB IV). The settling velocity is normalized by U0.

not large, we do not intend to conduct more 3D simulations in
the interest of computational practicality.

B. Summary of grouping behavior for n = 3, 4, 5, and 6

In addition to n = 4, we also studied the settling behavior
of particles for n = 3, 5, and 6. The computational domain is

Re

h 2-
3t /d

4 6 8 10 12 14 16 18

20

40

60

80
100

L' =3.5, h0' =1.5

L' =3.75, h0' =1.5

L' =4, h0' =1.0

L' =4, h0' =1.25

L' =4, h0' =1.5

L' =4, h0' =1.5 (δc=Δx)

L' =4, h0' =1.5 (δc=2Δx)

LBM results (Lallemand & Luo [30])

4
3

2
1

h2-3
t

FIG. 6. Separation between particle 2 and particle 3 (i.e., the
distances between doublets) at steady state under different conditions
for GB I.

4d × 500d for n = 5 and 6. We summarize all the results in
Fig. 9. The initial separation is fixed at h0

′ = 1.5. For the case
of n = 3, shown in Fig. 9(a), particles 2 and 3 first cluster and
leave behind particle 1 when the Reynolds number is small
(Re � 37), while particle 1 may catch up to the cluster to later
form a vertical triplet at higher Reynolds numbers (Re � 38).
These two behaviors were also seen by Daugan et al. [10,11],
who experimentally studied the settling of three spheres in a
shear-thinning fluid at small Reynolds numbers.

Figure 9(b) illustrates the evolution of settling behavior
for n = 4, which is already shown in Fig. 7. Obviously, we
can observe the behavior of GB I not only at low Reynolds
numbers, i.e., 5 � Re � 17, but also at intermediate Reynolds
numbers 32 � Re � 32.6. The most significant difference
between these two regions is that the distance between
doublets decreases with Re for the former, as shown in Fig. 6,
while it increases for the latter. For instance, the distance is
approximately 34d at Re = 32 while it is more than 70d at
Re = 32.6. As mentioned above, particle 3 always comes close
to particle 4 first and then particle 1 comes close to particle
2, forming two doublets. If the Reynolds number is large,
such as Re � 32, the lower doublet will sediment very fast
due to strong inertial effects, leaving the upper one behind.
However, the outcomes will be very different if the Reynolds
number slightly increases. As seen in Fig. 9(b), particle 1
does not come into contact with particle 2 when Re � 32.72,
resulting from the hydrodynamic interactions with the lower
doublet.

013114-7



DEMING NIE, JIANZHONG LIN, AND RONGQIAN CHEN PHYSICAL REVIEW E 93, 013114 (2016)

(a) 

Re

h 0'

0 10 20 30 40 50
0.25

0.5

0.75

1

1.25

1.5

1.75

Re

L
'

0 10 20 30 40 50
2

2.5

3

3.5

4

4.5

5

5.5

(b)

FIG. 7. Settling phase diagram for n = 4 as a function of (a) initial particle-particle separation and Reynolds number, and (b) channel
width and Reynolds number. The symbols denote different behaviors: GB I (circles), GB II (diamonds), GB III (triangles), and GB
IV (squares).

For the case of n = 5 shown in Fig. 9(c), five distinct
grouping behaviors are observed. However, the particle settling
goes through seven total stages as the Reynolds number in-
creases, i.e., I → II → I → III → IV → V → II. Generally,
the evolution of the settling behavior is similar to that of n = 4,
except for behavior III shown in Fig. 9(c). In this case, the two

lowermost particles (particles 4 and 5) first form a doublet,
and particles 1 and 2 subsequently form another doublet. The
upper doublet (particles 1 and 2) will catch up to particle 3
because of larger settling velocity, leading to a triplet. For the
same reason, the triplet catches up to the lower doublet, and

(a)                                             (b)

(c)                                             (d)
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FIG. 8. Time history of normalized separation between neighboring spheres for different grouping behaviors: (a) Re = 14 (GB I), (b)
Re = 25 (GB II), (c) Re = 43.5 (GB III), and (d) Re = 50 (GB IV).
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FIG. 9. Summary of grouping behavior as the Reynolds number increases for (a) n = 3, (b) n = 4, (c) n = 5, and (d) n = 6. Solid lines
with arrows indicate that the distance remains constant, while dashed lines indicate that the distance increases with time.

all the particles are eventually grouped together and settle as a
whole unit.

