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Power-exponential velocity distributions in disordered porous media
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Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media.
Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the
macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the
power-exponential law controlled by an exponent γ and a shift parameter u0 and examine how these parameters
depend on the porosity. We find that γ has a universal value 1/2 at the percolation threshold and grows with the
porosity, but never exceeds 2.
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I. INTRODUCTION

The physics of viscous flows through porous media is
important in such diverse areas of technology as oil recovery,
energy storage, and tumor treatment [1–3]. Such flows,
however, are notorious for their complexity stemming both
from randomness of the medium and complicated interactions
of different fluid particles. Macroscopic parameters character-
izing fluid transport in porous media, like permeability (the
ability of a porous system to transmit fluids) depend on a
multitude of geometry-related parameters such as porosity,
granule or fracture shape and size distribution, and specific
surface area. This dependency, however, is nonuniversal and
to a large extent known only through phenomenology or
approximate theories.

The complete information about the flow of an incompress-
ible fluid in a particular porous sample is contained in the
velocity field. While this quantity can be studied both experi-
mentally [4–8] and numerically [9,10], it is sample-dependent.
Therefore, to get a better insight into the connection between
the macroscopic properties of the flow and the irregular
structure of the medium, one needs mathematical tools that
take into account randomness of the porous matrix and filter
out irrelevant, sample-dependent information contained in the
full-velocity field. One such tool is the velocity distribution
function (vdf) [4–6], which is the probability density function
of the fluid velocity magnitude u or its longitudinal (uL)
or transverse (uT) components. We will use a convenience
notation f , fL, and fT to denote the vdfs corresponding to u,
uL, and uT, respectively, and f +

L and f −
L to denote fL restricted

to R>0 and R<0, respectively.
Unlike the famous Maxwell-Boltzmann distribution for the

ideal gas, vdfs for a fluid flow reflect the structure of the
medium rather than the effect of the interparticle collisions.
Despite this difference, the vdfs are also closely related to
important macroscopic parameters. For example, f and fL

immediately imply the value of the hydraulic tortuosity (τ )
[11], a quantity that measures the mean elongation of fluid
paths in a porous medium,

τ ≡ 〈u〉
〈uL〉 =

∫
V

f (u)u du∫
V

fL(uL)uL duL
, (1)
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where the integrals are taken over the volume V of the
porous sample. Similarly, for flows obeying Darcy’s law
[12], e.g., groundwater flows, the permeability (κ) can be
related to the mean fluid velocity along the macroscopic flow
direction,

κ = ϕμ
〈uL〉
|∇P | , (2)

where ϕ is the porosity of the medium (the ratio of the volume
of voids to the total volume), μ is the dynamic viscosity of
the fluid, and ∇P is the pressure gradient. Thus, the vdfs
can serve as a link between two macroscopic parameters, κ

and τ .
Several reports on f , fL, and fT for various porous systems

at low Reynolds number (Re � 1) are already available.
Physically, for arguments much smaller than 〈u〉 their form
is dominated by contributions from stagnant zones (dead-end
pores and the volumes in the proximity of the fluid-solid
boundary) [9], whereas for arguments �〈u〉 their form reflects
the properties of the conducting backbone, or the fluid paths
carrying most of the fluid transport. For this reason the vdf is
usually investigated in two physically distinct regimes: small
(u � 〈u〉) and high (u � 〈u〉) fluid velocities. In the former
case, the local fluid kinetic energy at percolation follows a
power law [9], which implies a similar, power-law behavior
for f (u), u � 〈u〉. Far from percolation, however, the form
of f (u) for small u depends on the porous matrix structure
[13] and appears to be nonuniversal, therefore it will not be
considered here.

In contrast to the case of small velocities, the available
results suggest the existence of some universality in the form of
the vdfs for u � 〈u〉. The findings of different research groups,
however, appear to be inconsistent with each other. On the one
hand, several theoretical [5], experimental [5], and numerical
[13,14] results suggest that f (u) can be approximated by a
Gaussian with the maximum shifted toward the mean fluid
velocity. On the other hand, however, several teams reported
nearly exponential vdfs with the maximum located at 0. This
includes an experimental study on f , f +

L , and fT [6], as well
as experiments [4,15] and numerical simulations [15,16] for
f +

L . Moreover, a qualitative transition from an exponential to
a Gaussian form of f was found for various sphere packings
[17]; however, in each case f peaked at u = 0. Finally, Siena
et al. [18] suggested that f +

L follows the stretched exponential

2470-0045/2016/93(1)/013110(5) 013110-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.013110


MATYKA, GOŁEMBIEWSKI, AND KOZA PHYSICAL REVIEW E 93, 013110 (2016)

function

f +
L (uL/〈uL〉) ∝ (uL/〈uL〉)γ−1 exp[−β(uL/〈uL〉)γ ], (3)

where β,γ are model parameters.
Although Eq. (3) encompasses both the exponential and

Gaussian distributions, it is not applicable to the systems with
the distribution maximum shifted from 0. As a consequence,
it predicts that the values of γ can be much larger than 2 [18],
a result not corroborated by any other research.