For the case of n = 6 shown in Fig. 9(d), four kinds
of grouping behavior are observed as the Reynolds number
increases. However, we did not observe the grouping of
all particles, as can be observed for n = 3 − 5. Numerical
simulations indicate that this kind of behavior is more
likely to happen for large Reynolds numbers or small initial
interparticle separations. In view of this we conducted some

simulations of the settling of multiple particles at Re = 50
and h0

′ = 0.5 and show the results in Fig. 10. One can see
that the above-mentioned behavior still stands for n � 5. The
uppermost particle is always left behind for n � 6. Here
it should be mentioned that we present the results of the
Reynolds number only up to 43 in Fig. 9(d) because the vertical
groups will collapse during settling beyond that, which will be
furthered discussed.
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FIG. 10. The grouping behavior for n = 2−8 at Re = 50 and
h0

′ = 0.5.

Additionally, the grouping behavior is quite similar for all
the cases shown in Fig. 9 at low Reynolds numbers. The
two lowermost particles always come together first and form
a vertical doublet, then the two next particles form another
doublet, and so on. Therefore, when n is even we can observe
n/2 doublets which are kept at finite distances from each other.
However, when n is odd, there are (n − 1)/2 doublets and the
uppermost particle is always left behind. To gain deeper insight

into this grouping behavior, we also simulated the settling of
up to 19 particles, which will be discussed in the next section.

C. The grouping behavior for n � 19 at low Reynolds number

In Fig. 11 we show the instantaneous streamline and
pressure distribution of the settling particles for n = 3 − 10
at Re = 10 and h0

′ = 1.5. The computational domain is 4d ×
600d for n > 6. As mentioned above, the settling behavior is
similar for all of these cases. For instance, we can observe
three stable doublets for n = 7 and four doublets for n = 9,
as shown in Fig. 11(a). However, when n is even, such as
n = 6, 8, and 10, it appears in the figure that the two uppermost
particles may not contact and form a doublet. To illustrate this,
we show the time series of normalized separations between the
particles which will contact eventually in Fig. 12. For instance,
the case of n = 6 shown in Fig. 12(a) confirms that the two
lowermost particles (particles 5 and 6) first form a doublet,
and then the particles next to the doublet, particles 3 and 4.
For the two uppermost particles, particles 1 and 2, one can
see that the separation between them increases first and then
keeps decreasing slowly. Although Fig. 12 does not show this
contact, it presumably takes a long time for h′

1-2 to reach zero,
which indicates that particles 1 and 2 will contact eventually.
The same can be said for the cases of n = 8 and n = 10.

(a)                                            (b)

FIG. 11. The grouping behavior at Re = 10 and h0
′ = 1.5 for (a) n = 3, 5, 7, 9 and (b) n = 4, 6, 8, 10.
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FIG. 12. Time history of normalized separation between particles that form a doublet for (a) n = 6, (b) n = 8, and (c) n = 10.

At steady state, all the doublets settle at the same velocity
at low Reynolds numbers, leading to the fact that the distances
between doublets remain constant, as shown in Fig. 13. The
lower the particle pair is, the less time it takes to form a doublet.
This results in a smaller distance between the lower doublets.
For instance, h′