To reconcile this difficulty, we conjecture that for u �
〈u〉 the velocity distribution functions follow the power-
exponential distribution,

f (u) = a exp

[
−

(
u − u0

us

)γ ]
(4)

(and similar formulas for f +
L , f −

L , and fT), where a > 0
is the normalizing factor, u0 � 0 determines the location of
the distribution peak, us > 0 denotes the scale factor, and
0 < γ � 2 is the shape factor. This is the simplest distribution
that generalizes both the normal (γ = 2) and exponential
(γ = 1) distributions and allows for the shift of the distribution
maximum from 0. In particular, in contrast to Eq. (3), the
prefactor to the exponential function in Eq. (4) does not depend
on u. We also postulate that for f and f +

L there exists a

threshold value of the porosity, ϕ∗, such that

u0 = 0 for ϕc � ϕ < ϕ∗,
γ = 2 for ϕ∗ � ϕ < 1,

(5)

which reduces, by 1, the number of unknown parameters in
Eq. (4) for any given ϕ. This number can be reduced to 2 by
noticing that each vdf is normalized to 1. Actually, for ϕ < ϕ∗
(which implies u0 = 0) the normalizing constant is given by
a = γ /[us�(1/γ )], where � is the gamma function, whereas
for ϕ > ϕ∗ the vdf is a truncated normal distribution and a−1 =
1
2

√
πus erfc(−u0/us), where erfc(x) is the complementary

error function. The aim of our paper is to justify Eqs. (4)
and (5).

II. THE MODEL

To verify Eq. (4), we examined numerically an effectively
two-dimensional model of fibrous materials with the porous
matrix built of identical, freely overlapping objects randomly
deposited on a regular lattice of size L [19]. We considered
two obstacle shapes, disks and squares, both with the hydraulic
diameter a = 8 lattice units (l.u.). The fluid was assumed to be
incompressible and Newtonian, driven by a bulk force (gravity)
small enough to ensure the creeping flow (Re � 1).

The basic numerical method used to solve the prob-
lem was the Palabos [20] implementation of the lattice
Boltzmann method (LBM) with the Bhatnagar-Gross-Krook
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FIG. 1. The velocity distribution function f [panels (a)–(d)], fL (e)–(h), and fT (i)–(l) for selected porosities ϕ = 0.45 (a), (e), (i), 0.60
(b), (f), (j), 0.75 (c), (g), (k), and 0.95 (d), (h), (l) obtained for overlapping disks. Solid lines show fits to Eq. (4).
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FIG. 2. Exponent γ for f (×), f +
L (◦), and fT (�) as a function of

porosity for overlapping disks. Inset: u0/〈u〉 as a function of porosity
for f and ϕ > ϕ∗ ≈ 0.85.

approximation for collisions and the numerical viscosity ν =
1/6 [21–23]. While the LBM is often used for solving flows
in porous media, its accuracy decreases when the channels
in the porous matrix are too narrow. To verify whether this
effect is significant in the model of overlapping objects, we
also solved it with the finite difference (FD) method. In
this case we used only square obstacles arranged so that the
minimum channel width was 4 l.u. [21]. In both cases we used
the periodic boundary conditions along the macroscopic fluid
flow direction. As for the transverse direction, we applied the
no-slip boundary conditions in the LBM and periodic ones for
the FD. To minimize the finite-size effects, the lattice size, L =
1000 l.u. (LBM) and 2000 l.u. (FD) was chosen to ensure that
L/a > 100 [24] and 2L/a > 25/

√
1 − ϕ [25], and the results

were compared with those obtained for the system of size L/2.
The simulation results were averaged over 20 independent
porous samples for porosities ϕ = 0.99,0.95,0.9, . . . down
to the proximity of the percolation threshold ϕc ≈ 0.4868
for the squares [26] and ≈0.40 for the disks. The fluid
velocity was measured at the underlying lattice nodes and
binned to create histograms. In addition, to verify whether
our main conclusions depend on the space dimensionality, we
performed LBM simulations for the system of overlapping
cubes randomly distributed in a 3D space, using a = 8 l.u. and
L = 128 l.u. (L/a = 16).