7-8 is smaller than h′
5-6 and h′

5-6 is much smaller
than h′

3-4, as shown in Fig. 13(c).
We show a schematic illustration of the grouping behavior

for n = 5 − 19 at Re = 10 and h0
′ = 1.5 in Fig. 14. The

computational domain is 4d × 800d for n > 10. The cor-
responding results at Re = 12 and Re = 13 for n = 19 are
also shown. For simplicity, we consider only the case of odd
numbers of particles. We observe similar grouping behavior for
all cases: the particles form doublets from the bottom upward
except for the uppermost particle, which is always left behind.
In Fig. 14, we also show the normalized separation between
doublets. The separation between the two uppermost doublets
is much larger compared with those between others because it
takes a very long time for the two uppermost particles to form
a doublet, especially when the number of particles is large. We
also observe that the separation between doublets decreases
from the top to the bottom, which displays a power-law
relation, as shown in Fig. 15. This power-law exponent remains
constant irrespective of the number of particles when n � 13.
It is also interesting that the separation between doublets
approaches a constant independent of the number of particles
n when n � 9. For instance, the separations are about 6d

for the lower doublets, as shown in Fig. 14. We believe that

this constant depends on the Reynolds number as well as the
channel width. For n = 19, this separation is 5.6d and 5.4d for
Re = 12 and Re = 13, respectively. The effect of the channel
width is not taken into account in this work. However, we still
think that the power-law dependence shown in Fig. 15 holds
for the finite-width channel. As shown in Fig. 7(b), it is getting
hard to observe the grouping behavior GB I when the channel
width is increased. The Reynolds number should be very low
for large channels. Nevertheless, it is possible that the grouping
behavior GB I does not happen at all if the Reynolds number is
too low because the particles may settle individually because
of negligible inertial effect.

Figure 16 shows the effect of the number of particles on
the normalized separation between doublets. We show only
the first, second, third, and fourth separations from the top of
the settling particles, i.e., h′

3-4, h′
5-6, h′

7-8, and h′
9-10.A similar

power-law increase is observed for all the results except for
h′

9-10 as the number of particles increases. We believe that this
power-law relation would also be true for the result of h′

9-10 if
larger n were considered.

As shown in this work, the particles will display certain
grouping patterns depending on the Reynolds number and
initial conditions if they are coaxially settling in a narrow
channel. However, it should be stated here that the grouping
patterns will break down eventually after a long enough time
(defined as T ′

c ) because of nonlinear inertial effects. The larger
the Reynolds number is, and the larger the group is, the
sooner the group will collapse. To illustrate this, we show
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FIG. 13. Time history of normalized separation between the doublets for (a) n = 5, (b) n = 7, and (c) n = 9.

013114-11



DEMING NIE, JIANZHONG LIN, AND RONGQIAN CHEN PHYSICAL REVIEW E 93, 013114 (2016)

n=17

n=19(12)

n=13

n=15

n=11

n=7

n=9

n=5

n=19

n=19(13)

8.6

12.3 6.3

17.4 7.0 6.0

22.9 8.6 6.0 6.0

28.7 10.8 6.5 6.0 6.0

0.60.60.64.73.318.43

0.60.60.62.67.87.515.14

0.60.60.60.68.63.013.818.84

6.56.56.56.51.66.88.418.33

4.54.54.55.58.51.88.318.92

FIG. 14. Schematic illustration of the grouping behavior for n = 5−19 at Re = 10 and h0
′ = 1.5. In consideration of computational time

we consider only the case of odd numbers of particles. The numbers above the red line segments shown in the figure represent the normalized
separations between doublets. The results of n = 19 at Re = 12 and Re = 13 are also shown.

the dependence of T ′
c on the Reynolds number for n = 4 and

h′
0 = 0.5 in Fig. 17, along with the corresponding results of

two other computational resolutions: d = 10 and d = 25. We
consider three groups of Reynolds number: Re = 40, 45 and
50. Although there is a difference between the values of T ′

c ,
the general tendency is similar for all three computational
resolutions: the collapse of the particle group takes place
earlier for larger Reynolds number. In Fig. 18 we show the
streamline and pressure distribution of four particles settling
with h′