III. RESULTS

Representative results obtained for overlapping disks using
the LBM are shown in Fig. 1. All velocities in this figure
are normalized by 〈u〉, and hence effectively dimensionless.
All data for f, f +

L , fT, including those not shown, can be
fitted well to Eq. (4) constrained by Eq. (5). As the porosity
is increased from ϕc toward 1 (which corresponds to the
obstacle concentration going to zero), a semilog plot of f

changes its shape from convex (subexponential), through
linear (exponential), concave (superexponential), parabolic
(Gaussian centered at 0), and shifted parabolic (Gaussian
shifted toward 〈u〉). The form of f +

L closely follows that
of f , but f −

L vanishes faster than f +
L , especially far from

ϕc. The exponent γ corresponding to fT also turns out to be
ϕ-dependent, though its value never reaches 2 (Fig. 2). This
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FIG. 3. Scaling of f −
L according to Eq. (4) with u0 = 0 and

γ fixed at 0.5. Open symbols show the results for overlapping
squares at porosity ϕ = 0.55,0.7, 0.85; filled circles represent the
experimental data of Ref. [6]. The dashed line is the scaling function
g(x) = exp(−√

x).

extends the experimental findings of Ref. [6], where γ ≈ 1
was reported for fT at a fixed ϕ that was chosen far from both
ϕc and 1. Note, however, that the current simulations cannot
be used to reliably estimate γ for fT in the limit of ϕ → 1, as
in this limit the number of obstacles becomes very small and
hence a large value of L is required to avoid finite-size effects.
It is thus possible that in this limit γ tends to 2. The threshold
value ϕ∗ ≈ 0.85 for f is close to its counterpart ≈0.87 for f +

L ;
the accuracy of our simulations was insufficient to tell if they
are actually different from each other.

As expected, u0 turns out to be a continuous function of
ϕ, growing from 0 for ϕ � ϕ∗ to 〈u〉 for ϕ = 1 (Fig. 2, inset).
Similar results were obtained for overlapping squares (data not
shown).

As for f −
L , which controls the probability distribution of

negative values of uL, we found that its tail is well described by
power-exponential distribution with γ = 0.5 for all ϕ (Fig. 3).
This conclusion was drawn from simulations for ϕ � 0.85,
as for higher porosities the decay of f −

L is so rapid, cf.
Fig. 1, that no reliable fitting of the data is possible. The value
of γ = 0.5 is also consistent with the experimental results
obtained recently in Ref. [6] (Fig. 3) and our simulation data
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FIG. 4. The scale factor (us) as a function of the porosity (ϕ) for
the model of overlapping discs and three vdfs: f (�), f +

L (×), and
fT (◦).
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FIG. 5. Exponent γ for f (×), f +
L (◦), and fT (�) as a function of

porosity for overlapping cubes. Inset: u0/〈u〉 as a function of porosity
for f and ϕ > ϕ∗.

for overlapping disks (data not shown). The contribution of f −
L

to the transport is negligible compared to that of f +
L only for

relatively high porosities. Consequently, simplified theories
that assume f −

L ≡ 0 [27] are invalid close to ϕc.
The dependence of the scale factor (us) on the porosity is

shown in Fig. 4. In the model considered here this dependence
is rather weak, although a clear maximum of us(ϕ) appears at
ϕ∗. As ϕ goes to 1, the values of us for f and f +

L converge,
which reflects the fact that in this limit the transverse velocity
uT gets negligible compared to the longitudinal one (f ≈ f +

L ).
As the porosity is lowered, the contribution of uT to u becomes
more and more significant and the scale factor for f becomes
larger than for f +