0 = 0.5 at Re = 45 and Re = 50, respectively. In both
cases the particles form a four-particle group which settles as a
whole for a long time. However, this group begins to collapse
at t ′ = 184.4 for Re = 45 and at t ′ = 166.8 for Re = 50, after
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FIG. 15. Power-law decrease of the normalized separation be-
tween doublets for Re = 10.

which the particles no longer settle as a cohesive group. For the
purpose of comparison, we also adopt the lattice Boltzmann
method proposed by Lallemand and Luo [30] to deal with the
same problem. The results are presented in Fig. 19, which
is similar to Fig. 18 in general features. We can observe
the same grouping pattern although it takes less time for the
group to break down in the simulations. The reason for this
is likely due to the fact that these two methods update the
distribution functions fi on the grids close to the particle
surfaces differently. However, this is not our concern in the
present work.
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FIG. 16. Normalized separation between doublets as a function
of the number of particles for Re = 10.
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FIG. 17. Dependence of Tc
′ on the Reynolds number for different

computational resolutions at h0
′ = 0.5. The number of particles is

n = 4. Tc
′ is defined as the time it takes for the particle group to

collapse.

Finally, we should point out that the choice of colli-
sion strategy (the lubrication force [21,29] or the repulsive
force [24,31]) may have limited effect on some simulation
results such as the final distance between doublets (Fig. 6)
or the specific Reynolds number corresponding to GB III
behavior (Fig. 7), but it does not alter the essential features
of the particles’ behavior. This was also demonstrated by our
previous work (Nie and Lin [32]).

V. CONCLUSIONS

We have studied, using direct numerical simulation, the
grouping behavior of multiple particles settling under the
influence of gravity in a narrow channel. The particles
are initially coaxially placed with the same interparticle
separation. The calculations are based on our LB—DF-FD

method. We have focused on the dependence of the particles’
behavior on Reynolds number, number of particles, and initial
placement. The present method was validated by simulating
the sedimentation of two particles in a channel and the
resulting DKT motion in two dimensions. We also simulated
the sedimentation of a sphere in a square channel for three-
dimensional validation.

We presented a detailed study of the grouping behaviors for
the case of n = 4. It has been shown that four kinds of grouping
behavior are observed according to the Reynolds number when
the channel width is fixed at L′ = 4. The particles may settle as
one, two, or three groups when Re is varied. In particular, there
is a transient behavior (GB III) that rarely occurred and was
observed only at a specific Reynolds number, which apparently
increased linearly with the initial interparticle separation h0

′.
We also examined the wall effects on the settling of particles.
There are only two grouping behaviors when the channel width
is small, such as L’ < 3.5. In addition, the GB IV behavior is
more likely to take place with larger channel widths, whereas
the opposite is true for the GB I behavior.

In addition to n = 4 we also studied the grouping behavior
for the cases of n = 3, 5, and 6 when the channel width is fixed
at L′ = 4. The effect of the number of particles is significant.
We can observe only two kinds of behavior for n = 3 while
five behaviors exist for n = 5. It should be mentioned that
the vertical array resulting from the particle grouping is more
likely to break down when the Reynolds number is larger;
therefore, we could not observe the grouping behavior for the
case of n = 6 when Re > 43.

Finally, we focused on the grouping behavior when the
Reynolds number is small. We observed similar behavior
irrespective of the number of particles n: the two lowermost
particles always come together first and form a vertical doublet,
then the two next lowest particles form another doublet, and so
on. Eventually, we observed n/2 doublets when n is even, and
(n − 1)/2 doublets when n is odd. The separations between
these doublets remain constant, and show a power-law increase
from the top to the bottom.

     

 (a)                                             (b) 

FIG. 18. Streamline and pressure distribution for particles settling with h0
′ = 0.5 at (a) Re = 45 and (b) Re = 50. The black arrow on each

particle indicates its rotation, with a vertical orientation at the outset.
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 (a)                                            (b)

FIG. 19. Similar results to those in Fig. 18 obtained through the lattice Boltzmann method by Lallemand and Luo [30]: (a) Re = 45 and
(b) Re = 50. The parameters are identical to those of Fig. 18.
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