L .
Finally, Fig. 5 shows the values of γ (ϕ) determined for f ,

fL, and fT in the 3D model of overlapping cubes. Qualitatively,
these results are very similar to those shown in Fig. 2 for
2D. One difference is a much lower value of the percolation
threshold, ϕc ≈ 0.065 [26]. Another difference is that the value
of ϕ∗ is very close to the percolation threshold for the obstacles,
≈0.75 [26]. In other words, the range of porosities with γ = 2
coincides with the porosities for which the porous matrix is
composed of isolated islands (in 2D the percolation thresholds
for obstacles and for the void phase are the same). The results
for the scale factor (us) are also similar to those obtained for the
2D case, cf. Fig. 4 (data not shown). However, even though the
number of the lattice nodes used in the numerical model was
twice as large as in 2D, the ratio of L/a was only 16, a value
an order of magnitude smaller than that required to reduce
the impact of the finite-size effects on the permeability tensor
below 5% [28]. It is also known that the permeability of a finite
sample of size L smaller than the representative elementary
volume (REV) is an increasing function of L [28], which
suggests that taking too small system sizes may influence
the tails of the velocity distributions. This may explain our
observation that the fits of our data to Eq. (4) are unsatisfactory
for very diluted (ϕ � 0.95) and dense systems (ϕ � 0.35).

IV. DISCUSSION AND CONCLUSIONS

Our findings lead to the following general picture of the
fluid velocity distributions at u � 〈u〉. At the percolation
threshold all four velocity distribution functions, f,f +

L ,f −
L ,

and fT decay in accordance with the power-exponential
distribution Eq. (4) with u0 = 0 and γ = 1/2. As the porosity
is increased, γ remains constant for f −

L , but increases for
f,f +

L , and fT. At some threshold porosity ϕ∗ the exponent
γ determined for f or f +

L reaches the maximum value of
2. As the porosity is increased above ϕ∗, γ stays fixed at 2,
whereas parameter u0 becomes ϕ-dependent and grows from
0 to 〈u〉 as ϕ approaches 1. Therefore, a vdf in a random
porous medium is either subexponential (γ < 1), exponential
(γ = 1), superexponential (2 > γ > 1), or normal (γ = 2). If
γ = 2, the corresponding vdf depends on the porosity through
the shift parameter u0.

The significance of Eq. (4) is related to several factors.
First, it describes the statistical properties of the microscopic
velocity field for the velocities u � 〈u〉 that have a major
contribution to the advective transport. Unlike the case of
inviscid fluid, a viscous fluid flowing in a random porous
medium, no matter how rarified, forms a highly nonuniform
velocity field that is very sensitive to the distribution of the
obstacles [24], and Eq. (4) ensures that there is some order
in this complexity. Second, it is a relatively simple formula
with only two unknown parameters at any given porosity.
Third, the dependence of at least one of these parameters,
γ , on the porosity also appears to be fairly simple: in the
model studied here it could be roughly approximated with
two straight line segments (Fig. 2). Given this simplicity,
Eq. (4) might be used to link porosity with vdf-dependent
macrospcopic parameters like permeability or tortuosity. It
should also be useful in studies on several open issues, like the
microscopic foundations of permeability and hydrodynamic
dispersion (longitudinal and transverse) of passive solutes
[29–31], the physical relevance of the tortuosity [32], and
properties of the conducting backbone [30], all with immediate
practical applications.

Equation (4) is a phenomenological one and we are not
aware of any theoretical work explaining its form even in
the limit of the diluted system, ϕ → 1. Actually, this limit
was investigated in the context of hydrodynamic dispersion
using an effective medium approximation, and the correction
to the solution of the flow past a single sphere due to
interactions with other spheres was found [33,34], but that
solution does not predict any interesting phenomena for the
velocities larger than the bulk velocity ≈〈u〉. We believe
that the correct theoretical approach to this problem must
focus on the flow channelization resulting from the local
fluctuations in the obstacle distribution. While an attempt
toward a theory of this kind was recently proposed in Ref. [8],
it is based on too many ad hoc assumptions to be regarded as
satisfactory.

Some important questions remain open. For example, to
what extent our hypothesis remains valid for porous matrices
with a complex, highly correlated structure [35]. Another
problem is whether the value of γ = 2 for f and f +

L
actually implies the absence of long-range correlations in the
velocity field above ϕ∗ [6] or perhaps these correlations do
remain and require that the power-exponential distribution be
supplemented with some less significant terms. The physical
nature of ϕ∗ also remains unclear.

In summary, we propose that a general form of the velocity
distribution functions in disordered porous media is given by
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a power-exponential distribution with the shape factor γ and
location parameter u0 such that 1/2 � γ � 2 and either u0 = 0
or γ = 2. Moreover, γ has a universal, porosity-independent

value 1/2 both at the percolation threshold and for the negative
part of the velocity component parallel to the macroscopic
fluid-flow direction.
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